Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature
We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO2 nanomaterials have a markedly improv...
Saved in:
Published in | Nano letters Vol. 11; no. 9; pp. 3649 - 3655 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
14.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO2 nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO2 nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO2 nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO2. |
---|---|
AbstractList | We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO2 nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO2 nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO2 nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO2. We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO sub(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO sub(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO sub(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO sub(2). We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2).We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2). We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2). |
Author | Pippel, Eckhard Tao, Kun Wang, Daoai Domen, Kazunari Zhang, Fuxiang Liu, Lifeng |
AuthorAffiliation | International Iberian Nanotechnology Laboratory Max Planck Institute of Microstructure Physics The University of Tokyo |
AuthorAffiliation_xml | – name: Max Planck Institute of Microstructure Physics – name: International Iberian Nanotechnology Laboratory – name: The University of Tokyo |
Author_xml | – sequence: 1 givenname: Daoai surname: Wang fullname: Wang, Daoai email: dwang@chemsys.t.u-tokyo.ac.jp, lifeng.liu@inl.int – sequence: 2 givenname: Lifeng surname: Liu fullname: Liu, Lifeng email: dwang@chemsys.t.u-tokyo.ac.jp, lifeng.liu@inl.int – sequence: 3 givenname: Fuxiang surname: Zhang fullname: Zhang, Fuxiang – sequence: 4 givenname: Kun surname: Tao fullname: Tao, Kun – sequence: 5 givenname: Eckhard surname: Pippel fullname: Pippel, Eckhard – sequence: 6 givenname: Kazunari surname: Domen fullname: Domen, Kazunari |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524490$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21786788$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1rHCEYB3AJKXk_9AsUL6XtYRN1nBk9hpC2gTQt6ZYch8e3ZsKMTtU5bD59DbvZQAk9Kfh7RP__Q7Trg7cIvaXklBJGz_zACK1Zw3bQAa0rsmikZLvbveD76DClB0KIrGqyh_YZbUXTCnGA0s8p-AzehjnhH_eQLAZv8LcQp_swhN8rvIzgkwtxhNwHn3Bw-NwH0z9ag5d9Ge0B34APeVY24StvZl1O1ArfQbYRQ8a3IYx4acfJRshztMfojYMh2ZPNeoR-fb5cXnxdXH__cnVxfr0Azqu8kEoqVxMnmSJcU1qDbLWQpmWtNpXhnAmqpG2p04Io7SqrqRDSKSkJgJHVEfqwvneK4c9sU-7GPmk7DOvvdkISUtUNbYr8-F9J24aRmrGKFvpuQ2c1WtNNsR8hrrrnSAt4vwGQNAyuxKf79OJ4zTiXpLhPa6djSClatyWUdE-1dttaiz37x-qS_FMfOUI_vDqxeQXo1D2EOfqS9CvuL2cKr8k |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2017_05_009 crossref_primary_10_1039_c3ra47910b crossref_primary_10_1016_j_jpowsour_2015_02_150 crossref_primary_10_1016_j_colsurfa_2021_127138 crossref_primary_10_1021_acsami_5b09551 crossref_primary_10_1039_C6NR01892K crossref_primary_10_1039_C7TA08228B crossref_primary_10_1088_0957_4484_24_30_305706 crossref_primary_10_1039_C6CE02526A crossref_primary_10_3389_fchem_2019_00038 crossref_primary_10_1016_j_jallcom_2012_07_112 crossref_primary_10_1039_c3ta01339a crossref_primary_10_1016_j_jallcom_2016_11_061 crossref_primary_10_1016_j_matlet_2015_12_069 crossref_primary_10_1039_c3ra23482g crossref_primary_10_1016_j_electacta_2017_06_053 crossref_primary_10_1149_2_010407jes crossref_primary_10_1039_C5DT04361A crossref_primary_10_1016_j_cplett_2019_06_025 crossref_primary_10_1021_acsami_6b00827 crossref_primary_10_1002_pts_2296 crossref_primary_10_1039_C4CE00992D crossref_primary_10_1016_j_jmst_2021_04_029 crossref_primary_10_1016_j_apsusc_2017_09_249 crossref_primary_10_1002_smll_201402420 crossref_primary_10_1016_j_jallcom_2014_03_105 crossref_primary_10_1039_D2QI00293K crossref_primary_10_1016_j_nantod_2013_04_010 crossref_primary_10_1016_j_ijthermalsci_2020_106800 crossref_primary_10_1016_j_electacta_2017_05_112 crossref_primary_10_1002_anie_201205619 crossref_primary_10_1515_ntrev_2015_0052 crossref_primary_10_1016_j_jelechem_2023_117201 crossref_primary_10_1021_acsabm_0c00871 crossref_primary_10_1016_j_solidstatesciences_2014_01_007 crossref_primary_10_1038_srep21588 crossref_primary_10_1016_j_electacta_2022_140802 crossref_primary_10_1021_am302462d crossref_primary_10_1016_j_jascer_2013_07_001 crossref_primary_10_1021_acs_cgd_5b01234 crossref_primary_10_1016_j_jallcom_2019_151770 crossref_primary_10_1021_jp210479a crossref_primary_10_1021_jp304193z crossref_primary_10_1016_j_apcatb_2014_05_054 crossref_primary_10_1016_j_surfcoat_2014_12_056 crossref_primary_10_1016_j_matchemphys_2021_124986 crossref_primary_10_1016_j_elecom_2019_106501 crossref_primary_10_1039_D0TA05368F crossref_primary_10_1007_s40820_018_0230_4 crossref_primary_10_1016_j_synthmet_2020_116669 crossref_primary_10_1016_j_pnsc_2013_04_004 crossref_primary_10_1039_C6TA04413A crossref_primary_10_1088_1402_4896_ad3583 crossref_primary_10_3390_ma14071777 crossref_primary_10_1016_j_jallcom_2019_01_147 crossref_primary_10_1016_j_electacta_2017_09_080 crossref_primary_10_1021_acsami_7b17582 crossref_primary_10_1007_s00339_017_0925_2 crossref_primary_10_1016_j_cej_2021_130619 crossref_primary_10_1016_j_apsusc_2018_06_307 crossref_primary_10_1007_s11706_017_0386_8 crossref_primary_10_1021_am503379y crossref_primary_10_1039_C7CC00388A crossref_primary_10_1039_c2nr31268a crossref_primary_10_1039_D1RA02039K crossref_primary_10_1111_jace_12378 crossref_primary_10_1088_0957_4484_25_45_455401 crossref_primary_10_1016_j_tsf_2014_12_018 crossref_primary_10_1016_j_elecom_2012_07_007 crossref_primary_10_1039_c2cp23461k crossref_primary_10_3390_catal7070209 crossref_primary_10_1039_C4RA06402J crossref_primary_10_1039_C5GC02170G crossref_primary_10_1016_j_corsci_2020_109104 crossref_primary_10_1016_j_jcat_2017_03_017 crossref_primary_10_1002_smll_202409856 crossref_primary_10_1039_c2jm31255g crossref_primary_10_3390_catal8110555 crossref_primary_10_1021_acsami_7b18289 crossref_primary_10_1021_acs_jpcc_0c03744 crossref_primary_10_1088_1361_6528_aa929a crossref_primary_10_1016_j_bioelechem_2016_02_001 crossref_primary_10_1039_c3cc43772h crossref_primary_10_1039_C6NR00172F crossref_primary_10_1002_adfm_201201814 crossref_primary_10_1007_s10853_016_0603_3 crossref_primary_10_1016_j_jallcom_2021_160207 crossref_primary_10_1021_acs_est_9b00088 crossref_primary_10_1039_C4TA05620E crossref_primary_10_1038_srep23065 crossref_primary_10_1021_jp405517w crossref_primary_10_1002_adfm_201300946 crossref_primary_10_1016_j_apsusc_2023_156472 crossref_primary_10_1002_slct_201700372 crossref_primary_10_1039_c2jm14906k crossref_primary_10_1007_s10854_016_4946_y crossref_primary_10_1016_j_jphotochem_2013_08_022 crossref_primary_10_1088_0957_4484_26_17_175705 crossref_primary_10_1021_sc400323w crossref_primary_10_1007_s11085_016_9630_3 crossref_primary_10_1016_j_memsci_2015_01_009 crossref_primary_10_4028_www_scientific_net_AMR_631_632_524 crossref_primary_10_1002_ange_201205619 crossref_primary_10_1063_1_3679621 crossref_primary_10_1016_j_cap_2015_12_006 crossref_primary_10_1016_j_electacta_2018_03_035 crossref_primary_10_1021_acs_langmuir_6b03119 crossref_primary_10_1016_j_jhazmat_2013_05_047 crossref_primary_10_1016_j_jpowsour_2014_06_098 crossref_primary_10_1016_j_nanoen_2015_12_025 crossref_primary_10_1021_jp405207e crossref_primary_10_1002_celc_202000622 crossref_primary_10_1021_acsami_4c07498 crossref_primary_10_1016_j_apcatb_2015_03_029 crossref_primary_10_1021_cr500061m crossref_primary_10_1002_smll_201200564 crossref_primary_10_3390_nano10030430 crossref_primary_10_1016_j_msec_2021_112007 crossref_primary_10_1021_acs_jpcc_5b01066 crossref_primary_10_1021_acsaem_0c00976 crossref_primary_10_1039_C8CE01834K crossref_primary_10_1021_acs_iecr_7b01379 crossref_primary_10_1016_j_matlet_2019_126697 crossref_primary_10_1016_j_microc_2020_105012 crossref_primary_10_1039_c3nr03198e crossref_primary_10_1007_s11664_019_06951_y crossref_primary_10_1038_srep07808 crossref_primary_10_1063_1_3671076 crossref_primary_10_1002_anie_202424056 crossref_primary_10_1007_s10800_013_0623_5 crossref_primary_10_1039_D1CC02036F crossref_primary_10_1016_j_ceramint_2017_10_168 crossref_primary_10_1016_j_electacta_2012_06_006 crossref_primary_10_1039_C7NJ00198C crossref_primary_10_1007_s41779_024_01033_7 crossref_primary_10_1088_0268_1242_31_1_014010 crossref_primary_10_1039_c3ee41155a crossref_primary_10_1016_j_apsusc_2019_04_259 crossref_primary_10_1016_j_mssp_2023_107768 crossref_primary_10_1039_C4TA01613K crossref_primary_10_1016_j_ceramint_2022_11_032 crossref_primary_10_1002_ppsc_201300178 crossref_primary_10_1016_j_ceramint_2023_12_079 crossref_primary_10_1016_j_electacta_2014_12_132 crossref_primary_10_1039_c3nr03014h crossref_primary_10_1002_ange_202424056 crossref_primary_10_1021_jp408322g crossref_primary_10_1007_s10008_012_1799_z crossref_primary_10_1016_j_spmi_2015_12_037 crossref_primary_10_1039_D0RA02929G crossref_primary_10_1016_j_tsf_2014_01_066 crossref_primary_10_1016_j_jpowsour_2015_02_017 crossref_primary_10_1039_C3NR05894H crossref_primary_10_1002_smll_201201874 crossref_primary_10_1016_j_jpcs_2022_111047 crossref_primary_10_1021_es503003y crossref_primary_10_1039_C4RA06842D crossref_primary_10_1016_j_matpr_2019_12_421 crossref_primary_10_1088_1361_6641_ab3822 crossref_primary_10_1016_j_apcatb_2018_04_040 crossref_primary_10_1039_c3nr01286g crossref_primary_10_1016_j_ijhydene_2019_11_213 crossref_primary_10_1016_j_aca_2022_339509 crossref_primary_10_1016_j_jpowsour_2013_04_037 crossref_primary_10_1016_j_mser_2013_10_001 crossref_primary_10_1021_acsami_1c16271 crossref_primary_10_1002_cplu_201200024 crossref_primary_10_1007_s00604_025_07072_6 crossref_primary_10_3390_ma6072892 crossref_primary_10_1016_j_apcatb_2014_03_010 crossref_primary_10_1039_C4NR04886E crossref_primary_10_1002_lpor_202300778 crossref_primary_10_1016_j_carbon_2014_09_080 crossref_primary_10_1016_j_progsolidstchem_2020_100297 crossref_primary_10_1016_j_cplett_2020_137950 crossref_primary_10_1016_j_jiec_2020_07_008 crossref_primary_10_1039_C9CC04293H crossref_primary_10_1557_jmr_2019_28 crossref_primary_10_1016_j_aquatox_2023_106419 |
Cites_doi | 10.1021/jp063822c 10.1039/b907933e 10.1021/nl101198b 10.1021/nn800174y 10.1557/JMR.2003.0022 10.1002/adma.200800815 10.1002/adfm.200902234 10.1038/nnano.2009.226 10.1126/science.1117908 10.1021/nl052099j 10.1016/j.micromeso.2008.05.038 10.1038/nmat2317 10.1021/jp075258r 10.1038/440295a 10.1038/nature06181 10.1038/nnano.2010.196 10.1021/nl050355m 10.1016/j.solmat.2006.04.007 10.1021/nl048301k 10.1021/jp990521c 10.1021/ja030070g 10.1039/B909930A 10.1039/b820504c 10.1039/b008974p 10.1038/238037a0 10.1021/nl062000o 10.1002/adma.200801996 10.1021/cm102622x 10.1038/353737a0 10.1021/cm7024203 10.1021/jp106324x 10.1021/nl802818d 10.1021/cm802384y 10.1088/0957-4484/19/49/495706 10.1021/cm800040k 10.1038/nmat1387 10.1021/nl802096a 10.1021/nl070264k 10.1002/adma.200801189 10.1021/la9012747 10.1021/nl051401l |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7QQ 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1021/nl2015262 |
DatabaseName | CrossRef Pascal-Francis PubMed Ceramic Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 3655 |
ExternalDocumentID | 21786788 24524490 10_1021_nl2015262 a174072221 |
Genre | Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW NPM 7QQ 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-a443t-9b9bf50f92b04c115a97c89d727cd3d44281b9e71fc80bcf3ec1889fb990aad93 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 18:17:14 EDT 2025 Mon Jul 21 11:26:54 EDT 2025 Mon Jul 21 06:04:44 EDT 2025 Mon Jul 21 09:13:46 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 00:42:42 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | mesoporous structures TiO2 nanotubes photocatalyst phase transformation Anatase Phase transformations Porous materials Photocatalysis Nanotubes Nanostructures Mesoporosity Morphology Nanowires Surface area Titanium oxide Catalyst activity Nanostructured materials |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a443t-9b9bf50f92b04c115a97c89d727cd3d44281b9e71fc80bcf3ec1889fb990aad93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21786788 |
PQID | 1762052231 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_890035616 proquest_miscellaneous_1762052231 pubmed_primary_21786788 pascalfrancis_primary_24524490 crossref_primary_10_1021_nl2015262 crossref_citationtrail_10_1021_nl2015262 acs_journals_10_1021_nl2015262 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-14 |
PublicationDateYYYYMMDD | 2011-09-14 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Zhu K. (ref16/cit16) 2007; 7 Liu B. (ref30/cit30) 2008; 20 Liu L. F. (ref34/cit34) 2008; 19 Barnard A. S. (ref40/cit40) 2005; 5 Wang D. A. (ref12/cit12) 2009; 21 Wang D. (ref33/cit33) 2009; 21 Kuang D. (ref13/cit13) 2008; 2 Osterloh F. E. (ref7/cit7) 2008; 20 Varghese O. K. (ref18/cit18) 2009; 4 Liu G. (ref10/cit10) 2010; 20 Finnegan M. P. (ref39/cit39) 2007; 111 Hernandez-Alonso M. D. (ref8/cit8) 2009; 2 Sauvage F. (ref22/cit22) 2010; 10 Bang J. H. (ref23/cit23) 2010; 20 Wang X. C. (ref6/cit6) 2009; 8 Albu S. P. (ref35/cit35) 2008; 20 Yanagisawa K. (ref37/cit37) 1999; 103 Wang D. A. (ref32/cit32) 2010; 22 O’Regan B. (ref1/cit1) 1991; 353 Tian B. Z. (ref5/cit5) 2007; 449 Mor G. K. (ref19/cit19) 2005; 5 Law M. (ref2/cit2) 2005; 4 Allam N. K. (ref26/cit26) 2008; 20 Su Z. X. (ref36/cit36) 2009; 19 Yin H. B. (ref38/cit38) 2001; 11 Feng X. J. (ref17/cit17) 2008; 8 Wang D. (ref29/cit29) 2008; 116 Yu J. G. (ref25/cit25) 2010; 114 Fujishima A. (ref9/cit9) 1972; 238 Maeda K. (ref4/cit4) 2006; 440 Paulose M. (ref41/cit41) 2007; 111 Albu S. P. (ref15/cit15) 2007; 7 Richter C. (ref20/cit20) 2010; 5 Crepaldi E. L. (ref28/cit28) 2003; 125 Allam N. K. (ref27/cit27) 2009; 25 Gur I. (ref3/cit3) 2005; 310 Kang T. S. (ref21/cit21) 2009; 9 Zukalová M. (ref31/cit31) 2005; 5 Mor G. K. (ref14/cit14) 2006; 6 Varghese O. K. (ref24/cit24) 2003; 18 Mor G. K. (ref11/cit11) 2006; 90 |
References_xml | – volume: 111 start-page: 1962 year: 2007 ident: ref39/cit39 publication-title: J. Phys. Chem. C doi: 10.1021/jp063822c – volume: 2 start-page: 1231 year: 2009 ident: ref8/cit8 publication-title: Energy Environ. Sci. doi: 10.1039/b907933e – volume: 10 start-page: 2562 year: 2010 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl101198b – volume: 2 start-page: 1113 year: 2008 ident: ref13/cit13 publication-title: ACS Nano doi: 10.1021/nn800174y – volume: 18 start-page: 156 year: 2003 ident: ref24/cit24 publication-title: J. Mater. Res. doi: 10.1557/JMR.2003.0022 – volume: 20 start-page: 3942 year: 2008 ident: ref26/cit26 publication-title: Adv. Mater. doi: 10.1002/adma.200800815 – volume: 20 start-page: 1970 year: 2010 ident: ref23/cit23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902234 – volume: 4 start-page: 592 year: 2009 ident: ref18/cit18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.226 – volume: 310 start-page: 462 year: 2005 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.1117908 – volume: 6 start-page: 215 year: 2006 ident: ref14/cit14 publication-title: Nano Lett. doi: 10.1021/nl052099j – volume: 116 start-page: 658 year: 2008 ident: ref29/cit29 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.05.038 – volume: 8 start-page: 76 year: 2009 ident: ref6/cit6 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 111 start-page: 14992 year: 2007 ident: ref41/cit41 publication-title: J. Phys. Chem. C doi: 10.1021/jp075258r – volume: 440 start-page: 295 year: 2006 ident: ref4/cit4 publication-title: Nature doi: 10.1038/440295a – volume: 449 start-page: 885 year: 2007 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature06181 – volume: 5 start-page: 769 year: 2010 ident: ref20/cit20 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.196 – volume: 5 start-page: 1261 year: 2005 ident: ref40/cit40 publication-title: Nano Lett. doi: 10.1021/nl050355m – volume: 90 start-page: 2011 year: 2006 ident: ref11/cit11 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.04.007 – volume: 5 start-page: 191 year: 2005 ident: ref19/cit19 publication-title: Nano Lett. doi: 10.1021/nl048301k – volume: 103 start-page: 7781 year: 1999 ident: ref37/cit37 publication-title: J. Phys. Chem. B doi: 10.1021/jp990521c – volume: 125 start-page: 9770 year: 2003 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030070g – volume: 20 start-page: 831 year: 2010 ident: ref10/cit10 publication-title: J. Mater. Chem. doi: 10.1039/B909930A – volume: 19 start-page: 2301 year: 2009 ident: ref36/cit36 publication-title: J. Mater. Chem. doi: 10.1039/b820504c – volume: 11 start-page: 1694 year: 2001 ident: ref38/cit38 publication-title: J. Mater. Chem. doi: 10.1039/b008974p – volume: 238 start-page: 37 year: 1972 ident: ref9/cit9 publication-title: Nature doi: 10.1038/238037a0 – volume: 7 start-page: 69 year: 2007 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl062000o – volume: 21 start-page: 1964 year: 2009 ident: ref12/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.200801996 – volume: 22 start-page: 6656 year: 2010 ident: ref32/cit32 publication-title: Chem. Mater. doi: 10.1021/cm102622x – volume: 353 start-page: 737 year: 1991 ident: ref1/cit1 publication-title: Nature doi: 10.1038/353737a0 – volume: 20 start-page: 35 year: 2008 ident: ref7/cit7 publication-title: Chem. Mater. doi: 10.1021/cm7024203 – volume: 114 start-page: 19378 year: 2010 ident: ref25/cit25 publication-title: J. Phys. Chem. C doi: 10.1021/jp106324x – volume: 9 start-page: 601 year: 2009 ident: ref21/cit21 publication-title: Nano Lett. doi: 10.1021/nl802818d – volume: 21 start-page: 1198 year: 2009 ident: ref33/cit33 publication-title: Chem. Mater. doi: 10.1021/cm802384y – volume: 19 start-page: 495706 year: 2008 ident: ref34/cit34 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/49/495706 – volume: 20 start-page: 2711 year: 2008 ident: ref30/cit30 publication-title: Chem. Mater. doi: 10.1021/cm800040k – volume: 4 start-page: 455 year: 2005 ident: ref2/cit2 publication-title: Nat. Mater. doi: 10.1038/nmat1387 – volume: 8 start-page: 3781 year: 2008 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl802096a – volume: 7 start-page: 1286 year: 2007 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl070264k – volume: 20 start-page: 4135 year: 2008 ident: ref35/cit35 publication-title: Adv. Mater. doi: 10.1002/adma.200801189 – volume: 25 start-page: 7234 year: 2009 ident: ref27/cit27 publication-title: Langmuir doi: 10.1021/la9012747 – volume: 5 start-page: 1789 year: 2005 ident: ref31/cit31 publication-title: Nano Lett. doi: 10.1021/nl051401l |
SSID | ssj0009350 |
Score | 2.4659836 |
Snippet | We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3649 |
SubjectTerms | Anatase Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Crystallization Equations of state, phase equilibria, and phase transitions Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Morphology Nanoscale materials and structures: fabrication and characterization Nanostructure Nanotubes Nanowires Phase transformations Physics Quantum wires Specific phase transitions Spontaneous Structural transitions in nanoscale materials Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Titanium dioxide |
Title | Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature |
URI | http://dx.doi.org/10.1021/nl2015262 https://www.ncbi.nlm.nih.gov/pubmed/21786788 https://www.proquest.com/docview/1762052231 https://www.proquest.com/docview/890035616 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4huLSq-n6ktCv3ceglNE7sxD6uKAhVoqrKonKLPH6oq6JkRbIH-PVMkt1lUVl6zkSR7Rl_33icbwA-W6KojkuMtTQmFkKGWLvMxtxqTFHlVvSXaI5_5Een4vuZPNuCTxsq-Cn_Wp0TRsm022d30lwVXYY13j-5UdbN-jasFLmUB2kllvJB66920GObW9DzaGYamoUwtK_YzC97nDl8At-Wf-sM10v-7s1b3LNX_4o33jeEp_B4wTPZeHCMZ7Dlq-fwcE198AU0J7O6Im7oKflnP_8QnDFTOXZc09T3h-1sssZqyTtZHdi4qt30yjs2mdKrU8Noe67bOfqGdV1ALD3BS_abGOwFMy37RbycTTxx80G7-SWcHh5M9o_iRQ-G2AiRtbFGjUEmQaeYCEv00ejCKu2I9liXOUHZC0ftCx6sStCGzFuulA5IKGeM09kr2K7qyr8BJnjX6AcNckdpkvQYVMCCY260EVIWEYxokcpFDDVlXx5PebmavQi-LNevtAsF866Rxvldph9XprNBtuMuo9EtJ1hZdtVoIXQSwYelV5QUdV0pZViUkhOGJERdMx4B22CjukNioqd5BK8Hj7r5AC8UsQT19n9D3oUHwyG2jrl4B9vtxdy_JxbU4qiPgmu_xgCO |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOQCqeFPCYzGIA5eUOLE39nFVUS3QrRBNRW-Rxw-xokpWTfZAfz3jJPsoagXnjBM_ZjzfeJxvCHlvEKJaJiBWQuuYc-FjZTMTM6MgBTk2vLtEMzseT0_5lzNxNtDkhH9hsBMNvqnpkvgbdgH2sTpHVyXSsN3eRhCShkBrcnCyIdjNumqsaMAYDinJVyxC202DBzLNFQ-0u9ANTobvq1jcDDM7d3P4oK9b1HW0u2Xya3_Zwr65_IvD8f9G8pDcH1AnnfRq8ojcctVjcm-Li_AJaU4WdYVI0dXLhn77ic6N6srSWY0L0R2902IL46Ku0trTSVXb-aWztJhj07mmuFnX7RJcQ0NNEINP4Df9gXj2guqWfkeUTguHSL1ncn5KTg8_FQfTeKjIEGvOszZWoMCLxKsUEm4QTGqVG6ksgiBjM8sxlmGgXM68kQkYnznDpFQe0OdpbVX2jOxUdeWeE8pZKPsDGpjFoEk48NJDzmCsleZC5BEZ4eSVg0U1ZZcsT1m5nr2IfFgtY2kGPvNQVuP8OtF3a9FFT-JxndDoii6sJUNumnOVROTtSjlKtMGQWOkXpWToURIEshmLCL1BRoYjYwSr44js9Yq1-QDLJWIG-eJfQ35D7kyL2VF59Pn460tytz_eVjHjr8hOe7F0rxEftTDqDOMP3jMI7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZQkRAIcR_hWAzigZeUOLE39uOqsCpHS0W3om-Rx4dYUSWrJvtAfz1jJ7vdolbwnHHiY8bzjcf5hpC3BiGqZQJSJbROORc-VbYwKTMKcpBjw-Mlmr398e4R_3wsjodAMfwLg51o8U1tTOIHq15YPzAMsPf1CborkYct93pI14Vga7JzeE6yW8SKrGjEGBIpyVdMQptNgxcy7QUvdHuhW5wQ31eyuBpqRpczvUu-rTsbb5r82l52sG3O_uJx_P_R3CN3BvRJJ7263CfXXP2A3NrgJHxI2sNFUyNidM2ypQc_0clRXVu61-CCxCN4OtvAuqiztPF0Ujd2fuYsnc2x6VxT3LSbbgmupaE2iMEn8Jv-QFx7SnVHvyNapzOHiL1ndH5EjqYfZzu76VCZIdWcF12qQIEXmVc5ZNwgqNSqNFJZBEPGFpZjTMNAuZJ5IzMwvnCGSak8oO_T2qriMdmqm9o9JZSzUP4HNDCLwZNw4KWHksFYK82FKBMywgmsBstqq5g0z1m1nr2EvFstZWUGXvNQXuPkMtE3a9FFT-ZxmdDogj6sJUOOmnOVJeT1SkEqtMWQYOkXpWLoWTIEtAVLCL1CRoajYwSt44Q86ZXr_AOslIgd5LN_DfkVuXHwYVp9_bT_5Tm5mYdbNvEu0Quy1Z0u3UuESR2Mom38AXnhC2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Phase+and+Morphology+Transformations+of+Anodized+Titania+Nanotubes+Induced+by+Water+at+Room+Temperature&rft.jtitle=Nano+letters&rft.au=WANG%2C+Daoai&rft.au=LIFENG+LIU&rft.au=FUXIANG+ZHANG&rft.au=KUN+TAO&rft.date=2011-09-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=11&rft.issue=9&rft.spage=3649&rft.epage=3655&rft_id=info:doi/10.1021%2Fnl2015262&rft.externalDBID=n%2Fa&rft.externalDocID=24524490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |