HLE17: An Improved Local Exchange–Correlation Functional for Computing Semiconductor Band Gaps and Molecular Excitation Energies
The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and molecular excitation energies, and therefore, it becomes necessary to use more expensive hybrid functionals or more empirical DFT+U functionals...
Saved in:
Published in | Journal of physical chemistry. C Vol. 121; no. 13; pp. 7144 - 7154 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and molecular excitation energies, and therefore, it becomes necessary to use more expensive hybrid functionals or more empirical DFT+U functionals for accurate predictions and modeling of these properties. This work presents a meta-generalized gradient approximation (meta-GGA) called High Local Exchange 2017 (HLE17) and illustrates how it can be useful for obtaining accurate semiconductor band gaps and molecular excitation energies. Unlike the conventional way of using the DFT+U method, one does not need to determine new parameters for every property or system studied. The HLE17 functional builds upon our earlier work (HLE16) where we had shown that by increasing the coefficient of local exchange and simultaneously decreasing the coefficient of local correlation with a GGA, the band gaps and excitation energies could be significantly improved without significantly degrading the ground-state molecular energetic properties. However, for almost every database tested in this work, HLE17 shows improvement over HLE16, and the improvement is particularly notable for solid-state lattice constants. This new functional provides a strategy for calculating properties that are otherwise difficult to calculate by a local functional. |
---|---|
AbstractList | The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and molecular excitation energies, and therefore, it becomes necessary to use more expensive hybrid functionals or more empirical DFT+U functionals for accurate predictions and modeling of these properties. This work presents a meta-generalized gradient approximation (meta-GGA) called High Local Exchange 2017 (HLE17) and illustrates how it can be useful for obtaining accurate semiconductor band gaps and molecular excitation energies. Unlike the conventional way of using the DFT+U method, one does not need to determine new parameters for every property or system studied. The HLE17 functional builds upon our earlier work (HLE16) where we had shown that by increasing the coefficient of local exchange and simultaneously decreasing the coefficient of local correlation with a GGA, the band gaps and excitation energies could be significantly improved without significantly degrading the ground-state molecular energetic properties. However, for almost every database tested in this work, HLE17 shows improvement over HLE16, and the improvement is particularly notable for solid-state lattice constants. This new functional provides a strategy for calculating properties that are otherwise difficult to calculate by a local functional. Not provided. |
Author | Truhlar, Donald G Verma, Pragya |
AuthorAffiliation | University of Minnesota Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute |
AuthorAffiliation_xml | – name: Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute – name: University of Minnesota |
Author_xml | – sequence: 1 givenname: Pragya orcidid: 0000-0002-5722-0894 surname: Verma fullname: Verma, Pragya email: verma045@umn.edu – sequence: 2 givenname: Donald G orcidid: 0000-0002-7742-7294 surname: Truhlar fullname: Truhlar, Donald G email: truhlar@umn.edu |
BackLink | https://www.osti.gov/biblio/1534665$$D View this record in Osti.gov |
BookMark | eNp9kc1u1DAUhS1UJNrCnqXFigUz2PFPJuzKaPojDeoCWFvOtTN1ldjBdhDdVbwCb8iT4JDCAomufGR_5_rqnBN05IO3CL2kZE1JRd9qSOvbEWBdt4QSKZ-gY9qwalVzIY7-al4_Qycp3RIiGKHsGH2_3O9o_Q6feXw1jDF8tQbvA-ge777BjfYH-_P-xzbEaHudXfD4fPIwi0J0IeJtGMYpO3_AH-3gIHgzQS7377U3-EKPCc_iQ-gtTL2O81SXl0k7b-PB2fQcPe10n-yLh_MUfT7ffdpervbXF1fbs_1Kc87yqpGSCkkZlZ1suW21FkJXhhveGDC6aU3VWcY3FXAwcmNapq2oNxtooJOikuwUvVrmhpSdSmUPCzdlY28hKyoYl1IU6PUClSy-TDZlNbgEtu-1t2FKqiKyruq6_FNQsqAQQ0rRdmqMbtDxTlGi5k5U6UTNnaiHTopF_mP5k0aO2vWPGd8sxt8vYYol__R__BdROKaK |
CitedBy_id | crossref_primary_10_1002_qua_27516 crossref_primary_10_1016_j_mssp_2021_106092 crossref_primary_10_1021_acs_jpcc_0c11446 crossref_primary_10_1039_C8CP06715E crossref_primary_10_1063_1_5143061 crossref_primary_10_1021_acs_jctc_1c00208 crossref_primary_10_1021_acs_jpcc_7b09000 crossref_primary_10_1021_acsami_2c22665 crossref_primary_10_1021_acs_cgd_4c00597 crossref_primary_10_1063_1_5118863 crossref_primary_10_1002_ange_202410428 crossref_primary_10_1021_acs_jpcc_8b06498 crossref_primary_10_1039_C8CP04280B crossref_primary_10_1021_acs_jpcc_0c00103 crossref_primary_10_1021_acs_jpcc_9b04683 crossref_primary_10_1021_acs_jctc_0c00585 crossref_primary_10_1063_5_0059036 crossref_primary_10_1063_5_0098787 crossref_primary_10_1016_j_jphotochemrev_2019_01_001 crossref_primary_10_1021_acsomega_4c05159 crossref_primary_10_1002_eem2_12051 crossref_primary_10_1021_acs_jpcc_1c02031 crossref_primary_10_1002_adma_202412005 crossref_primary_10_1021_acs_jpclett_0c01396 crossref_primary_10_1063_5_0049317 crossref_primary_10_1016_j_mattod_2021_02_007 crossref_primary_10_1021_acs_jctc_2c00822 crossref_primary_10_1103_PhysRevB_102_024407 crossref_primary_10_1021_acs_jctc_3c00182 crossref_primary_10_1063_5_0153656 crossref_primary_10_1021_acs_jctc_9b00532 crossref_primary_10_1039_C7CP01576C crossref_primary_10_1103_PhysRevA_103_012806 crossref_primary_10_1021_acs_jpca_7b12652 crossref_primary_10_1103_PhysRevB_105_195138 crossref_primary_10_1021_acs_jpca_9b10772 crossref_primary_10_1002_eem2_12204 crossref_primary_10_1021_acs_jctc_0c00214 crossref_primary_10_1021_acsnano_4c17941 crossref_primary_10_1063_5_0179260 crossref_primary_10_1002_qua_25831 crossref_primary_10_1007_s00894_024_06043_7 crossref_primary_10_1016_j_cej_2023_145248 crossref_primary_10_1021_acs_inorgchem_0c03373 crossref_primary_10_1016_j_ccr_2021_213785 crossref_primary_10_1038_s41524_020_00360_0 crossref_primary_10_1002_anie_202410428 crossref_primary_10_1039_D4DD00014E crossref_primary_10_1016_j_jallcom_2022_168464 crossref_primary_10_1016_j_cplett_2024_141460 crossref_primary_10_1007_s11426_024_2023_2 crossref_primary_10_1021_acs_jpcc_0c00007 crossref_primary_10_1021_acscatal_4c01091 crossref_primary_10_1021_acs_jpcc_3c07960 crossref_primary_10_1007_s00214_019_2539_6 crossref_primary_10_1021_acs_jctc_8b01069 crossref_primary_10_1021_acs_jpcc_9b05235 crossref_primary_10_1038_s41524_022_00796_6 crossref_primary_10_1088_2516_1075_abfb08 crossref_primary_10_1039_D4DT00975D crossref_primary_10_1063_1_5047863 crossref_primary_10_1063_1_5126393 crossref_primary_10_1103_PhysRevMaterials_4_073802 crossref_primary_10_1021_acs_jctc_0c00440 crossref_primary_10_1073_pnas_2104556118 crossref_primary_10_1002_aenm_202402246 crossref_primary_10_1021_acs_jpclett_8b03277 crossref_primary_10_3390_molecules25071552 crossref_primary_10_1021_acs_jctc_3c00033 crossref_primary_10_1021_acs_jctc_0c00518 crossref_primary_10_1016_j_trechm_2020_02_005 crossref_primary_10_1002_solr_202300441 crossref_primary_10_1063_1_4986404 crossref_primary_10_1039_D4TA02141J crossref_primary_10_1021_acs_jctc_7b00699 crossref_primary_10_1021_acs_jpca_2c06715 crossref_primary_10_1021_jacs_4c09250 crossref_primary_10_1021_acs_chemmater_0c03259 crossref_primary_10_1021_acs_jcim_3c02083 crossref_primary_10_1021_acs_jpca_8b11499 crossref_primary_10_1063_1_5040786 |
Cites_doi | 10.1021/acs.jpclett.6b02757 10.1103/PhysRevB.57.1505 10.1103/PhysRevA.51.4501 10.1103/PhysRevB.27.3506 10.1103/PhysRevB.73.155402 10.1021/ct049851d 10.1021/jp050536c 10.1021/ar100137c 10.1021/jz100753x 10.1103/PhysRevB.79.235114 10.1103/PhysRevB.79.235125 10.1021/jp709898r 10.1063/1.2404663 10.1021/acs.jpclett.5b01888 10.1021/ja805434m 10.1021/jz101565j 10.1080/00268970010018431 10.1103/PhysRevB.86.235122 10.1021/ct800568m 10.1103/PhysRev.140.A1133 10.1016/S0009-2614(01)00616-9 10.1103/PhysRevLett.103.036404 10.1063/1.3524336 10.1103/PhysRevLett.91.146401 10.1063/1.4940682 10.1103/PhysRevB.76.155123 10.1103/PhysRevB.70.125426 10.1103/PhysRevLett.77.3865 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.50.17953 10.1007/s00214-016-1927-4 10.1088/0953-8984/25/16/165502 10.1039/C5CP01425E 10.1103/PhysRevB.53.3764 10.1002/qua.560280846 10.1103/PhysRevB.86.115134 10.1103/PhysRevB.84.035413 10.1063/1.3185673 10.1007/BF03156228 10.1021/acs.jpclett.6b01807 10.1063/1.2912068 10.1039/b907148b 10.1103/PhysRevB.72.237102 10.1103/PhysRev.81.385 10.1103/PhysRevB.34.5390 10.1103/PhysRevB.44.943 10.1142/9789812830586_0005 10.1088/0953-8984/2/17/008 10.1103/PhysRevB.82.045108 10.1103/PhysRevB.83.085201 10.1103/PhysRevB.75.195212 10.1021/ct200866d 10.1063/1.4798402 10.1021/jp035287b 10.1021/jp0630626 10.1103/PhysRevLett.65.1148 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.61.16440 10.1103/PhysRevB.82.075122 10.1103/PhysRevA.38.3098 10.1103/PhysRevB.75.195128 10.1063/1.4722993 10.1063/1.2085170 10.1021/jp9061797 10.1063/1.1347371 10.1016/S1380-7323(05)80020-2 10.1103/PhysRevB.75.045121 10.1039/c2cp42025b 10.1103/PhysRevB.59.1758 10.1021/ct3002656 10.1103/PhysRevB.77.115123 10.1103/PhysRevB.80.233102 10.1063/1.4926835 10.1021/acs.jpclett.5b02773 10.1103/PhysRevLett.109.186401 10.1063/1.1688752 10.1103/PhysRevB.74.155108 10.1103/PhysRevLett.100.136406 10.1063/1.2187006 10.1021/ct5008235 10.1002/(SICI)1097-461X(1999)73:4<369::AID-QUA6>3.0.CO;2-B 10.1103/PhysRevB.69.075102 10.1016/j.cplett.2004.06.011 10.1088/0953-8984/20/6/064201 10.1103/PhysRevB.65.155102 10.1039/C6SC00705H 10.1021/jp0539223 10.1063/1.464913 10.1063/1.3698285 10.1103/PhysRevLett.51.1884 10.1063/1.2189226 10.1103/PhysRevB.37.785 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Univ. of New Mexico, Albuquerque, NM (United States) |
CorporateAuthor_xml | – name: Univ. of New Mexico, Albuquerque, NM (United States) |
DBID | AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1021/acs.jpcc.7b01066 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 7154 |
ExternalDocumentID | 1534665 10_1021_acs_jpcc_7b01066 a477737330 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 ABFRP OTOTI |
ID | FETCH-LOGICAL-a443t-9661561316f6b4ebaa55a2d4d49dcda9bd2fe3482c4cd68db3ae5788c9cf65263 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri May 19 02:19:07 EDT 2023 Fri Jul 11 06:11:14 EDT 2025 Tue Jul 01 03:01:51 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Thu Aug 27 13:43:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a443t-9661561316f6b4ebaa55a2d4d49dcda9bd2fe3482c4cd68db3ae5788c9cf65263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC) SC0015997 |
ORCID | 0000-0002-5722-0894 0000-0002-7742-7294 0000000257220894 0000000277427294 |
PQID | 2067277348 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1534665 proquest_miscellaneous_2067277348 crossref_primary_10_1021_acs_jpcc_7b01066 crossref_citationtrail_10_1021_acs_jpcc_7b01066 acs_journals_10_1021_acs_jpcc_7b01066 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-06 |
PublicationDateYYYYMMDD | 2017-04-06 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref92/cit92 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref93/cit93 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 Casida M. E. (ref49/cit49) 1995 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref94/cit94 Furche F. (ref75/cit75) 2005; 16 ref91/cit91 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref95/cit95 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 Frisch M. J. (ref43/cit43) 2010 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1021/acs.jpclett.6b02757 – ident: ref16/cit16 doi: 10.1103/PhysRevB.57.1505 – ident: ref88/cit88 doi: 10.1103/PhysRevA.51.4501 – ident: ref1/cit1 doi: 10.1103/PhysRevB.27.3506 – ident: ref68/cit68 doi: 10.1103/PhysRevB.73.155402 – ident: ref35/cit35 doi: 10.1021/ct049851d – ident: ref34/cit34 doi: 10.1021/jp050536c – ident: ref12/cit12 doi: 10.1021/ar100137c – ident: ref48/cit48 doi: 10.1021/jz100753x – ident: ref79/cit79 doi: 10.1103/PhysRevB.79.235114 – ident: ref58/cit58 doi: 10.1103/PhysRevB.79.235125 – ident: ref57/cit57 doi: 10.1021/jp709898r – ident: ref70/cit70 doi: 10.1063/1.2404663 – ident: ref39/cit39 doi: 10.1021/acs.jpclett.5b01888 – ident: ref44/cit44 – ident: ref51/cit51 doi: 10.1021/ja805434m – ident: ref74/cit74 doi: 10.1021/jz101565j – ident: ref93/cit93 doi: 10.1080/00268970010018431 – ident: ref83/cit83 doi: 10.1103/PhysRevB.86.235122 – ident: ref32/cit32 doi: 10.1021/ct800568m – ident: ref91/cit91 doi: 10.1103/PhysRev.140.A1133 – ident: ref4/cit4 doi: 10.1016/S0009-2614(01)00616-9 – ident: ref80/cit80 doi: 10.1103/PhysRevLett.103.036404 – ident: ref11/cit11 doi: 10.1063/1.3524336 – ident: ref23/cit23 doi: 10.1103/PhysRevLett.91.146401 – ident: ref65/cit65 doi: 10.1063/1.4940682 – ident: ref17/cit17 doi: 10.1103/PhysRevB.76.155123 – ident: ref56/cit56 doi: 10.1103/PhysRevB.70.125426 – ident: ref21/cit21 doi: 10.1103/PhysRevLett.77.3865 – ident: ref45/cit45 doi: 10.1016/0927-0256(96)00008-0 – ident: ref66/cit66 doi: 10.1103/PhysRevB.50.17953 – ident: ref28/cit28 doi: 10.1007/s00214-016-1927-4 – ident: ref85/cit85 doi: 10.1088/0953-8984/25/16/165502 – ident: ref31/cit31 doi: 10.1039/C5CP01425E – ident: ref3/cit3 doi: 10.1103/PhysRevB.53.3764 – ident: ref73/cit73 doi: 10.1002/qua.560280846 – ident: ref82/cit82 doi: 10.1103/PhysRevB.86.115134 – ident: ref63/cit63 doi: 10.1103/PhysRevB.84.035413 – ident: ref71/cit71 doi: 10.1063/1.3185673 – ident: ref90/cit90 doi: 10.1007/BF03156228 – ident: ref14/cit14 doi: 10.1021/acs.jpclett.6b01807 – ident: ref27/cit27 doi: 10.1063/1.2912068 – ident: ref86/cit86 doi: 10.1039/b907148b – ident: ref62/cit62 doi: 10.1103/PhysRevB.72.237102 – ident: ref92/cit92 doi: 10.1103/PhysRev.81.385 – ident: ref2/cit2 doi: 10.1103/PhysRevB.34.5390 – ident: ref15/cit15 doi: 10.1103/PhysRevB.44.943 – start-page: 155 volume-title: Recent Advances in Density Functional Methods, Part I year: 1995 ident: ref49/cit49 doi: 10.1142/9789812830586_0005 – ident: ref76/cit76 doi: 10.1088/0953-8984/2/17/008 – ident: ref81/cit81 doi: 10.1103/PhysRevB.82.045108 – ident: ref10/cit10 doi: 10.1103/PhysRevB.83.085201 – ident: ref55/cit55 doi: 10.1103/PhysRevB.75.195212 – ident: ref40/cit40 doi: 10.1021/ct200866d – ident: ref36/cit36 doi: 10.1063/1.4798402 – ident: ref29/cit29 doi: 10.1021/jp035287b – ident: ref33/cit33 doi: 10.1021/jp0630626 – ident: ref77/cit77 doi: 10.1103/PhysRevLett.65.1148 – ident: ref46/cit46 doi: 10.1103/PhysRevB.54.11169 – ident: ref47/cit47 doi: 10.1103/PhysRevB.61.16440 – volume-title: Gaussian 09 year: 2010 ident: ref43/cit43 – ident: ref61/cit61 doi: 10.1103/PhysRevB.82.075122 – ident: ref20/cit20 doi: 10.1103/PhysRevA.38.3098 – ident: ref59/cit59 doi: 10.1103/PhysRevB.75.195128 – ident: ref13/cit13 doi: 10.1063/1.4722993 – ident: ref24/cit24 doi: 10.1063/1.2085170 – ident: ref53/cit53 doi: 10.1021/jp9061797 – ident: ref69/cit69 doi: 10.1063/1.1347371 – volume: 16 start-page: 93 volume-title: Computational Photochemistry year: 2005 ident: ref75/cit75 doi: 10.1016/S1380-7323(05)80020-2 – ident: ref54/cit54 doi: 10.1103/PhysRevB.75.045121 – ident: ref42/cit42 doi: 10.1039/c2cp42025b – ident: ref67/cit67 doi: 10.1103/PhysRevB.59.1758 – ident: ref38/cit38 doi: 10.1021/ct3002656 – ident: ref89/cit89 doi: 10.1103/PhysRevB.77.115123 – ident: ref60/cit60 doi: 10.1103/PhysRevB.80.233102 – ident: ref64/cit64 doi: 10.1063/1.4926835 – ident: ref37/cit37 doi: 10.1021/acs.jpclett.5b02773 – ident: ref84/cit84 doi: 10.1103/PhysRevLett.109.186401 – ident: ref6/cit6 doi: 10.1063/1.1688752 – ident: ref78/cit78 doi: 10.1103/PhysRevB.74.155108 – ident: ref22/cit22 doi: 10.1103/PhysRevLett.100.136406 – ident: ref9/cit9 doi: 10.1063/1.2187006 – ident: ref30/cit30 doi: 10.1021/ct5008235 – ident: ref50/cit50 doi: 10.1002/(SICI)1097-461X(1999)73:4<369::AID-QUA6>3.0.CO;2-B – ident: ref26/cit26 doi: 10.1103/PhysRevB.69.075102 – ident: ref7/cit7 doi: 10.1016/j.cplett.2004.06.011 – ident: ref95/cit95 doi: 10.1088/0953-8984/20/6/064201 – ident: ref5/cit5 doi: 10.1103/PhysRevB.65.155102 – ident: ref87/cit87 doi: 10.1039/C6SC00705H – ident: ref52/cit52 doi: 10.1021/jp0539223 – ident: ref94/cit94 doi: 10.1063/1.464913 – ident: ref25/cit25 doi: 10.1063/1.3698285 – ident: ref41/cit41 – ident: ref72/cit72 doi: 10.1103/PhysRevLett.51.1884 – ident: ref8/cit8 doi: 10.1063/1.2189226 – ident: ref19/cit19 doi: 10.1103/PhysRevB.37.785 |
SSID | ssj0053013 |
Score | 2.523009 |
Snippet | The local approximations to exchange–correlation functionals that are widely used in Kohn–Sham density functional theory usually underestimate band gaps and... Not provided. |
SourceID | osti proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7144 |
SubjectTerms | Chemistry data analysis Materials Science physical chemistry prediction Science & Technology - Other Topics semiconductors |
Title | HLE17: An Improved Local Exchange–Correlation Functional for Computing Semiconductor Band Gaps and Molecular Excitation Energies |
URI | http://dx.doi.org/10.1021/acs.jpcc.7b01066 https://www.proquest.com/docview/2067277348 https://www.osti.gov/biblio/1534665 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgOcClvFoVKMiV4MAhy8axvRtudLXLqgIugMTN8vMAVXbVZKWqJ8Rf4B_yS5iJk1YtCHGLrNjyY-z5xjP-hpB95oXUme0luhd4wj3YrDlsrESDMQTwWwxCQEPx_EJOrvn3G3Hzlybnfw8-S4-0Lbu3M2u7fYP2i1wkS0zCHkYYNLxsT10BgppFDzIgRs77jUvytRZQEdnyH0XUmcKGenEc1zpmvBqTFZU1NSGGltx155Xp2t8viRvf0f018qGBmvQkysY6WfDFBlkethneNsnD5GyU9o_pSUHj3YJ39Ax1Gx39ig-Cn-4fh5i-IwbM0TEowXh3SAHr0pgRAnQfvcQQ-2mB3LFQ_k0Xjp7qWUnx47xNwIutNozgdIRPDsFI_0iux6Or4SRpcjIkmvOsQjLPFG2OVAZpuDdaC6GZ447nzjqdG8eCR8Icy62TA2cy7eFQGNjcBimYzD6RTjEt_GdCg857xnCorQUPA2Ey52FdufY90w9cbJEDmDzV7KlS1e5ylqq6EGZUNTO6RY7ahVTtMDC_xo83ahz-qTGLpB5v_LuDsqEAkCCrrsXwI1spkGcuJfTxaysyChYPnS268NN5qVjt40buoO13jmOHrDDEDBgWJL-QTvVz7ncB8VRmrxb1Z2TI_aA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcCiXlvIQpaU1Ehw4bJrdtZ0stxAlBEh6oK3Um-XngVabqLuRUE-Iv8A_5Jd0Zh9FbVEFt5W1tvwYe77xjL8BeJN4IXVqe5HuBR5xjzZrhhsr0mgMIfwWgxDIUJwfyukJ_3wqTtcgbt_CYCcKbKmonPh_2AXiAyr7trS22zdkxsgH8BCxSEJCPRwdtYevQHlNa0cyAkfO-41n8m8tkD6yxQ191FngvrpzKleqZrIJX687WUWYnHVXpenay1v8jf81isew0QBPNqwlZQvWfP4E1kdtvren8HM6G8f992yYs_qmwTs2I03Hxt_r58G_f_waUTKPOnyOTVAl1jeJDJEvq_NDoCZkRxRwv8iJSRbLP-jcsY96WTD6mLfpeKnVhh-cjekBIprsz-BkMj4eTaMmQ0OkOU9LovaMyQKJZZCGe6O1EDpx3PHMWacz45LgiT7HcuvkwJlUezwiBjazgRYvfQ6dfJH7F8CCznrGcKytBQ8DYVLn8aTm2vdMP3CxDW9x8lSzwwpVOc-TWFWFOKOqmdFtOGjXU7XDoGwb5_fUeHddY1lTfNzz7w6JiEJ4Qhy7loKRbKlQurmU2MfXreQoXDxyvejcL1aFSiqPNzEJvfzHcezD-vR4PlOzT4dfduBRQmiCAobkLnTKi5V_hVioNHuV9F8B7oYGEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61qUS5lPISpUCNRA8cNsnu2k6WWwgJAdKqUinqzfLzAGgTsRup6qniL_AP-SXM7KMStKrobWWtLT_m6Rl_A_Aq8ULq1PYj3Q884h591gwZK9LoDKH5LYYhkKN4cChnJ_zjqThdA9G-hcFJFDhSUQXxiauXLjQIA3GP2r8ure0ODLkych02KGpHhD0aH7cCWCDNpnUwGY1HzgdNdPK6EUgn2eIvndRZIG9dkcyVupnegy-XE62yTL51V6Xp2vN_MBxvvZJt2GoMUDaqKeY-rPn8AWyO27pvD-HnbD6JB2_YKGf1jYN3bE4aj03O6mfCvy9-jamoR51Gx6aoGusbRYYWMKvrRKBGZMeUeL_ICVEW29_q3LH3elkw-jhoy_LSqA1OOJvQQ0R03R_ByXTyeTyLmkoNkeY8LQniMyZPJJZBGu6N1kLoxHHHM2edzoxLgicYHcutk0NnUu1RVAxtZoMUiUwfQydf5P4JsKCzvjEce2vBw1CY1HmU2Fz7vhkELnZgHzdPNZxWqCqInsSqasQdVc2O7kCvPVPVLoOqbny_ocfryx7LGurjhn93iUwUmimEtWspKcmWCqmcS4lzfNlSj8LDoxCMzv1iVaikinwTotDT_1zHHtw5ejdV8w-Hn3bhbkJGBeUNyWfQKX-s_HM0iUrzomKAP1DPCJM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HLE17%3A+An+Improved+Local+Exchange%E2%80%93Correlation+Functional+for+Computing+Semiconductor+Band+Gaps+and+Molecular+Excitation+Energies&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Verma%2C+Pragya&rft.au=Truhlar%2C+Donald+G.&rft.date=2017-04-06&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=121&rft.issue=13&rft.spage=7144&rft.epage=7154&rft_id=info:doi/10.1021%2Facs.jpcc.7b01066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_7b01066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |