On the Estimation of Multiple Random Integrals and U-Statistics
This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linea...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Berlin, Heidelberg
Springer Nature
2013
Springer Springer Berlin / Heidelberg Springer Berlin Heidelberg |
Edition | 1 |
Series | Lecture Notes in Mathematics |
Subjects | |
Online Access | Get full text |
ISBN | 9783642376177 3642376177 3642376169 9783642376160 |
ISSN | 0075-8434 1617-9692 |
DOI | 10.1007/978-3-642-37617-7 |
Cover
Loading…
Abstract | This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option. |
---|---|
AbstractList | This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option. |
Author | Major, Péter |
Author_xml | – sequence: 1 fullname: Major, Péter |
BackLink | https://cir.nii.ac.jp/crid/1130282272812187904$$DView record in CiNii |
BookMark | eNpdkE9PGzEQxd0WKgLNB-hthSpVPSyM_9unikahIIGQoO3VchybLGzsNDbl69eb5QI-2Jo3v_c0nkO0F1P0CH3GcIIB5KmWqqWtYKSlUmDZyndoWjValZ0g36MJHhpaaPLhTW8PTWoGbxWjbB8dEsBUUy2w-ogmimMGwAg5QNOcH6AeLYjWeoK-38SmrHwzz6Vb29Kl2KTQXD_1pdv0vrm1cZnWzWUs_n5r-9zUuvnd3pWKVofLn9B-qLqfvrxH6M_5_Nfsor26-Xk5O7tqLWOM1pHDMIIOFDsdQAq1dHQZmAQu-MKpRaAgneQBLAahdeDcYqE44XJRe9TRI_RtDLb50T_nVepLNv96v0jpMZtXq6js6cjmzbaL935rRgqDGRY90IaaypudwQyOr6Njs01_n3wuZhfsfCz122b-Y0YxSGBQyS8jGbvOuG64MaZAFCGSKEywkhpYxY5HzNls-4qZdYqp7nCzyoYzUEpi-h98NIjO |
ContentType | eBook Book |
Copyright | Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 |
DBID | I4C RYH |
DEWEY | 519 |
DOI | 10.1007/978-3-642-37617-7 |
DatabaseName | Casalini Torrossa eBooks Institutional Catalogue CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Statistics |
EISBN | 9783642376177 3642376177 |
EISSN | 1617-9692 |
Edition | 1 2013 |
ExternalDocumentID | 9783642376177 314266 EBC3107040 BB12979087 5408871 |
GroupedDBID | -EI -K2 -K7 0DA 0DF 2HY 38. AABBV AARVG ABBVZ ABFTD ABMLC ABMNI ACPRQ ADHDZ ADNMO AEJLV AEKFX AETDV AEZAY AFJMS AFPTF AHODG ALMA_UNASSIGNED_HOLDINGS ARZOH AVHGJ AZZ BBABE CZZ I4C IEZ J-0 LDK MA. N2R SBO TPJZQ Z5O Z7R Z7U Z7Y Z81 Z83 Z87 Z88 RYH -GH 29L 2HD 5GY ABZEH ACGFS ACNCT AENEX AHDLI DU5 RIG RSU UQL WH7 Z7W Z7X |
ID | FETCH-LOGICAL-a44437-9f14009f31c9f0768dc3df470565bc8bf307c75f0a10699f55a1685257bbf33c3 |
IEDL.DBID | LDK |
ISBN | 9783642376177 3642376177 3642376169 9783642376160 |
ISSN | 0075-8434 |
IngestDate | Fri Nov 08 00:29:06 EST 2024 Fri May 23 03:10:37 EDT 2025 Fri May 30 21:55:40 EDT 2025 Thu Jun 26 23:11:04 EDT 2025 Wed Jun 18 05:49:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2013939618 |
LCCallNum_Ident | QA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a44437-9f14009f31c9f0768dc3df470565bc8bf307c75f0a10699f55a1685257bbf33c3 |
Notes | Includes bibliographical references (p. 283-285) and index |
OCLC | 851400422 |
PQID | EBC3107040 |
PageCount | 290 |
ParticipantIDs | askewsholts_vlebooks_9783642376177 springer_books_10_1007_978_3_642_37617_7 proquest_ebookcentral_EBC3107040 nii_cinii_1130282272812187904 casalini_monographs_5408871 |
PublicationCentury | 2000 |
PublicationDate | 2013. |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013. |
PublicationDecade | 2010 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Netherlands – name: Berlin – name: Berlin, Heidelberg |
PublicationSeriesTitle | Lecture Notes in Mathematics |
PublicationSeriesTitleAlternate | Lect.Notes Mathematics |
PublicationYear | 2013 |
Publisher | Springer Nature Springer Springer Berlin / Heidelberg Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Nature – name: Springer – name: Springer Berlin / Heidelberg – name: Springer Berlin Heidelberg |
SSID | ssj0000962999 ssj0025440 |
Score | 2.0372055 |
Snippet | This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization... |
SourceID | askewsholts springer proquest nii casalini |
SourceType | Aggregation Database Publisher |
SubjectTerms | Distribution (Probability theory) Mathematics Mathematics and Statistics Probabilities & applied mathematics Probability Theory and Stochastic Processes Stochastic integrals Stochastic processes U-statistics |
TableOfContents | Intro -- Preface -- Contents -- Acronyms -- Chapter 1 Introduction -- Chapter 2 Motivation of the Investigation: Discussion of Some Problems -- Chapter 3 Some Estimates About Sums of Independent Random Variables -- Chapter 4 On the Supremum of a Nice Class of Partial Sums -- Chapter 5 Vapnik-Červonenkis Classes and L2-Dense Classes of Functions -- Chapter 6 The Proof of Theorems 4.1 and 4.2 on the Supremum of Random Sums -- Chapter 7 The Completion of the Proof of Theorem 4.1 -- Chapter 8 Formulation of the Main Results of This Work -- Chapter 9 Some Results About U-statistics -- Chapter 10 Multiple Wiener-Itô Integrals and Their Properties -- Chapter 11 The Diagram Formula for Products of Degenerate U-Statistics -- Chapter 12 The Proof of the Diagram Formula for U-Statistics -- Chapter 13 The Proof of Theorems 8.3, 8.5 and Example 8.7 -- Chapter 14 Reduction of the Main Result in This Work -- Chapter 15 The Strategy of the Proof for the Main Result of This Work -- Chapter 16 A Symmetrization Argument -- Chapter 17 The Proof of the Main Result -- Chapter 18 An Overview of the Results and a Discussion of the Literature -- Appendix A The Proof of Some Results About Vapnik-Červonenkis Classes -- Appendix B The Proof of the Diagram Formula for Wiener-Itô Integrals -- Appendix C The Proof of Some Results About Wiener-Itô Integrals -- Appendix D The Proof of Theorem 14.3 About U-Statistics and Decoupled U-Statistics -- References -- Index |
Title | On the Estimation of Multiple Random Integrals and U-Statistics |
URI | http://digital.casalini.it/9783642376177 https://cir.nii.ac.jp/crid/1130282272812187904 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3107040 http://link.springer.com/10.1007/978-3-642-37617-7 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783642376177&uid=none |
Volume | 2079 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS-QwFH7oeHEuu_7CrqsE8eAl0jZJ056EnR3xB6MgKt5CkjYwqB2wowf_el-aaXHFw3ophJYmzWu-fMl77wvAgeW5ZjgtUiOdo1w4SU2ZJtTFpqyElo6nPt95cpmd3vLze3G_yONuumj3ziXZInWX7Bb8-EiX_ZhAaJXLsML8voVXkPx70W-sICdHiC36VZfgPOShSEFzzvw5Tyxrg0GSrAgSPH2593t-Vd8Qhrp5QOhBWJo3fh7Tjfbpizgt1dPpPxT1k1e1naxOfsBN95khRuXh6GVujuzbJwXIb_bDT1ipfGLEGixV9ToMJ73ea7MBx1c1wSIZI2CEXEgyc2SyCFYk17ouZ0_kLEhTPDYEy-SWeqIbdKI34e5kfDM6pYujGajmnDNJC4crs7hwLLGF89680rLScYl8ShibG4fYYaVwscY1Z1E4IXSS5V561eA9ZtkWDOpZXW0D0TatrMuN4F7LXmcmESaRNjZparjmIoL9D_2uXh9bN3KjPhhOygh2OnMoHL9B7rtRyEcRRZMIdtFCyk79NfG-WuRFMkVy4w9bj3kEpLOdat--iIxV4z8j5L8SkS6Cw84cKtTfCT5jOxRT2BLVNkXJX___6A6spu35Gn5P5zcM5s8v1S6ynLnZa__qd4nA5hY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VOMBeSksRKR-1qh64GCWxHSenSsCipexSCS0VN8t2YmkFzUrN0gO_nnG8iQBxgEskK1HsZOLn58zMG4Afluea4bJIjXSOcuEkNWWaUBebshJaOp76fOfJZTa65r9uxM0yj7vpot07l2SL1F2yW_DjI132cwKhVa7AGk_jwtdrGJ9e9D9WkJMjxBb9rktwHvJQpKA5Z77OE8vaYJAkK4IET9_u_Z6v9TeAgW5uEXoQlhaNX8d0o336Ii5L9Wz2jKK-8Kq2i9XZR5h2jxliVG6P7hfmyD68UIB853vYhLXKJ0Z8gg9V_RkGk17vtdmCn79rgk0yRMAIuZBk7shkGaxIrnRdzv-S8yBNcdcQbJNr6olu0In-An_OhtOTEV2WZqCac84kLRzuzOLCscQWznvzSstKxyXyKWFsbhxih5XCxRr3nEXhhNBJlnvpVYPnmGXbsFrP62oHiLZpZV1uBPda9joziTCJtLFJU8M1FxF8f_Le1f-71o3cqCeGkzKC3c4cCudvkPtuFPJRRNEkgn20kLIzf0y8rxZ5kUyR3Phi6zGPgHS2U-3dl5Gxanh8gvxXItJFcNiZQ4X-O8FnHIdiCkei2qEo-fXtl36D9dF0Mlbj88uLXdhI21ob_v_OHqwu_t1X-8h4Fuag_cIfAVST6PU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=On+the+estimation+of+multiple+random+integrals+and+U-statistics&rft.au=Major%2C+P%C3%A9ter&rft.date=2013-01-01&rft.pub=Springer&rft.isbn=9783642376160&rft_id=info:doi/10.1007%2F978-3-642-37617-7&rft.externalDocID=BB12979087 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97836423%2F9783642376177.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-642-37617-7 |