HLE17: An Improved Local Exchange–Correlation Functional for Computing Semiconductor Band Gaps and Molecular Excitation Energies

The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and molecular excitation energies, and therefore, it becomes necessary to use more expensive hybrid functionals or more empirical DFT+U functionals...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 121; no. 13; pp. 7144 - 7154
Main Authors Verma, Pragya, Truhlar, Donald G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and molecular excitation energies, and therefore, it becomes necessary to use more expensive hybrid functionals or more empirical DFT+U functionals for accurate predictions and modeling of these properties. This work presents a meta-generalized gradient approximation (meta-GGA) called High Local Exchange 2017 (HLE17) and illustrates how it can be useful for obtaining accurate semiconductor band gaps and molecular excitation energies. Unlike the conventional way of using the DFT+U method, one does not need to determine new parameters for every property or system studied. The HLE17 functional builds upon our earlier work (HLE16) where we had shown that by increasing the coefficient of local exchange and simultaneously decreasing the coefficient of local correlation with a GGA, the band gaps and excitation energies could be significantly improved without significantly degrading the ground-state molecular energetic properties. However, for almost every database tested in this work, HLE17 shows improvement over HLE16, and the improvement is particularly notable for solid-state lattice constants. This new functional provides a strategy for calculating properties that are otherwise difficult to calculate by a local functional.
AbstractList The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and molecular excitation energies, and therefore, it becomes necessary to use more expensive hybrid functionals or more empirical DFT+U functionals for accurate predictions and modeling of these properties. This work presents a meta-generalized gradient approximation (meta-GGA) called High Local Exchange 2017 (HLE17) and illustrates how it can be useful for obtaining accurate semiconductor band gaps and molecular excitation energies. Unlike the conventional way of using the DFT+U method, one does not need to determine new parameters for every property or system studied. The HLE17 functional builds upon our earlier work (HLE16) where we had shown that by increasing the coefficient of local exchange and simultaneously decreasing the coefficient of local correlation with a GGA, the band gaps and excitation energies could be significantly improved without significantly degrading the ground-state molecular energetic properties. However, for almost every database tested in this work, HLE17 shows improvement over HLE16, and the improvement is particularly notable for solid-state lattice constants. This new functional provides a strategy for calculating properties that are otherwise difficult to calculate by a local functional.
Not provided.
Author Truhlar, Donald G
Verma, Pragya
AuthorAffiliation University of Minnesota
Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute
AuthorAffiliation_xml – name: Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute
– name: University of Minnesota
Author_xml – sequence: 1
  givenname: Pragya
  orcidid: 0000-0002-5722-0894
  surname: Verma
  fullname: Verma, Pragya
  email: verma045@umn.edu
– sequence: 2
  givenname: Donald G
  orcidid: 0000-0002-7742-7294
  surname: Truhlar
  fullname: Truhlar, Donald G
  email: truhlar@umn.edu
BackLink https://www.osti.gov/biblio/1534665$$D View this record in Osti.gov
BookMark eNp9kc1u1DAUhS1UJNrCnqXFigUz2PFPJuzKaPojDeoCWFvOtTN1ldjBdhDdVbwCb8iT4JDCAomufGR_5_rqnBN05IO3CL2kZE1JRd9qSOvbEWBdt4QSKZ-gY9qwalVzIY7-al4_Qycp3RIiGKHsGH2_3O9o_Q6feXw1jDF8tQbvA-ge777BjfYH-_P-xzbEaHudXfD4fPIwi0J0IeJtGMYpO3_AH-3gIHgzQS7377U3-EKPCc_iQ-gtTL2O81SXl0k7b-PB2fQcPe10n-yLh_MUfT7ffdpervbXF1fbs_1Kc87yqpGSCkkZlZ1suW21FkJXhhveGDC6aU3VWcY3FXAwcmNapq2oNxtooJOikuwUvVrmhpSdSmUPCzdlY28hKyoYl1IU6PUClSy-TDZlNbgEtu-1t2FKqiKyruq6_FNQsqAQQ0rRdmqMbtDxTlGi5k5U6UTNnaiHTopF_mP5k0aO2vWPGd8sxt8vYYol__R__BdROKaK
CitedBy_id crossref_primary_10_1002_qua_27516
crossref_primary_10_1016_j_mssp_2021_106092
crossref_primary_10_1021_acs_jpcc_0c11446
crossref_primary_10_1039_C8CP06715E
crossref_primary_10_1063_1_5143061
crossref_primary_10_1021_acs_jctc_1c00208
crossref_primary_10_1021_acs_jpcc_7b09000
crossref_primary_10_1021_acsami_2c22665
crossref_primary_10_1021_acs_cgd_4c00597
crossref_primary_10_1063_1_5118863
crossref_primary_10_1002_ange_202410428
crossref_primary_10_1021_acs_jpcc_8b06498
crossref_primary_10_1039_C8CP04280B
crossref_primary_10_1021_acs_jpcc_0c00103
crossref_primary_10_1021_acs_jpcc_9b04683
crossref_primary_10_1021_acs_jctc_0c00585
crossref_primary_10_1063_5_0059036
crossref_primary_10_1063_5_0098787
crossref_primary_10_1016_j_jphotochemrev_2019_01_001
crossref_primary_10_1021_acsomega_4c05159
crossref_primary_10_1002_eem2_12051
crossref_primary_10_1021_acs_jpcc_1c02031
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1021_acs_jpclett_0c01396
crossref_primary_10_1063_5_0049317
crossref_primary_10_1016_j_mattod_2021_02_007
crossref_primary_10_1021_acs_jctc_2c00822
crossref_primary_10_1103_PhysRevB_102_024407
crossref_primary_10_1021_acs_jctc_3c00182
crossref_primary_10_1063_5_0153656
crossref_primary_10_1021_acs_jctc_9b00532
crossref_primary_10_1039_C7CP01576C
crossref_primary_10_1103_PhysRevA_103_012806
crossref_primary_10_1021_acs_jpca_7b12652
crossref_primary_10_1103_PhysRevB_105_195138
crossref_primary_10_1021_acs_jpca_9b10772
crossref_primary_10_1002_eem2_12204
crossref_primary_10_1021_acs_jctc_0c00214
crossref_primary_10_1021_acsnano_4c17941
crossref_primary_10_1063_5_0179260
crossref_primary_10_1002_qua_25831
crossref_primary_10_1007_s00894_024_06043_7
crossref_primary_10_1016_j_cej_2023_145248
crossref_primary_10_1021_acs_inorgchem_0c03373
crossref_primary_10_1016_j_ccr_2021_213785
crossref_primary_10_1038_s41524_020_00360_0
crossref_primary_10_1002_anie_202410428
crossref_primary_10_1039_D4DD00014E
crossref_primary_10_1016_j_jallcom_2022_168464
crossref_primary_10_1016_j_cplett_2024_141460
crossref_primary_10_1007_s11426_024_2023_2
crossref_primary_10_1021_acs_jpcc_0c00007
crossref_primary_10_1021_acscatal_4c01091
crossref_primary_10_1021_acs_jpcc_3c07960
crossref_primary_10_1007_s00214_019_2539_6
crossref_primary_10_1021_acs_jctc_8b01069
crossref_primary_10_1021_acs_jpcc_9b05235
crossref_primary_10_1038_s41524_022_00796_6
crossref_primary_10_1088_2516_1075_abfb08
crossref_primary_10_1039_D4DT00975D
crossref_primary_10_1063_1_5047863
crossref_primary_10_1063_1_5126393
crossref_primary_10_1103_PhysRevMaterials_4_073802
crossref_primary_10_1021_acs_jctc_0c00440
crossref_primary_10_1073_pnas_2104556118
crossref_primary_10_1002_aenm_202402246
crossref_primary_10_1021_acs_jpclett_8b03277
crossref_primary_10_3390_molecules25071552
crossref_primary_10_1021_acs_jctc_3c00033
crossref_primary_10_1021_acs_jctc_0c00518
crossref_primary_10_1016_j_trechm_2020_02_005
crossref_primary_10_1002_solr_202300441
crossref_primary_10_1063_1_4986404
crossref_primary_10_1039_D4TA02141J
crossref_primary_10_1021_acs_jctc_7b00699
crossref_primary_10_1021_acs_jpca_2c06715
crossref_primary_10_1021_jacs_4c09250
crossref_primary_10_1021_acs_chemmater_0c03259
crossref_primary_10_1021_acs_jcim_3c02083
crossref_primary_10_1021_acs_jpca_8b11499
crossref_primary_10_1063_1_5040786
Cites_doi 10.1021/acs.jpclett.6b02757
10.1103/PhysRevB.57.1505
10.1103/PhysRevA.51.4501
10.1103/PhysRevB.27.3506
10.1103/PhysRevB.73.155402
10.1021/ct049851d
10.1021/jp050536c
10.1021/ar100137c
10.1021/jz100753x
10.1103/PhysRevB.79.235114
10.1103/PhysRevB.79.235125
10.1021/jp709898r
10.1063/1.2404663
10.1021/acs.jpclett.5b01888
10.1021/ja805434m
10.1021/jz101565j
10.1080/00268970010018431
10.1103/PhysRevB.86.235122
10.1021/ct800568m
10.1103/PhysRev.140.A1133
10.1016/S0009-2614(01)00616-9
10.1103/PhysRevLett.103.036404
10.1063/1.3524336
10.1103/PhysRevLett.91.146401
10.1063/1.4940682
10.1103/PhysRevB.76.155123
10.1103/PhysRevB.70.125426
10.1103/PhysRevLett.77.3865
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.50.17953
10.1007/s00214-016-1927-4
10.1088/0953-8984/25/16/165502
10.1039/C5CP01425E
10.1103/PhysRevB.53.3764
10.1002/qua.560280846
10.1103/PhysRevB.86.115134
10.1103/PhysRevB.84.035413
10.1063/1.3185673
10.1007/BF03156228
10.1021/acs.jpclett.6b01807
10.1063/1.2912068
10.1039/b907148b
10.1103/PhysRevB.72.237102
10.1103/PhysRev.81.385
10.1103/PhysRevB.34.5390
10.1103/PhysRevB.44.943
10.1142/9789812830586_0005
10.1088/0953-8984/2/17/008
10.1103/PhysRevB.82.045108
10.1103/PhysRevB.83.085201
10.1103/PhysRevB.75.195212
10.1021/ct200866d
10.1063/1.4798402
10.1021/jp035287b
10.1021/jp0630626
10.1103/PhysRevLett.65.1148
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.61.16440
10.1103/PhysRevB.82.075122
10.1103/PhysRevA.38.3098
10.1103/PhysRevB.75.195128
10.1063/1.4722993
10.1063/1.2085170
10.1021/jp9061797
10.1063/1.1347371
10.1016/S1380-7323(05)80020-2
10.1103/PhysRevB.75.045121
10.1039/c2cp42025b
10.1103/PhysRevB.59.1758
10.1021/ct3002656
10.1103/PhysRevB.77.115123
10.1103/PhysRevB.80.233102
10.1063/1.4926835
10.1021/acs.jpclett.5b02773
10.1103/PhysRevLett.109.186401
10.1063/1.1688752
10.1103/PhysRevB.74.155108
10.1103/PhysRevLett.100.136406
10.1063/1.2187006
10.1021/ct5008235
10.1002/(SICI)1097-461X(1999)73:4<369::AID-QUA6>3.0.CO;2-B
10.1103/PhysRevB.69.075102
10.1016/j.cplett.2004.06.011
10.1088/0953-8984/20/6/064201
10.1103/PhysRevB.65.155102
10.1039/C6SC00705H
10.1021/jp0539223
10.1063/1.464913
10.1063/1.3698285
10.1103/PhysRevLett.51.1884
10.1063/1.2189226
10.1103/PhysRevB.37.785
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Univ. of New Mexico, Albuquerque, NM (United States)
CorporateAuthor_xml – name: Univ. of New Mexico, Albuquerque, NM (United States)
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1021/acs.jpcc.7b01066
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 7154
ExternalDocumentID 1534665
10_1021_acs_jpcc_7b01066
a477737330
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ABFRP
OTOTI
ID FETCH-LOGICAL-a443t-9661561316f6b4ebaa55a2d4d49dcda9bd2fe3482c4cd68db3ae5788c9cf65263
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri May 19 02:19:07 EDT 2023
Fri Jul 11 06:11:14 EDT 2025
Tue Jul 01 03:01:51 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Thu Aug 27 13:43:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a443t-9661561316f6b4ebaa55a2d4d49dcda9bd2fe3482c4cd68db3ae5788c9cf65263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC)
SC0015997
ORCID 0000-0002-5722-0894
0000-0002-7742-7294
0000000257220894
0000000277427294
PQID 2067277348
PQPubID 24069
PageCount 11
ParticipantIDs osti_scitechconnect_1534665
proquest_miscellaneous_2067277348
crossref_primary_10_1021_acs_jpcc_7b01066
crossref_citationtrail_10_1021_acs_jpcc_7b01066
acs_journals_10_1021_acs_jpcc_7b01066
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-06
PublicationDateYYYYMMDD 2017-04-06
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref92/cit92
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref93/cit93
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
Casida M. E. (ref49/cit49) 1995
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref94/cit94
Furche F. (ref75/cit75) 2005; 16
ref91/cit91
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref95/cit95
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
Frisch M. J. (ref43/cit43) 2010
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1021/acs.jpclett.6b02757
– ident: ref16/cit16
  doi: 10.1103/PhysRevB.57.1505
– ident: ref88/cit88
  doi: 10.1103/PhysRevA.51.4501
– ident: ref1/cit1
  doi: 10.1103/PhysRevB.27.3506
– ident: ref68/cit68
  doi: 10.1103/PhysRevB.73.155402
– ident: ref35/cit35
  doi: 10.1021/ct049851d
– ident: ref34/cit34
  doi: 10.1021/jp050536c
– ident: ref12/cit12
  doi: 10.1021/ar100137c
– ident: ref48/cit48
  doi: 10.1021/jz100753x
– ident: ref79/cit79
  doi: 10.1103/PhysRevB.79.235114
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.79.235125
– ident: ref57/cit57
  doi: 10.1021/jp709898r
– ident: ref70/cit70
  doi: 10.1063/1.2404663
– ident: ref39/cit39
  doi: 10.1021/acs.jpclett.5b01888
– ident: ref44/cit44
– ident: ref51/cit51
  doi: 10.1021/ja805434m
– ident: ref74/cit74
  doi: 10.1021/jz101565j
– ident: ref93/cit93
  doi: 10.1080/00268970010018431
– ident: ref83/cit83
  doi: 10.1103/PhysRevB.86.235122
– ident: ref32/cit32
  doi: 10.1021/ct800568m
– ident: ref91/cit91
  doi: 10.1103/PhysRev.140.A1133
– ident: ref4/cit4
  doi: 10.1016/S0009-2614(01)00616-9
– ident: ref80/cit80
  doi: 10.1103/PhysRevLett.103.036404
– ident: ref11/cit11
  doi: 10.1063/1.3524336
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.91.146401
– ident: ref65/cit65
  doi: 10.1063/1.4940682
– ident: ref17/cit17
  doi: 10.1103/PhysRevB.76.155123
– ident: ref56/cit56
  doi: 10.1103/PhysRevB.70.125426
– ident: ref21/cit21
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref45/cit45
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref66/cit66
  doi: 10.1103/PhysRevB.50.17953
– ident: ref28/cit28
  doi: 10.1007/s00214-016-1927-4
– ident: ref85/cit85
  doi: 10.1088/0953-8984/25/16/165502
– ident: ref31/cit31
  doi: 10.1039/C5CP01425E
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.53.3764
– ident: ref73/cit73
  doi: 10.1002/qua.560280846
– ident: ref82/cit82
  doi: 10.1103/PhysRevB.86.115134
– ident: ref63/cit63
  doi: 10.1103/PhysRevB.84.035413
– ident: ref71/cit71
  doi: 10.1063/1.3185673
– ident: ref90/cit90
  doi: 10.1007/BF03156228
– ident: ref14/cit14
  doi: 10.1021/acs.jpclett.6b01807
– ident: ref27/cit27
  doi: 10.1063/1.2912068
– ident: ref86/cit86
  doi: 10.1039/b907148b
– ident: ref62/cit62
  doi: 10.1103/PhysRevB.72.237102
– ident: ref92/cit92
  doi: 10.1103/PhysRev.81.385
– ident: ref2/cit2
  doi: 10.1103/PhysRevB.34.5390
– ident: ref15/cit15
  doi: 10.1103/PhysRevB.44.943
– start-page: 155
  volume-title: Recent Advances in Density Functional Methods, Part I
  year: 1995
  ident: ref49/cit49
  doi: 10.1142/9789812830586_0005
– ident: ref76/cit76
  doi: 10.1088/0953-8984/2/17/008
– ident: ref81/cit81
  doi: 10.1103/PhysRevB.82.045108
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.83.085201
– ident: ref55/cit55
  doi: 10.1103/PhysRevB.75.195212
– ident: ref40/cit40
  doi: 10.1021/ct200866d
– ident: ref36/cit36
  doi: 10.1063/1.4798402
– ident: ref29/cit29
  doi: 10.1021/jp035287b
– ident: ref33/cit33
  doi: 10.1021/jp0630626
– ident: ref77/cit77
  doi: 10.1103/PhysRevLett.65.1148
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.54.11169
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.61.16440
– volume-title: Gaussian 09
  year: 2010
  ident: ref43/cit43
– ident: ref61/cit61
  doi: 10.1103/PhysRevB.82.075122
– ident: ref20/cit20
  doi: 10.1103/PhysRevA.38.3098
– ident: ref59/cit59
  doi: 10.1103/PhysRevB.75.195128
– ident: ref13/cit13
  doi: 10.1063/1.4722993
– ident: ref24/cit24
  doi: 10.1063/1.2085170
– ident: ref53/cit53
  doi: 10.1021/jp9061797
– ident: ref69/cit69
  doi: 10.1063/1.1347371
– volume: 16
  start-page: 93
  volume-title: Computational Photochemistry
  year: 2005
  ident: ref75/cit75
  doi: 10.1016/S1380-7323(05)80020-2
– ident: ref54/cit54
  doi: 10.1103/PhysRevB.75.045121
– ident: ref42/cit42
  doi: 10.1039/c2cp42025b
– ident: ref67/cit67
  doi: 10.1103/PhysRevB.59.1758
– ident: ref38/cit38
  doi: 10.1021/ct3002656
– ident: ref89/cit89
  doi: 10.1103/PhysRevB.77.115123
– ident: ref60/cit60
  doi: 10.1103/PhysRevB.80.233102
– ident: ref64/cit64
  doi: 10.1063/1.4926835
– ident: ref37/cit37
  doi: 10.1021/acs.jpclett.5b02773
– ident: ref84/cit84
  doi: 10.1103/PhysRevLett.109.186401
– ident: ref6/cit6
  doi: 10.1063/1.1688752
– ident: ref78/cit78
  doi: 10.1103/PhysRevB.74.155108
– ident: ref22/cit22
  doi: 10.1103/PhysRevLett.100.136406
– ident: ref9/cit9
  doi: 10.1063/1.2187006
– ident: ref30/cit30
  doi: 10.1021/ct5008235
– ident: ref50/cit50
  doi: 10.1002/(SICI)1097-461X(1999)73:4<369::AID-QUA6>3.0.CO;2-B
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.69.075102
– ident: ref7/cit7
  doi: 10.1016/j.cplett.2004.06.011
– ident: ref95/cit95
  doi: 10.1088/0953-8984/20/6/064201
– ident: ref5/cit5
  doi: 10.1103/PhysRevB.65.155102
– ident: ref87/cit87
  doi: 10.1039/C6SC00705H
– ident: ref52/cit52
  doi: 10.1021/jp0539223
– ident: ref94/cit94
  doi: 10.1063/1.464913
– ident: ref25/cit25
  doi: 10.1063/1.3698285
– ident: ref41/cit41
– ident: ref72/cit72
  doi: 10.1103/PhysRevLett.51.1884
– ident: ref8/cit8
  doi: 10.1063/1.2189226
– ident: ref19/cit19
  doi: 10.1103/PhysRevB.37.785
SSID ssj0053013
Score 2.523009
Snippet The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and...
Not provided.
SourceID osti
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7144
SubjectTerms Chemistry
data analysis
Materials Science
physical chemistry
prediction
Science & Technology - Other Topics
semiconductors
Title HLE17: An Improved Local Exchange–Correlation Functional for Computing Semiconductor Band Gaps and Molecular Excitation Energies
URI http://dx.doi.org/10.1021/acs.jpcc.7b01066
https://www.proquest.com/docview/2067277348
https://www.osti.gov/biblio/1534665
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgOcClvFoVKMiV4MAhy8axvRtudLXLqgIugMTN8vMAVXbVZKWqJ8Rf4B_yS5iJk1YtCHGLrNjyY-z5xjP-hpB95oXUme0luhd4wj3YrDlsrESDMQTwWwxCQEPx_EJOrvn3G3Hzlybnfw8-S4-0Lbu3M2u7fYP2i1wkS0zCHkYYNLxsT10BgppFDzIgRs77jUvytRZQEdnyH0XUmcKGenEc1zpmvBqTFZU1NSGGltx155Xp2t8viRvf0f018qGBmvQkysY6WfDFBlkethneNsnD5GyU9o_pSUHj3YJ39Ax1Gx39ig-Cn-4fh5i-IwbM0TEowXh3SAHr0pgRAnQfvcQQ-2mB3LFQ_k0Xjp7qWUnx47xNwIutNozgdIRPDsFI_0iux6Or4SRpcjIkmvOsQjLPFG2OVAZpuDdaC6GZ447nzjqdG8eCR8Icy62TA2cy7eFQGNjcBimYzD6RTjEt_GdCg857xnCorQUPA2Ey52FdufY90w9cbJEDmDzV7KlS1e5ylqq6EGZUNTO6RY7ahVTtMDC_xo83ahz-qTGLpB5v_LuDsqEAkCCrrsXwI1spkGcuJfTxaysyChYPnS268NN5qVjt40buoO13jmOHrDDEDBgWJL-QTvVz7ncB8VRmrxb1Z2TI_aA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcCiXlvIQpaU1Ehw4bJrdtZ0stxAlBEh6oK3Um-XngVabqLuRUE-Iv8A_5Jd0Zh9FbVEFt5W1tvwYe77xjL8BeJN4IXVqe5HuBR5xjzZrhhsr0mgMIfwWgxDIUJwfyukJ_3wqTtcgbt_CYCcKbKmonPh_2AXiAyr7trS22zdkxsgH8BCxSEJCPRwdtYevQHlNa0cyAkfO-41n8m8tkD6yxQ191FngvrpzKleqZrIJX687WUWYnHVXpenay1v8jf81isew0QBPNqwlZQvWfP4E1kdtvren8HM6G8f992yYs_qmwTs2I03Hxt_r58G_f_waUTKPOnyOTVAl1jeJDJEvq_NDoCZkRxRwv8iJSRbLP-jcsY96WTD6mLfpeKnVhh-cjekBIprsz-BkMj4eTaMmQ0OkOU9LovaMyQKJZZCGe6O1EDpx3PHMWacz45LgiT7HcuvkwJlUezwiBjazgRYvfQ6dfJH7F8CCznrGcKytBQ8DYVLn8aTm2vdMP3CxDW9x8lSzwwpVOc-TWFWFOKOqmdFtOGjXU7XDoGwb5_fUeHddY1lTfNzz7w6JiEJ4Qhy7loKRbKlQurmU2MfXreQoXDxyvejcL1aFSiqPNzEJvfzHcezD-vR4PlOzT4dfduBRQmiCAobkLnTKi5V_hVioNHuV9F8B7oYGEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61qUS5lPISpUCNRA8cNsnu2k6WWwgJAdKqUinqzfLzAGgTsRup6qniL_AP-SXM7KMStKrobWWtLT_m6Rl_A_Aq8ULq1PYj3Q884h591gwZK9LoDKH5LYYhkKN4cChnJ_zjqThdA9G-hcFJFDhSUQXxiauXLjQIA3GP2r8ure0ODLkych02KGpHhD0aH7cCWCDNpnUwGY1HzgdNdPK6EUgn2eIvndRZIG9dkcyVupnegy-XE62yTL51V6Xp2vN_MBxvvZJt2GoMUDaqKeY-rPn8AWyO27pvD-HnbD6JB2_YKGf1jYN3bE4aj03O6mfCvy9-jamoR51Gx6aoGusbRYYWMKvrRKBGZMeUeL_ICVEW29_q3LH3elkw-jhoy_LSqA1OOJvQQ0R03R_ByXTyeTyLmkoNkeY8LQniMyZPJJZBGu6N1kLoxHHHM2edzoxLgicYHcutk0NnUu1RVAxtZoMUiUwfQydf5P4JsKCzvjEce2vBw1CY1HmU2Fz7vhkELnZgHzdPNZxWqCqInsSqasQdVc2O7kCvPVPVLoOqbny_ocfryx7LGurjhn93iUwUmimEtWspKcmWCqmcS4lzfNlSj8LDoxCMzv1iVaikinwTotDT_1zHHtw5ejdV8w-Hn3bhbkJGBeUNyWfQKX-s_HM0iUrzomKAP1DPCJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HLE17%3A+An+Improved+Local+Exchange%E2%80%93Correlation+Functional+for+Computing+Semiconductor+Band+Gaps+and+Molecular+Excitation+Energies&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Verma%2C+Pragya&rft.au=Truhlar%2C+Donald+G.&rft.date=2017-04-06&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=121&rft.issue=13&rft.spage=7144&rft.epage=7154&rft_id=info:doi/10.1021%2Facs.jpcc.7b01066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_7b01066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon