Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature

We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO2 nanomaterials have a markedly improv...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 11; no. 9; pp. 3649 - 3655
Main Authors Wang, Daoai, Liu, Lifeng, Zhang, Fuxiang, Tao, Kun, Pippel, Eckhard, Domen, Kazunari
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 14.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO2 nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO2 nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO2 nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO2.
AbstractList We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO2 nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO2 nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO2 nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO2.
We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO sub(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO sub(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO sub(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO sub(2).
We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2).We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2).
We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2).
Author Pippel, Eckhard
Tao, Kun
Wang, Daoai
Domen, Kazunari
Zhang, Fuxiang
Liu, Lifeng
AuthorAffiliation International Iberian Nanotechnology Laboratory
Max Planck Institute of Microstructure Physics
The University of Tokyo
AuthorAffiliation_xml – name: Max Planck Institute of Microstructure Physics
– name: International Iberian Nanotechnology Laboratory
– name: The University of Tokyo
Author_xml – sequence: 1
  givenname: Daoai
  surname: Wang
  fullname: Wang, Daoai
  email: dwang@chemsys.t.u-tokyo.ac.jp, lifeng.liu@inl.int
– sequence: 2
  givenname: Lifeng
  surname: Liu
  fullname: Liu, Lifeng
  email: dwang@chemsys.t.u-tokyo.ac.jp, lifeng.liu@inl.int
– sequence: 3
  givenname: Fuxiang
  surname: Zhang
  fullname: Zhang, Fuxiang
– sequence: 4
  givenname: Kun
  surname: Tao
  fullname: Tao, Kun
– sequence: 5
  givenname: Eckhard
  surname: Pippel
  fullname: Pippel, Eckhard
– sequence: 6
  givenname: Kazunari
  surname: Domen
  fullname: Domen, Kazunari
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524490$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21786788$$D View this record in MEDLINE/PubMed
BookMark eNp90U1rHCEYB3AJKXk_9AsUL6XtYRN1nBk9hpC2gTQt6ZYch8e3ZsKMTtU5bD59DbvZQAk9Kfh7RP__Q7Trg7cIvaXklBJGz_zACK1Zw3bQAa0rsmikZLvbveD76DClB0KIrGqyh_YZbUXTCnGA0s8p-AzehjnhH_eQLAZv8LcQp_swhN8rvIzgkwtxhNwHn3Bw-NwH0z9ag5d9Ge0B34APeVY24StvZl1O1ArfQbYRQ8a3IYx4acfJRshztMfojYMh2ZPNeoR-fb5cXnxdXH__cnVxfr0Azqu8kEoqVxMnmSJcU1qDbLWQpmWtNpXhnAmqpG2p04Io7SqrqRDSKSkJgJHVEfqwvneK4c9sU-7GPmk7DOvvdkISUtUNbYr8-F9J24aRmrGKFvpuQ2c1WtNNsR8hrrrnSAt4vwGQNAyuxKf79OJ4zTiXpLhPa6djSClatyWUdE-1dttaiz37x-qS_FMfOUI_vDqxeQXo1D2EOfqS9CvuL2cKr8k
CitedBy_id crossref_primary_10_1016_j_jpowsour_2017_05_009
crossref_primary_10_1039_c3ra47910b
crossref_primary_10_1016_j_jpowsour_2015_02_150
crossref_primary_10_1016_j_colsurfa_2021_127138
crossref_primary_10_1021_acsami_5b09551
crossref_primary_10_1039_C6NR01892K
crossref_primary_10_1039_C7TA08228B
crossref_primary_10_1088_0957_4484_24_30_305706
crossref_primary_10_1039_C6CE02526A
crossref_primary_10_3389_fchem_2019_00038
crossref_primary_10_1016_j_jallcom_2012_07_112
crossref_primary_10_1039_c3ta01339a
crossref_primary_10_1016_j_jallcom_2016_11_061
crossref_primary_10_1016_j_matlet_2015_12_069
crossref_primary_10_1039_c3ra23482g
crossref_primary_10_1016_j_electacta_2017_06_053
crossref_primary_10_1149_2_010407jes
crossref_primary_10_1039_C5DT04361A
crossref_primary_10_1016_j_cplett_2019_06_025
crossref_primary_10_1021_acsami_6b00827
crossref_primary_10_1002_pts_2296
crossref_primary_10_1039_C4CE00992D
crossref_primary_10_1016_j_jmst_2021_04_029
crossref_primary_10_1016_j_apsusc_2017_09_249
crossref_primary_10_1002_smll_201402420
crossref_primary_10_1016_j_jallcom_2014_03_105
crossref_primary_10_1039_D2QI00293K
crossref_primary_10_1016_j_nantod_2013_04_010
crossref_primary_10_1016_j_ijthermalsci_2020_106800
crossref_primary_10_1016_j_electacta_2017_05_112
crossref_primary_10_1002_anie_201205619
crossref_primary_10_1515_ntrev_2015_0052
crossref_primary_10_1016_j_jelechem_2023_117201
crossref_primary_10_1021_acsabm_0c00871
crossref_primary_10_1016_j_solidstatesciences_2014_01_007
crossref_primary_10_1038_srep21588
crossref_primary_10_1016_j_electacta_2022_140802
crossref_primary_10_1021_am302462d
crossref_primary_10_1016_j_jascer_2013_07_001
crossref_primary_10_1021_acs_cgd_5b01234
crossref_primary_10_1016_j_jallcom_2019_151770
crossref_primary_10_1021_jp210479a
crossref_primary_10_1021_jp304193z
crossref_primary_10_1016_j_apcatb_2014_05_054
crossref_primary_10_1016_j_surfcoat_2014_12_056
crossref_primary_10_1016_j_matchemphys_2021_124986
crossref_primary_10_1016_j_elecom_2019_106501
crossref_primary_10_1039_D0TA05368F
crossref_primary_10_1007_s40820_018_0230_4
crossref_primary_10_1016_j_synthmet_2020_116669
crossref_primary_10_1016_j_pnsc_2013_04_004
crossref_primary_10_1039_C6TA04413A
crossref_primary_10_1088_1402_4896_ad3583
crossref_primary_10_3390_ma14071777
crossref_primary_10_1016_j_jallcom_2019_01_147
crossref_primary_10_1016_j_electacta_2017_09_080
crossref_primary_10_1021_acsami_7b17582
crossref_primary_10_1007_s00339_017_0925_2
crossref_primary_10_1016_j_cej_2021_130619
crossref_primary_10_1016_j_apsusc_2018_06_307
crossref_primary_10_1007_s11706_017_0386_8
crossref_primary_10_1021_am503379y
crossref_primary_10_1039_C7CC00388A
crossref_primary_10_1039_c2nr31268a
crossref_primary_10_1039_D1RA02039K
crossref_primary_10_1111_jace_12378
crossref_primary_10_1088_0957_4484_25_45_455401
crossref_primary_10_1016_j_tsf_2014_12_018
crossref_primary_10_1016_j_elecom_2012_07_007
crossref_primary_10_1039_c2cp23461k
crossref_primary_10_3390_catal7070209
crossref_primary_10_1039_C4RA06402J
crossref_primary_10_1039_C5GC02170G
crossref_primary_10_1016_j_corsci_2020_109104
crossref_primary_10_1016_j_jcat_2017_03_017
crossref_primary_10_1002_smll_202409856
crossref_primary_10_1039_c2jm31255g
crossref_primary_10_3390_catal8110555
crossref_primary_10_1021_acsami_7b18289
crossref_primary_10_1021_acs_jpcc_0c03744
crossref_primary_10_1088_1361_6528_aa929a
crossref_primary_10_1016_j_bioelechem_2016_02_001
crossref_primary_10_1039_c3cc43772h
crossref_primary_10_1039_C6NR00172F
crossref_primary_10_1002_adfm_201201814
crossref_primary_10_1007_s10853_016_0603_3
crossref_primary_10_1016_j_jallcom_2021_160207
crossref_primary_10_1021_acs_est_9b00088
crossref_primary_10_1039_C4TA05620E
crossref_primary_10_1038_srep23065
crossref_primary_10_1021_jp405517w
crossref_primary_10_1002_adfm_201300946
crossref_primary_10_1016_j_apsusc_2023_156472
crossref_primary_10_1002_slct_201700372
crossref_primary_10_1039_c2jm14906k
crossref_primary_10_1007_s10854_016_4946_y
crossref_primary_10_1016_j_jphotochem_2013_08_022
crossref_primary_10_1088_0957_4484_26_17_175705
crossref_primary_10_1021_sc400323w
crossref_primary_10_1007_s11085_016_9630_3
crossref_primary_10_1016_j_memsci_2015_01_009
crossref_primary_10_4028_www_scientific_net_AMR_631_632_524
crossref_primary_10_1002_ange_201205619
crossref_primary_10_1063_1_3679621
crossref_primary_10_1016_j_cap_2015_12_006
crossref_primary_10_1016_j_electacta_2018_03_035
crossref_primary_10_1021_acs_langmuir_6b03119
crossref_primary_10_1016_j_jhazmat_2013_05_047
crossref_primary_10_1016_j_jpowsour_2014_06_098
crossref_primary_10_1016_j_nanoen_2015_12_025
crossref_primary_10_1021_jp405207e
crossref_primary_10_1002_celc_202000622
crossref_primary_10_1021_acsami_4c07498
crossref_primary_10_1016_j_apcatb_2015_03_029
crossref_primary_10_1021_cr500061m
crossref_primary_10_1002_smll_201200564
crossref_primary_10_3390_nano10030430
crossref_primary_10_1016_j_msec_2021_112007
crossref_primary_10_1021_acs_jpcc_5b01066
crossref_primary_10_1021_acsaem_0c00976
crossref_primary_10_1039_C8CE01834K
crossref_primary_10_1021_acs_iecr_7b01379
crossref_primary_10_1016_j_matlet_2019_126697
crossref_primary_10_1016_j_microc_2020_105012
crossref_primary_10_1039_c3nr03198e
crossref_primary_10_1007_s11664_019_06951_y
crossref_primary_10_1038_srep07808
crossref_primary_10_1063_1_3671076
crossref_primary_10_1002_anie_202424056
crossref_primary_10_1007_s10800_013_0623_5
crossref_primary_10_1039_D1CC02036F
crossref_primary_10_1016_j_ceramint_2017_10_168
crossref_primary_10_1016_j_electacta_2012_06_006
crossref_primary_10_1039_C7NJ00198C
crossref_primary_10_1007_s41779_024_01033_7
crossref_primary_10_1088_0268_1242_31_1_014010
crossref_primary_10_1039_c3ee41155a
crossref_primary_10_1016_j_apsusc_2019_04_259
crossref_primary_10_1016_j_mssp_2023_107768
crossref_primary_10_1039_C4TA01613K
crossref_primary_10_1016_j_ceramint_2022_11_032
crossref_primary_10_1002_ppsc_201300178
crossref_primary_10_1016_j_ceramint_2023_12_079
crossref_primary_10_1016_j_electacta_2014_12_132
crossref_primary_10_1039_c3nr03014h
crossref_primary_10_1002_ange_202424056
crossref_primary_10_1021_jp408322g
crossref_primary_10_1007_s10008_012_1799_z
crossref_primary_10_1016_j_spmi_2015_12_037
crossref_primary_10_1039_D0RA02929G
crossref_primary_10_1016_j_tsf_2014_01_066
crossref_primary_10_1016_j_jpowsour_2015_02_017
crossref_primary_10_1039_C3NR05894H
crossref_primary_10_1002_smll_201201874
crossref_primary_10_1016_j_jpcs_2022_111047
crossref_primary_10_1021_es503003y
crossref_primary_10_1039_C4RA06842D
crossref_primary_10_1016_j_matpr_2019_12_421
crossref_primary_10_1088_1361_6641_ab3822
crossref_primary_10_1016_j_apcatb_2018_04_040
crossref_primary_10_1039_c3nr01286g
crossref_primary_10_1016_j_ijhydene_2019_11_213
crossref_primary_10_1016_j_aca_2022_339509
crossref_primary_10_1016_j_jpowsour_2013_04_037
crossref_primary_10_1016_j_mser_2013_10_001
crossref_primary_10_1021_acsami_1c16271
crossref_primary_10_1002_cplu_201200024
crossref_primary_10_1007_s00604_025_07072_6
crossref_primary_10_3390_ma6072892
crossref_primary_10_1016_j_apcatb_2014_03_010
crossref_primary_10_1039_C4NR04886E
crossref_primary_10_1002_lpor_202300778
crossref_primary_10_1016_j_carbon_2014_09_080
crossref_primary_10_1016_j_progsolidstchem_2020_100297
crossref_primary_10_1016_j_cplett_2020_137950
crossref_primary_10_1016_j_jiec_2020_07_008
crossref_primary_10_1039_C9CC04293H
crossref_primary_10_1557_jmr_2019_28
crossref_primary_10_1016_j_aquatox_2023_106419
Cites_doi 10.1021/jp063822c
10.1039/b907933e
10.1021/nl101198b
10.1021/nn800174y
10.1557/JMR.2003.0022
10.1002/adma.200800815
10.1002/adfm.200902234
10.1038/nnano.2009.226
10.1126/science.1117908
10.1021/nl052099j
10.1016/j.micromeso.2008.05.038
10.1038/nmat2317
10.1021/jp075258r
10.1038/440295a
10.1038/nature06181
10.1038/nnano.2010.196
10.1021/nl050355m
10.1016/j.solmat.2006.04.007
10.1021/nl048301k
10.1021/jp990521c
10.1021/ja030070g
10.1039/B909930A
10.1039/b820504c
10.1039/b008974p
10.1038/238037a0
10.1021/nl062000o
10.1002/adma.200801996
10.1021/cm102622x
10.1038/353737a0
10.1021/cm7024203
10.1021/jp106324x
10.1021/nl802818d
10.1021/cm802384y
10.1088/0957-4484/19/49/495706
10.1021/cm800040k
10.1038/nmat1387
10.1021/nl802096a
10.1021/nl070264k
10.1002/adma.200801189
10.1021/la9012747
10.1021/nl051401l
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/nl2015262
DatabaseName CrossRef
Pascal-Francis
PubMed
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 3655
ExternalDocumentID 21786788
24524490
10_1021_nl2015262
a174072221
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
NPM
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a443t-9b9bf50f92b04c115a97c89d727cd3d44281b9e71fc80bcf3ec1889fb990aad93
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 18:17:14 EDT 2025
Mon Jul 21 11:26:54 EDT 2025
Mon Jul 21 06:04:44 EDT 2025
Mon Jul 21 09:13:46 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 00:42:42 EDT 2025
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords mesoporous structures
TiO2 nanotubes
photocatalyst
phase transformation
Anatase
Phase transformations
Porous materials
Photocatalysis
Nanotubes
Nanostructures
Mesoporosity
Morphology
Nanowires
Surface area
Titanium oxide
Catalyst activity
Nanostructured materials
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a443t-9b9bf50f92b04c115a97c89d727cd3d44281b9e71fc80bcf3ec1889fb990aad93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21786788
PQID 1762052231
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_890035616
proquest_miscellaneous_1762052231
pubmed_primary_21786788
pascalfrancis_primary_24524490
crossref_primary_10_1021_nl2015262
crossref_citationtrail_10_1021_nl2015262
acs_journals_10_1021_nl2015262
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-14
PublicationDateYYYYMMDD 2011-09-14
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-14
  day: 14
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Zhu K. (ref16/cit16) 2007; 7
Liu B. (ref30/cit30) 2008; 20
Liu L. F. (ref34/cit34) 2008; 19
Barnard A. S. (ref40/cit40) 2005; 5
Wang D. A. (ref12/cit12) 2009; 21
Wang D. (ref33/cit33) 2009; 21
Kuang D. (ref13/cit13) 2008; 2
Osterloh F. E. (ref7/cit7) 2008; 20
Varghese O. K. (ref18/cit18) 2009; 4
Liu G. (ref10/cit10) 2010; 20
Finnegan M. P. (ref39/cit39) 2007; 111
Hernandez-Alonso M. D. (ref8/cit8) 2009; 2
Sauvage F. (ref22/cit22) 2010; 10
Bang J. H. (ref23/cit23) 2010; 20
Wang X. C. (ref6/cit6) 2009; 8
Albu S. P. (ref35/cit35) 2008; 20
Yanagisawa K. (ref37/cit37) 1999; 103
Wang D. A. (ref32/cit32) 2010; 22
O’Regan B. (ref1/cit1) 1991; 353
Tian B. Z. (ref5/cit5) 2007; 449
Mor G. K. (ref19/cit19) 2005; 5
Law M. (ref2/cit2) 2005; 4
Allam N. K. (ref26/cit26) 2008; 20
Su Z. X. (ref36/cit36) 2009; 19
Yin H. B. (ref38/cit38) 2001; 11
Feng X. J. (ref17/cit17) 2008; 8
Wang D. (ref29/cit29) 2008; 116
Yu J. G. (ref25/cit25) 2010; 114
Fujishima A. (ref9/cit9) 1972; 238
Maeda K. (ref4/cit4) 2006; 440
Paulose M. (ref41/cit41) 2007; 111
Albu S. P. (ref15/cit15) 2007; 7
Richter C. (ref20/cit20) 2010; 5
Crepaldi E. L. (ref28/cit28) 2003; 125
Allam N. K. (ref27/cit27) 2009; 25
Gur I. (ref3/cit3) 2005; 310
Kang T. S. (ref21/cit21) 2009; 9
Zukalová M. (ref31/cit31) 2005; 5
Mor G. K. (ref14/cit14) 2006; 6
Varghese O. K. (ref24/cit24) 2003; 18
Mor G. K. (ref11/cit11) 2006; 90
References_xml – volume: 111
  start-page: 1962
  year: 2007
  ident: ref39/cit39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp063822c
– volume: 2
  start-page: 1231
  year: 2009
  ident: ref8/cit8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b907933e
– volume: 10
  start-page: 2562
  year: 2010
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl101198b
– volume: 2
  start-page: 1113
  year: 2008
  ident: ref13/cit13
  publication-title: ACS Nano
  doi: 10.1021/nn800174y
– volume: 18
  start-page: 156
  year: 2003
  ident: ref24/cit24
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2003.0022
– volume: 20
  start-page: 3942
  year: 2008
  ident: ref26/cit26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800815
– volume: 20
  start-page: 1970
  year: 2010
  ident: ref23/cit23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902234
– volume: 4
  start-page: 592
  year: 2009
  ident: ref18/cit18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.226
– volume: 310
  start-page: 462
  year: 2005
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.1117908
– volume: 6
  start-page: 215
  year: 2006
  ident: ref14/cit14
  publication-title: Nano Lett.
  doi: 10.1021/nl052099j
– volume: 116
  start-page: 658
  year: 2008
  ident: ref29/cit29
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.05.038
– volume: 8
  start-page: 76
  year: 2009
  ident: ref6/cit6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 111
  start-page: 14992
  year: 2007
  ident: ref41/cit41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp075258r
– volume: 440
  start-page: 295
  year: 2006
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/440295a
– volume: 449
  start-page: 885
  year: 2007
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature06181
– volume: 5
  start-page: 769
  year: 2010
  ident: ref20/cit20
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.196
– volume: 5
  start-page: 1261
  year: 2005
  ident: ref40/cit40
  publication-title: Nano Lett.
  doi: 10.1021/nl050355m
– volume: 90
  start-page: 2011
  year: 2006
  ident: ref11/cit11
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.04.007
– volume: 5
  start-page: 191
  year: 2005
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl048301k
– volume: 103
  start-page: 7781
  year: 1999
  ident: ref37/cit37
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990521c
– volume: 125
  start-page: 9770
  year: 2003
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030070g
– volume: 20
  start-page: 831
  year: 2010
  ident: ref10/cit10
  publication-title: J. Mater. Chem.
  doi: 10.1039/B909930A
– volume: 19
  start-page: 2301
  year: 2009
  ident: ref36/cit36
  publication-title: J. Mater. Chem.
  doi: 10.1039/b820504c
– volume: 11
  start-page: 1694
  year: 2001
  ident: ref38/cit38
  publication-title: J. Mater. Chem.
  doi: 10.1039/b008974p
– volume: 238
  start-page: 37
  year: 1972
  ident: ref9/cit9
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 7
  start-page: 69
  year: 2007
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl062000o
– volume: 21
  start-page: 1964
  year: 2009
  ident: ref12/cit12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801996
– volume: 22
  start-page: 6656
  year: 2010
  ident: ref32/cit32
  publication-title: Chem. Mater.
  doi: 10.1021/cm102622x
– volume: 353
  start-page: 737
  year: 1991
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/353737a0
– volume: 20
  start-page: 35
  year: 2008
  ident: ref7/cit7
  publication-title: Chem. Mater.
  doi: 10.1021/cm7024203
– volume: 114
  start-page: 19378
  year: 2010
  ident: ref25/cit25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106324x
– volume: 9
  start-page: 601
  year: 2009
  ident: ref21/cit21
  publication-title: Nano Lett.
  doi: 10.1021/nl802818d
– volume: 21
  start-page: 1198
  year: 2009
  ident: ref33/cit33
  publication-title: Chem. Mater.
  doi: 10.1021/cm802384y
– volume: 19
  start-page: 495706
  year: 2008
  ident: ref34/cit34
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/49/495706
– volume: 20
  start-page: 2711
  year: 2008
  ident: ref30/cit30
  publication-title: Chem. Mater.
  doi: 10.1021/cm800040k
– volume: 4
  start-page: 455
  year: 2005
  ident: ref2/cit2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1387
– volume: 8
  start-page: 3781
  year: 2008
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl802096a
– volume: 7
  start-page: 1286
  year: 2007
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl070264k
– volume: 20
  start-page: 4135
  year: 2008
  ident: ref35/cit35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801189
– volume: 25
  start-page: 7234
  year: 2009
  ident: ref27/cit27
  publication-title: Langmuir
  doi: 10.1021/la9012747
– volume: 5
  start-page: 1789
  year: 2005
  ident: ref31/cit31
  publication-title: Nano Lett.
  doi: 10.1021/nl051401l
SSID ssj0009350
Score 2.4659836
Snippet We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3649
SubjectTerms Anatase
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Crystallization
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Morphology
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotubes
Nanowires
Phase transformations
Physics
Quantum wires
Specific phase transitions
Spontaneous
Structural transitions in nanoscale materials
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Titanium dioxide
Title Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature
URI http://dx.doi.org/10.1021/nl2015262
https://www.ncbi.nlm.nih.gov/pubmed/21786788
https://www.proquest.com/docview/1762052231
https://www.proquest.com/docview/890035616
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4huLSq-n6ktCv3ceglNE7sxD6uKAhVoqrKonKLPH6oq6JkRbIH-PVMkt1lUVl6zkSR7Rl_33icbwA-W6KojkuMtTQmFkKGWLvMxtxqTFHlVvSXaI5_5Een4vuZPNuCTxsq-Cn_Wp0TRsm022d30lwVXYY13j-5UdbN-jasFLmUB2kllvJB66920GObW9DzaGYamoUwtK_YzC97nDl8At-Wf-sM10v-7s1b3LNX_4o33jeEp_B4wTPZeHCMZ7Dlq-fwcE198AU0J7O6Im7oKflnP_8QnDFTOXZc09T3h-1sssZqyTtZHdi4qt30yjs2mdKrU8Noe67bOfqGdV1ALD3BS_abGOwFMy37RbycTTxx80G7-SWcHh5M9o_iRQ-G2AiRtbFGjUEmQaeYCEv00ejCKu2I9liXOUHZC0ftCx6sStCGzFuulA5IKGeM09kr2K7qyr8BJnjX6AcNckdpkvQYVMCCY260EVIWEYxokcpFDDVlXx5PebmavQi-LNevtAsF866Rxvldph9XprNBtuMuo9EtJ1hZdtVoIXQSwYelV5QUdV0pZViUkhOGJERdMx4B22CjukNioqd5BK8Hj7r5AC8UsQT19n9D3oUHwyG2jrl4B9vtxdy_JxbU4qiPgmu_xgCO
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOQCqeFPCYzGIA5eUOLE39nFVUS3QrRBNRW-Rxw-xokpWTfZAfz3jJPsoagXnjBM_ZjzfeJxvCHlvEKJaJiBWQuuYc-FjZTMTM6MgBTk2vLtEMzseT0_5lzNxNtDkhH9hsBMNvqnpkvgbdgH2sTpHVyXSsN3eRhCShkBrcnCyIdjNumqsaMAYDinJVyxC202DBzLNFQ-0u9ANTobvq1jcDDM7d3P4oK9b1HW0u2Xya3_Zwr65_IvD8f9G8pDcH1AnnfRq8ojcctVjcm-Li_AJaU4WdYVI0dXLhn77ic6N6srSWY0L0R2902IL46Ku0trTSVXb-aWztJhj07mmuFnX7RJcQ0NNEINP4Df9gXj2guqWfkeUTguHSL1ncn5KTg8_FQfTeKjIEGvOszZWoMCLxKsUEm4QTGqVG6ksgiBjM8sxlmGgXM68kQkYnznDpFQe0OdpbVX2jOxUdeWeE8pZKPsDGpjFoEk48NJDzmCsleZC5BEZ4eSVg0U1ZZcsT1m5nr2IfFgtY2kGPvNQVuP8OtF3a9FFT-JxndDoii6sJUNumnOVROTtSjlKtMGQWOkXpWToURIEshmLCL1BRoYjYwSr44js9Yq1-QDLJWIG-eJfQ35D7kyL2VF59Pn460tytz_eVjHjr8hOe7F0rxEftTDqDOMP3jMI7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZQkRAIcR_hWAzigZeUOLE39uOqsCpHS0W3om-Rx4dYUSWrJvtAfz1jJ7vdolbwnHHiY8bzjcf5hpC3BiGqZQJSJbROORc-VbYwKTMKcpBjw-Mlmr398e4R_3wsjodAMfwLg51o8U1tTOIHq15YPzAMsPf1CborkYct93pI14Vga7JzeE6yW8SKrGjEGBIpyVdMQptNgxcy7QUvdHuhW5wQ31eyuBpqRpczvUu-rTsbb5r82l52sG3O_uJx_P_R3CN3BvRJJ7263CfXXP2A3NrgJHxI2sNFUyNidM2ypQc_0clRXVu61-CCxCN4OtvAuqiztPF0Ujd2fuYsnc2x6VxT3LSbbgmupaE2iMEn8Jv-QFx7SnVHvyNapzOHiL1ndH5EjqYfZzu76VCZIdWcF12qQIEXmVc5ZNwgqNSqNFJZBEPGFpZjTMNAuZJ5IzMwvnCGSak8oO_T2qriMdmqm9o9JZSzUP4HNDCLwZNw4KWHksFYK82FKBMywgmsBstqq5g0z1m1nr2EvFstZWUGXvNQXuPkMtE3a9FFT-ZxmdDogj6sJUOOmnOVJeT1SkEqtMWQYOkXpWLoWTIEtAVLCL1CRoajYwSt44Q86ZXr_AOslIgd5LN_DfkVuXHwYVp9_bT_5Tm5mYdbNvEu0Quy1Z0u3UuESR2Mom38AXnhC2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Phase+and+Morphology+Transformations+of+Anodized+Titania+Nanotubes+Induced+by+Water+at+Room+Temperature&rft.jtitle=Nano+letters&rft.au=WANG%2C+Daoai&rft.au=LIFENG+LIU&rft.au=FUXIANG+ZHANG&rft.au=KUN+TAO&rft.date=2011-09-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=11&rft.issue=9&rft.spage=3649&rft.epage=3655&rft_id=info:doi/10.1021%2Fnl2015262&rft.externalDBID=n%2Fa&rft.externalDocID=24524490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon