Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers

Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 14; no. 3; pp. 1520 - 1525
Main Authors Geiselmann, Michael, Marty, Renaud, Renger, Jan, García de Abajo, F. Javier, Quidant, Romain
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 12.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.
AbstractList Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.
Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.
Author Geiselmann, Michael
Quidant, Romain
Marty, Renaud
García de Abajo, F. Javier
Renger, Jan
AuthorAffiliation ICFO - Institut de Ciencies Fotoniques
ICREA - Institució Catalana de Recerca i Estudis Avançats
AuthorAffiliation_xml – name: ICREA - Institució Catalana de Recerca i Estudis Avançats
– name: ICFO - Institut de Ciencies Fotoniques
Author_xml – sequence: 1
  givenname: Michael
  surname: Geiselmann
  fullname: Geiselmann, Michael
– sequence: 2
  givenname: Renaud
  surname: Marty
  fullname: Marty, Renaud
– sequence: 3
  givenname: Jan
  surname: Renger
  fullname: Renger, Jan
– sequence: 4
  givenname: F. Javier
  surname: García de Abajo
  fullname: García de Abajo, F. Javier
  email: javier.garciadeabajo@icfo.es
– sequence: 5
  givenname: Romain
  surname: Quidant
  fullname: Quidant, Romain
  email: romain.quidant@icfo.es
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28363042$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24571659$$D View this record in MEDLINE/PubMed
BookMark eNqF0UlLAzEUB_Agikv14BeQuQh6GH3ZJpOj1BXEBdTrkGaRyDSpyfTgtzfSWkEEL0kgvzxe_m8HrYcYLEL7GE4wEHwaegZM8FasoW3MKdSNlGR9dW7ZFtrJ-Q0AJOWwibYI4wI3XG6jx3M72DT1wefB6-p-VlbV13dWpfrS297UZzmXO2uqh5j94GPw4bWKrrrzQ4qvNtQvSqugP6qxDaVU3kUbTvXZ7i33EXq-vHgaX9e391c347PbWjHGhppjrVpNLdGGiIZwYLR1imLspFSg9aSVjZsYQ8yEtFILRxqtDAEGWBLsDB2ho0XdWYrvc5uHbuqztn2vgo3z3GHBKRONIPh_ykFgCVxCoQdLOp9MrelmyU9V-ui-EyvgcAlULkm5VP7u849raUOBkeKOF06nmHOybkUwdF9T61ZTK_b0l9V-UF9ZD0n5_s8Xyy6Uzt1bnKdQov7DfQIuPqND
CitedBy_id crossref_primary_10_1021_acs_nanolett_0c03638
crossref_primary_10_1039_D2NR05526K
crossref_primary_10_1103_PhysRevB_92_125432
crossref_primary_10_1103_PhysRevApplied_12_044039
crossref_primary_10_1021_acs_nanolett_4c03163
crossref_primary_10_1039_C4CS00486H
crossref_primary_10_1103_PhysRevLett_130_083802
crossref_primary_10_1038_srep31163
crossref_primary_10_1364_OME_9_000953
crossref_primary_10_1002_lpor_201600021
crossref_primary_10_1021_acs_nanolett_8b00557
crossref_primary_10_1038_s41598_023_30689_7
crossref_primary_10_1126_scirobotics_aaq0076
crossref_primary_10_1088_1361_6528_ac50f1
crossref_primary_10_1021_acsomega_8b00282
crossref_primary_10_1063_1_4934757
crossref_primary_10_1021_acsphotonics_7b00376
crossref_primary_10_1021_acsphotonics_7b00475
crossref_primary_10_1002_lpor_201400453
crossref_primary_10_1021_nl5026997
crossref_primary_10_1103_PhysRevB_96_035146
crossref_primary_10_1021_nl504856w
crossref_primary_10_1038_nphoton_2015_185
crossref_primary_10_1364_AOP_10_000703
crossref_primary_10_1021_acsphotonics_9b00519
crossref_primary_10_1021_acsphotonics_5b00575
crossref_primary_10_1021_acs_nanolett_9b04073
crossref_primary_10_1021_nn506433e
crossref_primary_10_1051_epjap_2015150404
crossref_primary_10_1364_OL_402781
crossref_primary_10_1039_C7NR08249E
crossref_primary_10_1002_lpor_202000030
crossref_primary_10_1002_apxr_202300082
crossref_primary_10_1063_1_4962896
crossref_primary_10_1088_2515_7647_acb57b
crossref_primary_10_1016_j_diamond_2020_107840
crossref_primary_10_1063_5_0133866
crossref_primary_10_1021_acs_langmuir_0c00728
crossref_primary_10_1038_nphoton_2015_103
crossref_primary_10_1016_j_jphotochemrev_2022_100534
crossref_primary_10_1021_acs_nanolett_1c02449
crossref_primary_10_1021_acs_nanolett_6b02690
crossref_primary_10_1364_OME_6_003394
Cites_doi 10.1021/nl900384c
10.1103/PhysRevLett.80.5180
10.1103/PhysRevLett.100.106804
10.1021/nl4005892
10.1103/PhysRevB.68.115433
10.1002/pssb.201100781
10.1021/nl4019947
10.1038/nphoton.2011.54
10.1103/PhysRevB.65.115418
10.1021/nl904168f
10.1103/PhysRevB.33.7923
10.1038/nphys2770
10.1038/nphoton.2011.56
10.3762/bjnano.3.100
10.1088/0957-4484/21/27/274008
10.1103/PhysRevLett.110.153604
10.1103/PhysRevLett.106.096801
10.1038/nnano.2012.259
10.1038/nphoton.2009.2
10.1021/nn9003617
10.1088/0957-4484/23/17/175702
10.1063/1.4774240
10.1364/OE.19.018175
10.1016/j.jlumin.2009.12.004
10.1016/S0009-2614(99)01414-1
10.1103/PhysRevLett.22.185
10.1126/science.1191922
10.1021/nl9017379
10.1021/cr0300789
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl4047587
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 1525
ExternalDocumentID 24571659
28363042
10_1021_nl4047587
a594644966
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a444t-51ca8c3e2cd276250438fa311f99a0ccb896fbdd2db289c7f26cad20401921fd3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 12:11:38 EDT 2025
Fri Jul 11 02:40:24 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Wed Apr 02 07:18:33 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Tue Jul 01 00:42:58 EDT 2025
Thu Aug 27 13:44:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Optical trapping
nanoantenna
NV center
plasmonics
quantum emitter
quantum optics
Gold
Density of states
Vacancies
Nanopositioning
Synthetic diamond
Fluorescence
Quantum optics
Low intensity
Infrared spectra
Electron microscopy
Nanoelectronics
Polycrystalline diamond
Near infrared radiation
Lifetime
Trapping
Near infrared spectrum
Imaging
Illumination
Plasmons
Nanostructured materials
Antennas
Fluorescence microscopy
Nanoantenna
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-51ca8c3e2cd276250438fa311f99a0ccb896fbdd2db289c7f26cad20401921fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24571659
PQID 1507190590
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1753476721
proquest_miscellaneous_1507190590
pubmed_primary_24571659
pascalfrancis_primary_28363042
crossref_primary_10_1021_nl4047587
crossref_citationtrail_10_1021_nl4047587
acs_journals_10_1021_nl4047587
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-12
PublicationDateYYYYMMDD 2014-03-12
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-12
  day: 12
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Geiselmann M. (ref12/cit12) 2013; 8
Tanaka Y. (ref13/cit13) 2013; 13
Bradac C. (ref25/cit25) 2009; 9
Dregely D. (ref8/cit8) 2012; 249
Zhang W. (ref15/cit15) 2010; 10
Schietinger S. (ref9/cit9) 2009; 9
Gruber C. (ref6/cit6) 2013; 13
Aharonovich I. (ref3/cit3) 2011; 5
Tisler J. (ref24/cit24) 2009; 3
Mooradian A. (ref21/cit21) 1969; 22
Tizei L. H. G. (ref28/cit28) 2013; 110
Beversluis M. (ref23/cit23) 2003; 68
Curto A. G. (ref5/cit5) 2010; 329
Santori C. (ref1/cit1) 2010; 21
Johnson P. B. (ref19/cit19) 1972; 6
Geiselmann M. (ref29/cit29) 2013; 9
Boyd G. T. (ref20/cit20) 1986; 33
Mohamed M. B. (ref22/cit22) 2000; 317
Tizei L. H. G. (ref27/cit27) 2012; 23
Pfaff W. (ref7/cit7) 2013; 113
Huck A. (ref11/cit11) 2011; 106
García de Abajo F. J. (ref17/cit17) 1998; 80
García de Abajo F. (ref18/cit18) 2002; 65
Rittweger E. (ref26/cit26) 2009; 3
Beha K. (ref2/cit2) 2012; 3
Barth M. (ref4/cit4) 2010; 130
Juan M. L. (ref14/cit14) 2011; 5
Garcı́a de Abajo F .J. (ref200/cit200) 2008; 100
Alaverdyan Y. (ref10/cit10) 2011; 19
Love J. C. (ref16/cit16) 2005; 105
References_xml – volume: 9
  start-page: 1694
  year: 2009
  ident: ref9/cit9
  publication-title: Nano Lett.
  doi: 10.1021/nl900384c
– volume: 80
  start-page: 5180
  year: 1998
  ident: ref17/cit17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5180
– volume: 100
  start-page: 106804
  year: 2008
  ident: ref200/cit200
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.106804
– volume: 6
  start-page: 4370
  year: 1972
  ident: ref19/cit19
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 2146
  year: 2013
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl4005892
– volume: 68
  start-page: 115433
  year: 2003
  ident: ref23/cit23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.115433
– volume: 249
  start-page: 666
  year: 2012
  ident: ref8/cit8
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.201100781
– volume: 13
  start-page: 4257
  year: 2013
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl4019947
– volume: 5
  start-page: 397
  year: 2011
  ident: ref3/cit3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.54
– volume: 65
  start-page: 115418
  year: 2002
  ident: ref18/cit18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.115418
– volume: 10
  start-page: 1006
  year: 2010
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl904168f
– volume: 33
  start-page: 7923
  year: 1986
  ident: ref20/cit20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.33.7923
– volume: 9
  start-page: 785
  year: 2013
  ident: ref29/cit29
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2770
– volume: 5
  start-page: 349
  year: 2011
  ident: ref14/cit14
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.56
– volume: 3
  start-page: 895
  year: 2012
  ident: ref2/cit2
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.3.100
– volume: 21
  start-page: 274008
  year: 2010
  ident: ref1/cit1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/27/274008
– volume: 110
  start-page: 153604
  year: 2013
  ident: ref28/cit28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.153604
– volume: 106
  start-page: 096801
  year: 2011
  ident: ref11/cit11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.096801
– volume: 8
  start-page: 175
  year: 2013
  ident: ref12/cit12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.259
– volume: 3
  start-page: 144
  year: 2009
  ident: ref26/cit26
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.2
– volume: 3
  start-page: 1959
  year: 2009
  ident: ref24/cit24
  publication-title: ACS Nano
  doi: 10.1021/nn9003617
– volume: 23
  start-page: 175702
  year: 2012
  ident: ref27/cit27
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/17/175702
– volume: 113
  start-page: 024310
  year: 2013
  ident: ref7/cit7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4774240
– volume: 19
  start-page: 18175
  year: 2011
  ident: ref10/cit10
  publication-title: Opt. Express
  doi: 10.1364/OE.19.018175
– volume: 130
  start-page: 1628
  year: 2010
  ident: ref4/cit4
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2009.12.004
– volume: 317
  start-page: 517
  year: 2000
  ident: ref22/cit22
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01414-1
– volume: 22
  start-page: 185
  year: 1969
  ident: ref21/cit21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.22.185
– volume: 329
  start-page: 930
  year: 2010
  ident: ref5/cit5
  publication-title: Science
  doi: 10.1126/science.1191922
– volume: 9
  start-page: 3555
  year: 2009
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl9017379
– volume: 105
  start-page: 1103
  year: 2005
  ident: ref16/cit16
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
SSID ssj0009350
Score 2.3655853
Snippet Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1520
SubjectTerms Antennas
Applied sciences
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Density
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Fluorescence
Fullerenes and related materials
Illumination
Infrared and raman spectra and scattering
Joining
Materials science
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Physics
Plasmonics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Surface and interface electron states
Trapping
Title Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers
URI http://dx.doi.org/10.1021/nl4047587
https://www.ncbi.nlm.nih.gov/pubmed/24571659
https://www.proquest.com/docview/1507190590
https://www.proquest.com/docview/1753476721
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZ4XECI92M8pvI4cMlY0zRtjwiYEBIDxEPcqjRNJMTUTVt34ddjt91ggsHdUZvYjj8nzmeAk0RSlPcTJnUQMBEKwSgMMc-iOSnXeqGih8K3bXn9LG5e_dcZOJ5yg8_ds6wjmgJRbTAL81yi8xL-uXj8Ytb1ijas6LmYB0WhGNEHfR9KoUcPJkLPUk8NcBVs2b5iOr4s4kxrBS5Hr3XK8pL3xjBPGvrjJ3njX1NYheUKZzrnpWGswYzJ1mHxG_vgBjxcVqUwBVezc9crjrVZG22ftaiwjaHuyApS574q7cJxTtc67be830XLYy9K0-7s0Bkx4shNeG5dPV1cs6rDAlNCiJz5rlah9gzXKcddkdjMQqs817VRpJpaJ2EkbZKmPE0wMdOB5VKrlKPjE42aTb0tmMu6mdkBxzY17hXc6DAwAi0AEzHjSsJ3TWGUSmpQRxXElYcM4uLym7vxeG1qcDrSTqwrfnJqk9H5TfRoLNorSTl-E6pPqHgsiYBK0iFODQ5HOo_Rp-iiRGWmO8R_I5Ac0bPcP2QwzxOBxAS6BtulwXx9QfiYhvrR7n9z3oMFBGCCatpcvg9zeX9oDhDk5Em9MPJPJa_zIg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7WFME4PBoHyUgHjgxSVxnK_Hqawq0HYgWtS3yHFsadqUVkv6sr-eOyf9msrH-zmxfWff7-zz7wA-ZCF5-SBjoYoiJmIhGLkh5hs0J-kZP5b0UHg4CvsT8XUaTBuaHHoLg50o8UulvcRfswt4n4ob4QoEt9EDOEAQwsmaz7s_1wS7vq3GigsYw6EkFksWoc2m5IFUueWBjueyxMkwdRWLP8NM6256J3XdIttRm2Vy3VlUWUfd3eNw_L-RPIZHDep0zmszeQJ7ujiFow0uwqfw43OTGGOZm53LuT3kZiNcCaxHaW4MNUk2kTvfm0QvbOfMjDO6qm5naIfsl1S0Vzt0Yoyo8hlMehfjbp819RaYFEJULPCUjJWvuco57pHEbRYb6XueSRLpKpXFSWiyPOd5hmGaigwPlcw5bgNEqmZy_wz2i1mhX4BjXIU7B9cqjrRAe8CwTHshoT1XaCmzFrRxatJmvZSpvQrnXrqamxZ8XCopVQ1bORXNuNkl-n4lOq8pOnYJtbc0vZJEeBXSkU4L3i1Vn-IKo2sTWejZAvtGkDmhR7p_kcGoT0QhhtMteF7bzfoPIsCgNEhe_mvMb-GwPx4O0sGX0bdX8BChmaBsN4-_hv3qdqHfIPypsra1-9_lfvuD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLZgSAiEuI9xjIJ44CWwtun1OAET5xjiEG9VmiYSYuqmtXvh12N33QEax7vT5rDjz7HzBeAocsnLOxFzpecx7nPOyA0xW6M6CVPbvqCLwncN9_KZX786r0WgSHdhsBMpfinNk_hk1Z1YFwwD5mnS4lWOANebhhlK15FG184eRyS7dv4iKxoxhkSBzwdMQuNNyQvJ9IsXWuiIFCdE91-y-Blq5i6nvgT3w87mlSbvJ70sOpEf33gc_z-aZVgs0KdR66vLCkypZBXmxzgJ1-DhvCiQyRmcjftOftjNGmgRrE7lbgxXlHQjNppFwRe2M9raaLxl3TbqI3sRkvZsg06OEV2uw3P94unskhXvLjDBOc-YY0rhS1tZMrZwrySOM18L2zR1EIiqlJEfuDqKYyuOMFyTnrZcKWILtwMiV9OxvQGlpJ2oLTB0VeIOYinpe4qjXmB4pkyXUF-VKyGiMlRwesLCbtIwT4lbZjicmzIcDxYqlAVrOT2e0ZokejgU7fSpOiYJVb6s9lASYZZLRztlOBgsf4iWRukTkah2D_tG0Dmgy7q_yGD0xz0Xw-oybPZ1Z_QH7mBw6gTbf415H2ab5_Xw9qpxswNziNA4Fb2Z1i6Usm5P7SEKyqJKrvqfKrL-Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Optical-Near-Field-Assisted+Positioning+of+Nitrogen-Vacancy+Centers&rft.jtitle=Nano+letters&rft.au=Geiselmann%2C+Michael&rft.au=Marty%2C+Renaud&rft.au=Renger%2C+Jan&rft.au=Garci%CC%81a+de+Abajo%2C+F.+Javier&rft.date=2014-03-12&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=14&rft.issue=3&rft.spage=1520&rft.epage=1525&rft_id=info:doi/10.1021%2Fnl4047587&rft.externalDocID=a594644966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon