Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers
Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination...
Saved in:
Published in | Nano letters Vol. 14; no. 3; pp. 1520 - 1525 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
12.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas. |
---|---|
AbstractList | Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas. Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas. |
Author | Geiselmann, Michael Quidant, Romain Marty, Renaud García de Abajo, F. Javier Renger, Jan |
AuthorAffiliation | ICFO - Institut de Ciencies Fotoniques ICREA - Institució Catalana de Recerca i Estudis Avançats |
AuthorAffiliation_xml | – name: ICREA - Institució Catalana de Recerca i Estudis Avançats – name: ICFO - Institut de Ciencies Fotoniques |
Author_xml | – sequence: 1 givenname: Michael surname: Geiselmann fullname: Geiselmann, Michael – sequence: 2 givenname: Renaud surname: Marty fullname: Marty, Renaud – sequence: 3 givenname: Jan surname: Renger fullname: Renger, Jan – sequence: 4 givenname: F. Javier surname: García de Abajo fullname: García de Abajo, F. Javier email: javier.garciadeabajo@icfo.es – sequence: 5 givenname: Romain surname: Quidant fullname: Quidant, Romain email: romain.quidant@icfo.es |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28363042$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24571659$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UlLAzEUB_Agikv14BeQuQh6GH3ZJpOj1BXEBdTrkGaRyDSpyfTgtzfSWkEEL0kgvzxe_m8HrYcYLEL7GE4wEHwaegZM8FasoW3MKdSNlGR9dW7ZFtrJ-Q0AJOWwibYI4wI3XG6jx3M72DT1wefB6-p-VlbV13dWpfrS297UZzmXO2uqh5j94GPw4bWKrrrzQ4qvNtQvSqugP6qxDaVU3kUbTvXZ7i33EXq-vHgaX9e391c347PbWjHGhppjrVpNLdGGiIZwYLR1imLspFSg9aSVjZsYQ8yEtFILRxqtDAEGWBLsDB2ho0XdWYrvc5uHbuqztn2vgo3z3GHBKRONIPh_ykFgCVxCoQdLOp9MrelmyU9V-ui-EyvgcAlULkm5VP7u849raUOBkeKOF06nmHOybkUwdF9T61ZTK_b0l9V-UF9ZD0n5_s8Xyy6Uzt1bnKdQov7DfQIuPqND |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_0c03638 crossref_primary_10_1039_D2NR05526K crossref_primary_10_1103_PhysRevB_92_125432 crossref_primary_10_1103_PhysRevApplied_12_044039 crossref_primary_10_1021_acs_nanolett_4c03163 crossref_primary_10_1039_C4CS00486H crossref_primary_10_1103_PhysRevLett_130_083802 crossref_primary_10_1038_srep31163 crossref_primary_10_1364_OME_9_000953 crossref_primary_10_1002_lpor_201600021 crossref_primary_10_1021_acs_nanolett_8b00557 crossref_primary_10_1038_s41598_023_30689_7 crossref_primary_10_1126_scirobotics_aaq0076 crossref_primary_10_1088_1361_6528_ac50f1 crossref_primary_10_1021_acsomega_8b00282 crossref_primary_10_1063_1_4934757 crossref_primary_10_1021_acsphotonics_7b00376 crossref_primary_10_1021_acsphotonics_7b00475 crossref_primary_10_1002_lpor_201400453 crossref_primary_10_1021_nl5026997 crossref_primary_10_1103_PhysRevB_96_035146 crossref_primary_10_1021_nl504856w crossref_primary_10_1038_nphoton_2015_185 crossref_primary_10_1364_AOP_10_000703 crossref_primary_10_1021_acsphotonics_9b00519 crossref_primary_10_1021_acsphotonics_5b00575 crossref_primary_10_1021_acs_nanolett_9b04073 crossref_primary_10_1021_nn506433e crossref_primary_10_1051_epjap_2015150404 crossref_primary_10_1364_OL_402781 crossref_primary_10_1039_C7NR08249E crossref_primary_10_1002_lpor_202000030 crossref_primary_10_1002_apxr_202300082 crossref_primary_10_1063_1_4962896 crossref_primary_10_1088_2515_7647_acb57b crossref_primary_10_1016_j_diamond_2020_107840 crossref_primary_10_1063_5_0133866 crossref_primary_10_1021_acs_langmuir_0c00728 crossref_primary_10_1038_nphoton_2015_103 crossref_primary_10_1016_j_jphotochemrev_2022_100534 crossref_primary_10_1021_acs_nanolett_1c02449 crossref_primary_10_1021_acs_nanolett_6b02690 crossref_primary_10_1364_OME_6_003394 |
Cites_doi | 10.1021/nl900384c 10.1103/PhysRevLett.80.5180 10.1103/PhysRevLett.100.106804 10.1021/nl4005892 10.1103/PhysRevB.68.115433 10.1002/pssb.201100781 10.1021/nl4019947 10.1038/nphoton.2011.54 10.1103/PhysRevB.65.115418 10.1021/nl904168f 10.1103/PhysRevB.33.7923 10.1038/nphys2770 10.1038/nphoton.2011.56 10.3762/bjnano.3.100 10.1088/0957-4484/21/27/274008 10.1103/PhysRevLett.110.153604 10.1103/PhysRevLett.106.096801 10.1038/nnano.2012.259 10.1038/nphoton.2009.2 10.1021/nn9003617 10.1088/0957-4484/23/17/175702 10.1063/1.4774240 10.1364/OE.19.018175 10.1016/j.jlumin.2009.12.004 10.1016/S0009-2614(99)01414-1 10.1103/PhysRevLett.22.185 10.1126/science.1191922 10.1021/nl9017379 10.1021/cr0300789 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American
Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl4047587 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1530-6992 |
EndPage | 1525 |
ExternalDocumentID | 24571659 28363042 10_1021_nl4047587 a594644966 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a444t-51ca8c3e2cd276250438fa311f99a0ccb896fbdd2db289c7f26cad20401921fd3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 12:11:38 EDT 2025 Fri Jul 11 02:40:24 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Wed Apr 02 07:18:33 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Tue Jul 01 00:42:58 EDT 2025 Thu Aug 27 13:44:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Optical trapping nanoantenna NV center plasmonics quantum emitter quantum optics Gold Density of states Vacancies Nanopositioning Synthetic diamond Fluorescence Quantum optics Low intensity Infrared spectra Electron microscopy Nanoelectronics Polycrystalline diamond Near infrared radiation Lifetime Trapping Near infrared spectrum Imaging Illumination Plasmons Nanostructured materials Antennas Fluorescence microscopy Nanoantenna |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-51ca8c3e2cd276250438fa311f99a0ccb896fbdd2db289c7f26cad20401921fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24571659 |
PQID | 1507190590 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753476721 proquest_miscellaneous_1507190590 pubmed_primary_24571659 pascalfrancis_primary_28363042 crossref_primary_10_1021_nl4047587 crossref_citationtrail_10_1021_nl4047587 acs_journals_10_1021_nl4047587 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-12 |
PublicationDateYYYYMMDD | 2014-03-12 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Geiselmann M. (ref12/cit12) 2013; 8 Tanaka Y. (ref13/cit13) 2013; 13 Bradac C. (ref25/cit25) 2009; 9 Dregely D. (ref8/cit8) 2012; 249 Zhang W. (ref15/cit15) 2010; 10 Schietinger S. (ref9/cit9) 2009; 9 Gruber C. (ref6/cit6) 2013; 13 Aharonovich I. (ref3/cit3) 2011; 5 Tisler J. (ref24/cit24) 2009; 3 Mooradian A. (ref21/cit21) 1969; 22 Tizei L. H. G. (ref28/cit28) 2013; 110 Beversluis M. (ref23/cit23) 2003; 68 Curto A. G. (ref5/cit5) 2010; 329 Santori C. (ref1/cit1) 2010; 21 Johnson P. B. (ref19/cit19) 1972; 6 Geiselmann M. (ref29/cit29) 2013; 9 Boyd G. T. (ref20/cit20) 1986; 33 Mohamed M. B. (ref22/cit22) 2000; 317 Tizei L. H. G. (ref27/cit27) 2012; 23 Pfaff W. (ref7/cit7) 2013; 113 Huck A. (ref11/cit11) 2011; 106 García de Abajo F. J. (ref17/cit17) 1998; 80 García de Abajo F. (ref18/cit18) 2002; 65 Rittweger E. (ref26/cit26) 2009; 3 Beha K. (ref2/cit2) 2012; 3 Barth M. (ref4/cit4) 2010; 130 Juan M. L. (ref14/cit14) 2011; 5 Garcı́a de Abajo F .J. (ref200/cit200) 2008; 100 Alaverdyan Y. (ref10/cit10) 2011; 19 Love J. C. (ref16/cit16) 2005; 105 |
References_xml | – volume: 9 start-page: 1694 year: 2009 ident: ref9/cit9 publication-title: Nano Lett. doi: 10.1021/nl900384c – volume: 80 start-page: 5180 year: 1998 ident: ref17/cit17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5180 – volume: 100 start-page: 106804 year: 2008 ident: ref200/cit200 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.106804 – volume: 6 start-page: 4370 year: 1972 ident: ref19/cit19 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 2146 year: 2013 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl4005892 – volume: 68 start-page: 115433 year: 2003 ident: ref23/cit23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.115433 – volume: 249 start-page: 666 year: 2012 ident: ref8/cit8 publication-title: Phys. Status Solidi doi: 10.1002/pssb.201100781 – volume: 13 start-page: 4257 year: 2013 ident: ref6/cit6 publication-title: Nano Lett. doi: 10.1021/nl4019947 – volume: 5 start-page: 397 year: 2011 ident: ref3/cit3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.54 – volume: 65 start-page: 115418 year: 2002 ident: ref18/cit18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.115418 – volume: 10 start-page: 1006 year: 2010 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl904168f – volume: 33 start-page: 7923 year: 1986 ident: ref20/cit20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.7923 – volume: 9 start-page: 785 year: 2013 ident: ref29/cit29 publication-title: Nat. Phys. doi: 10.1038/nphys2770 – volume: 5 start-page: 349 year: 2011 ident: ref14/cit14 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.56 – volume: 3 start-page: 895 year: 2012 ident: ref2/cit2 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.3.100 – volume: 21 start-page: 274008 year: 2010 ident: ref1/cit1 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/27/274008 – volume: 110 start-page: 153604 year: 2013 ident: ref28/cit28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.153604 – volume: 106 start-page: 096801 year: 2011 ident: ref11/cit11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.096801 – volume: 8 start-page: 175 year: 2013 ident: ref12/cit12 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.259 – volume: 3 start-page: 144 year: 2009 ident: ref26/cit26 publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.2 – volume: 3 start-page: 1959 year: 2009 ident: ref24/cit24 publication-title: ACS Nano doi: 10.1021/nn9003617 – volume: 23 start-page: 175702 year: 2012 ident: ref27/cit27 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/17/175702 – volume: 113 start-page: 024310 year: 2013 ident: ref7/cit7 publication-title: J. Appl. Phys. doi: 10.1063/1.4774240 – volume: 19 start-page: 18175 year: 2011 ident: ref10/cit10 publication-title: Opt. Express doi: 10.1364/OE.19.018175 – volume: 130 start-page: 1628 year: 2010 ident: ref4/cit4 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2009.12.004 – volume: 317 start-page: 517 year: 2000 ident: ref22/cit22 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01414-1 – volume: 22 start-page: 185 year: 1969 ident: ref21/cit21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.22.185 – volume: 329 start-page: 930 year: 2010 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.1191922 – volume: 9 start-page: 3555 year: 2009 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl9017379 – volume: 105 start-page: 1103 year: 2005 ident: ref16/cit16 publication-title: Chem. Rev. doi: 10.1021/cr0300789 |
SSID | ssj0009350 |
Score | 2.3655853 |
Snippet | Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1520 |
SubjectTerms | Antennas Applied sciences Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Density Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Exact sciences and technology Fluorescence Fullerenes and related materials Illumination Infrared and raman spectra and scattering Joining Materials science Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Physics Plasmonics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Surface and interface electron states Trapping |
Title | Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers |
URI | http://dx.doi.org/10.1021/nl4047587 https://www.ncbi.nlm.nih.gov/pubmed/24571659 https://www.proquest.com/docview/1507190590 https://www.proquest.com/docview/1753476721 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZ4XECI92M8pvI4cMlY0zRtjwiYEBIDxEPcqjRNJMTUTVt34ddjt91ggsHdUZvYjj8nzmeAk0RSlPcTJnUQMBEKwSgMMc-iOSnXeqGih8K3bXn9LG5e_dcZOJ5yg8_ds6wjmgJRbTAL81yi8xL-uXj8Ytb1ijas6LmYB0WhGNEHfR9KoUcPJkLPUk8NcBVs2b5iOr4s4kxrBS5Hr3XK8pL3xjBPGvrjJ3njX1NYheUKZzrnpWGswYzJ1mHxG_vgBjxcVqUwBVezc9crjrVZG22ftaiwjaHuyApS574q7cJxTtc67be830XLYy9K0-7s0Bkx4shNeG5dPV1cs6rDAlNCiJz5rlah9gzXKcddkdjMQqs817VRpJpaJ2EkbZKmPE0wMdOB5VKrlKPjE42aTb0tmMu6mdkBxzY17hXc6DAwAi0AEzHjSsJ3TWGUSmpQRxXElYcM4uLym7vxeG1qcDrSTqwrfnJqk9H5TfRoLNorSTl-E6pPqHgsiYBK0iFODQ5HOo_Rp-iiRGWmO8R_I5Ac0bPcP2QwzxOBxAS6BtulwXx9QfiYhvrR7n9z3oMFBGCCatpcvg9zeX9oDhDk5Em9MPJPJa_zIg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7WFME4PBoHyUgHjgxSVxnK_Hqawq0HYgWtS3yHFsadqUVkv6sr-eOyf9msrH-zmxfWff7-zz7wA-ZCF5-SBjoYoiJmIhGLkh5hs0J-kZP5b0UHg4CvsT8XUaTBuaHHoLg50o8UulvcRfswt4n4ob4QoEt9EDOEAQwsmaz7s_1wS7vq3GigsYw6EkFksWoc2m5IFUueWBjueyxMkwdRWLP8NM6256J3XdIttRm2Vy3VlUWUfd3eNw_L-RPIZHDep0zmszeQJ7ujiFow0uwqfw43OTGGOZm53LuT3kZiNcCaxHaW4MNUk2kTvfm0QvbOfMjDO6qm5naIfsl1S0Vzt0Yoyo8hlMehfjbp819RaYFEJULPCUjJWvuco57pHEbRYb6XueSRLpKpXFSWiyPOd5hmGaigwPlcw5bgNEqmZy_wz2i1mhX4BjXIU7B9cqjrRAe8CwTHshoT1XaCmzFrRxatJmvZSpvQrnXrqamxZ8XCopVQ1bORXNuNkl-n4lOq8pOnYJtbc0vZJEeBXSkU4L3i1Vn-IKo2sTWejZAvtGkDmhR7p_kcGoT0QhhtMteF7bzfoPIsCgNEhe_mvMb-GwPx4O0sGX0bdX8BChmaBsN4-_hv3qdqHfIPypsra1-9_lfvuD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLZgSAiEuI9xjIJ44CWwtun1OAET5xjiEG9VmiYSYuqmtXvh12N33QEax7vT5rDjz7HzBeAocsnLOxFzpecx7nPOyA0xW6M6CVPbvqCLwncN9_KZX786r0WgSHdhsBMpfinNk_hk1Z1YFwwD5mnS4lWOANebhhlK15FG184eRyS7dv4iKxoxhkSBzwdMQuNNyQvJ9IsXWuiIFCdE91-y-Blq5i6nvgT3w87mlSbvJ70sOpEf33gc_z-aZVgs0KdR66vLCkypZBXmxzgJ1-DhvCiQyRmcjftOftjNGmgRrE7lbgxXlHQjNppFwRe2M9raaLxl3TbqI3sRkvZsg06OEV2uw3P94unskhXvLjDBOc-YY0rhS1tZMrZwrySOM18L2zR1EIiqlJEfuDqKYyuOMFyTnrZcKWILtwMiV9OxvQGlpJ2oLTB0VeIOYinpe4qjXmB4pkyXUF-VKyGiMlRwesLCbtIwT4lbZjicmzIcDxYqlAVrOT2e0ZokejgU7fSpOiYJVb6s9lASYZZLRztlOBgsf4iWRukTkah2D_tG0Dmgy7q_yGD0xz0Xw-oybPZ1Z_QH7mBw6gTbf415H2ab5_Xw9qpxswNziNA4Fb2Z1i6Usm5P7SEKyqJKrvqfKrL-Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Optical-Near-Field-Assisted+Positioning+of+Nitrogen-Vacancy+Centers&rft.jtitle=Nano+letters&rft.au=Geiselmann%2C+Michael&rft.au=Marty%2C+Renaud&rft.au=Renger%2C+Jan&rft.au=Garci%CC%81a+de+Abajo%2C+F.+Javier&rft.date=2014-03-12&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=14&rft.issue=3&rft.spage=1520&rft.epage=1525&rft_id=info:doi/10.1021%2Fnl4047587&rft.externalDocID=a594644966 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |