Projector-Based Embedding Eliminates Density Functional Dependence for QM/MM Calculations of Reactions in Enzymes and Solution

Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme cho...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 59; no. 5; pp. 2063 - 2078
Main Authors Ranaghan, Kara E, Shchepanovska, Darya, Bennie, Simon J, Lawan, Narin, Macrae, Stephen J, Zurek, Jolanta, Manby, Frederick R, Mulholland, Adrian J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD­(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.
AbstractList Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.
Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.
Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD­(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.
Author Ranaghan, Kara E
Mulholland, Adrian J
Zurek, Jolanta
Bennie, Simon J
Manby, Frederick R
Shchepanovska, Darya
Lawan, Narin
Macrae, Stephen J
AuthorAffiliation Centre for Computational Chemistry, School of Chemistry
AuthorAffiliation_xml – name: Centre for Computational Chemistry, School of Chemistry
Author_xml – sequence: 1
  givenname: Kara E
  orcidid: 0000-0002-6391-6601
  surname: Ranaghan
  fullname: Ranaghan, Kara E
– sequence: 2
  givenname: Darya
  orcidid: 0000-0002-2676-8152
  surname: Shchepanovska
  fullname: Shchepanovska, Darya
– sequence: 3
  givenname: Simon J
  surname: Bennie
  fullname: Bennie, Simon J
– sequence: 4
  givenname: Narin
  orcidid: 0000-0003-0940-9278
  surname: Lawan
  fullname: Lawan, Narin
– sequence: 5
  givenname: Stephen J
  surname: Macrae
  fullname: Macrae, Stephen J
– sequence: 6
  givenname: Jolanta
  surname: Zurek
  fullname: Zurek, Jolanta
– sequence: 7
  givenname: Frederick R
  orcidid: 0000-0001-7611-714X
  surname: Manby
  fullname: Manby, Frederick R
– sequence: 8
  givenname: Adrian J
  orcidid: 0000-0003-1015-4567
  surname: Mulholland
  fullname: Mulholland, Adrian J
  email: Adrian.Mulholland@bristol.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30794388$$D View this record in MEDLINE/PubMed
BookMark eNp9kctvEzEQxi1URB9w54QscemBTe31rrM-QpoCUiPeErfV2DuLHHntYO8ewoG_HadJeqhUTn7M7_s0M985OfHBIyEvOZtxVvIrMGm2NnaYNZoxVbEn5IzXlSqUZD9PjvdayVNyntKaMSGULJ-RU8HmqhJNc0b-fo5hjWYMsXgHCTu6HDR2nfW_6NLZwXoYMdFr9MmOW3ozeTPa4MHlrw36Dr1B2odIv6yuViu6AGcmBzsk0dDTrwhm_7CeLv2f7ZDNwHf0W3DTrvCcPO3BJXxxOC_Ij5vl98WH4vbT-4-Lt7cFVJUYC5Wn7TWWvAFQnOu641pqFEyA7Lnmpe55OVcdgG5MoxCkVpVRgMC54QbFBbnc-25i-D1hGtvBJoPOgccwpTY717VU1bzJ6OsH6DpMMY-cqbLiopSNUpl6daAmPWDXbqIdIG7b42YzwPaAiSGliP09wlm7C6_N4bW78NpDeFkiH0iMHe-WOUaw7n_CN3vhXeXY7aP4P7WpsNc
CitedBy_id crossref_primary_10_1039_D4SC04755A
crossref_primary_10_1039_D0OB02566F
crossref_primary_10_1039_D3CP04519F
crossref_primary_10_1016_j_sbi_2020_01_014
crossref_primary_10_1039_C9CP02377A
crossref_primary_10_1039_D2CP05056K
crossref_primary_10_1038_s41598_020_65475_2
crossref_primary_10_1039_D3CP05987A
crossref_primary_10_7717_peerj_pchem_8
crossref_primary_10_1021_acs_jcim_1c01187
crossref_primary_10_1016_j_comptc_2021_113399
crossref_primary_10_1021_jacs_4c17015
crossref_primary_10_1098_rsta_2022_0239
crossref_primary_10_1021_acs_jctc_0c00104
crossref_primary_10_1063_5_0071347
crossref_primary_10_1021_acs_jcim_9b00368
crossref_primary_10_1063_1_5099007
crossref_primary_10_1021_acs_jpca_0c11450
crossref_primary_10_1021_acs_jpcb_2c02262
crossref_primary_10_1021_acscatal_2c01677
crossref_primary_10_1021_acs_jpca_1c05040
crossref_primary_10_1021_acs_jpclett_4c03654
crossref_primary_10_1080_00268976_2021_1943029
crossref_primary_10_1021_acs_jctc_3c01105
crossref_primary_10_1063_1_5084550
crossref_primary_10_1002_jcc_26380
crossref_primary_10_1021_acs_jcim_4c00475
crossref_primary_10_1021_acs_jcim_2c01522
crossref_primary_10_1021_acs_jcim_1c01372
crossref_primary_10_3390_catal11070813
crossref_primary_10_1021_acs_jctc_9b01081
Cites_doi 10.1007/s00214-007-0310-x
10.1021/ct100264j
10.1039/C7SC04761D
10.1002/jcc.20398
10.1002/jcc.23403
10.1021/jp910127j
10.1021/jp506413j
10.1063/1.471289
10.1021/acs.jctc.8b00201
10.1063/1.3173827
10.1039/b313759g
10.1063/1.456153
10.1126/science.1126002
10.1021/ct300036s
10.1002/chem.200390121
10.1002/jcc.24713
10.1039/c0ob00691b
10.1039/b925647d
10.1063/1.3382344
10.1039/C8CP03871F
10.1063/1.445869
10.1021/acs.jpcb.7b06892
10.1021/acs.jctc.8b00348
10.1002/anie.201103260
10.1021/acs.jctc.7b00826
10.1021/jz5018703
10.1007/s00214-002-0421-3
10.1103/PhysRev.46.618
10.1038/s41570-018-0148
10.1080/00268970310001593286
10.1021/ct800135k
10.1063/1.2841941
10.1063/1.2370993
10.1063/1.464303
10.1021/ja402016p
10.1016/S0166-1280(03)00299-9
10.1002/wcms.1393
10.1039/B907354J
10.1021/bi0622827
10.1073/pnas.1408512111
10.1002/jcc.540040211
10.1063/1.1740588
10.1039/b800496j
10.1039/b314768a
10.1186/1752-153X-1-19
10.1080/00268976.2015.1018359
10.1063/1.462569
10.1021/j100342a008
10.1002/anie.201403691
10.1063/1.464304
10.1098/rsif.2008.0243.focus
10.1021/ja0341992
10.1002/wcms.1281
10.1021/acs.jpclett.7b02500
10.1063/1.464913
10.1039/C3SC53009D
10.1063/1.2884725
10.1063/1.1329672
10.1039/b508181e
10.1021/ja049376t
10.1098/rsos.171390
10.1021/ja0007814
10.1103/PhysRevLett.77.3865
10.1021/ct0500803
10.1063/1.3696963
10.1002/anie.201403689
10.1002/jcc.20078
10.1063/1.4732310
10.1063/1.4923367
10.1021/ct100473f
10.1021/acs.jpca.6b12830
10.1021/acscatal.6b02584
10.1021/acs.jctc.6b01049
10.1007/s12539-010-0093-y
10.1021/jp902876n
10.1039/B714136J
10.1007/s002140000203
10.1021/j100132a040
10.1002/2211-5463.12224
10.1021/jp973084f
10.1039/c2cs15297e
10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
10.1103/PhysRev.136.B864
10.1021/jp104069t
10.1103/PhysRev.140.A1133
10.1021/ja0256360
10.1016/j.cplett.2014.06.010
10.1021/acs.jpcb.6b07203
10.1021/acscatal.8b00863
10.1002/qua.24481
10.1063/1.4864040
10.1080/01442350903495417
10.1103/RevModPhys.79.291
10.1039/C8CP03632B
10.1021/ct5005033
10.1002/anie.200602711
10.1021/acs.jpcb.6b07814
10.1021/ja00150a037
10.1039/C6FD00010J
10.1063/1.1569242
10.1016/0009-2614(90)87031-L
10.1002/(SICI)1521-3951(200001)217:1<357::AID-PSSB357>3.0.CO;2-J
10.1002/jcc.24395
10.1016/0040-4039(96)00338-3
10.1021/ja0356481
10.1039/C7CP06508F
10.1021/jz101279n
10.1021/ct300544e
10.1002/poc.1030
10.1021/acs.jctc.7b00964
10.1021/acs.jctc.6b00285
10.1021/jz900096p
10.1021/acs.jctc.6b00727
10.1021/ja00311a111
10.1073/pnas.90.18.8600
10.1002/anie.201403924
10.1021/ja021424r
10.1002/anie.200802019
10.1039/C6SC00635C
10.1021/acs.jpcb.8b11059
10.1021/jp0029109
ContentType Journal Article
Copyright Copyright American Chemical Society May 28, 2019
Copyright_xml – notice: Copyright American Chemical Society May 28, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.8b00940
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 2078
ExternalDocumentID 30794388
10_1021_acs_jcim_8b00940
g35849820
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M000354/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L01386X/1
GroupedDBID -
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a443t-9102fbe218aa911b5d1b6be303a6f1b12bf1279daab8c89ea6b94c9aea11c1ce3
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Thu Jul 10 19:33:10 EDT 2025
Mon Jun 30 10:54:57 EDT 2025
Mon Jul 21 05:36:24 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Tue Jul 01 03:04:35 EDT 2025
Thu Aug 27 13:43:33 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a443t-9102fbe218aa911b5d1b6be303a6f1b12bf1279daab8c89ea6b94c9aea11c1ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2676-8152
0000-0001-7611-714X
0000-0002-6391-6601
0000-0003-1015-4567
0000-0003-0940-9278
OpenAccessLink https://research-information.bris.ac.uk/ws/files/188473604/acs.jcim.8b00940.pdf
PMID 30794388
PQID 2241326899
PQPubID 28739
PageCount 16
ParticipantIDs proquest_miscellaneous_2185569478
proquest_journals_2241326899
pubmed_primary_30794388
crossref_primary_10_1021_acs_jcim_8b00940
crossref_citationtrail_10_1021_acs_jcim_8b00940
acs_journals_10_1021_acs_jcim_8b00940
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-28
PublicationDateYYYYMMDD 2019-05-28
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref124/cit124
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
Ren P. (ref69/cit69) 2002; 224
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref73/cit73
  doi: 10.1007/s00214-007-0310-x
– ident: ref100/cit100
  doi: 10.1021/ct100264j
– ident: ref113/cit113
  doi: 10.1039/C7SC04761D
– ident: ref78/cit78
  doi: 10.1002/jcc.20398
– ident: ref27/cit27
  doi: 10.1002/jcc.23403
– ident: ref104/cit104
  doi: 10.1021/jp910127j
– ident: ref18/cit18
  doi: 10.1021/jp506413j
– ident: ref94/cit94
  doi: 10.1063/1.471289
– ident: ref29/cit29
  doi: 10.1021/acs.jctc.8b00201
– ident: ref92/cit92
  doi: 10.1063/1.3173827
– ident: ref51/cit51
  doi: 10.1039/b313759g
– ident: ref83/cit83
  doi: 10.1063/1.456153
– ident: ref97/cit97
  doi: 10.1126/science.1126002
– ident: ref20/cit20
  doi: 10.1021/ct300036s
– ident: ref42/cit42
  doi: 10.1002/chem.200390121
– ident: ref95/cit95
  doi: 10.1002/jcc.24713
– ident: ref54/cit54
  doi: 10.1039/c0ob00691b
– ident: ref116/cit116
  doi: 10.1039/b925647d
– ident: ref123/cit123
  doi: 10.1063/1.3382344
– ident: ref23/cit23
  doi: 10.1039/C8CP03871F
– ident: ref62/cit62
  doi: 10.1063/1.445869
– ident: ref13/cit13
  doi: 10.1021/acs.jpcb.7b06892
– ident: ref14/cit14
  doi: 10.1021/acs.jctc.8b00348
– ident: ref103/cit103
  doi: 10.1002/anie.201103260
– ident: ref105/cit105
  doi: 10.1021/acs.jctc.7b00826
– ident: ref48/cit48
  doi: 10.1021/jz5018703
– ident: ref45/cit45
  doi: 10.1007/s00214-002-0421-3
– ident: ref86/cit86
  doi: 10.1103/PhysRev.46.618
– ident: ref4/cit4
  doi: 10.1038/s41570-018-0148
– ident: ref82/cit82
– ident: ref99/cit99
  doi: 10.1080/00268970310001593286
– ident: ref16/cit16
  doi: 10.1021/ct800135k
– ident: ref67/cit67
  doi: 10.1063/1.2841941
– ident: ref76/cit76
  doi: 10.1063/1.2370993
– ident: ref85/cit85
  doi: 10.1063/1.464303
– ident: ref101/cit101
  doi: 10.1021/ja402016p
– ident: ref41/cit41
  doi: 10.1016/S0166-1280(03)00299-9
– ident: ref117/cit117
  doi: 10.1002/wcms.1393
– ident: ref108/cit108
  doi: 10.1039/B907354J
– ident: ref106/cit106
  doi: 10.1021/bi0622827
– ident: ref56/cit56
  doi: 10.1073/pnas.1408512111
– ident: ref61/cit61
  doi: 10.1002/jcc.540040211
– ident: ref72/cit72
  doi: 10.1063/1.1740588
– ident: ref10/cit10
  doi: 10.1039/b800496j
– ident: ref70/cit70
  doi: 10.1039/b314768a
– ident: ref124/cit124
  doi: 10.1186/1752-153X-1-19
– ident: ref37/cit37
  doi: 10.1080/00268976.2015.1018359
– ident: ref84/cit84
  doi: 10.1063/1.462569
– ident: ref89/cit89
  doi: 10.1021/j100342a008
– ident: ref3/cit3
  doi: 10.1002/anie.201403691
– ident: ref74/cit74
  doi: 10.1063/1.464304
– ident: ref15/cit15
  doi: 10.1098/rsif.2008.0243.focus
– ident: ref55/cit55
  doi: 10.1021/ja0341992
– ident: ref118/cit118
  doi: 10.1002/wcms.1281
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.7b02500
– ident: ref75/cit75
  doi: 10.1063/1.464913
– ident: ref119/cit119
  doi: 10.1039/C3SC53009D
– ident: ref91/cit91
  doi: 10.1063/1.2884725
– ident: ref66/cit66
  doi: 10.1063/1.1329672
– ident: ref53/cit53
  doi: 10.1039/b508181e
– volume: 224
  start-page: U473
  year: 2002
  ident: ref69/cit69
  publication-title: Abstracts of Papers of the American Chemical Society
– ident: ref109/cit109
  doi: 10.1021/ja049376t
– ident: ref33/cit33
  doi: 10.1098/rsos.171390
– ident: ref120/cit120
  doi: 10.1021/ja0007814
– ident: ref77/cit77
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref57/cit57
  doi: 10.1021/ct0500803
– ident: ref93/cit93
  doi: 10.1063/1.3696963
– ident: ref1/cit1
  doi: 10.1002/anie.201403689
– ident: ref122/cit122
  doi: 10.1002/jcc.20078
– ident: ref96/cit96
  doi: 10.1063/1.4732310
– ident: ref34/cit34
  doi: 10.1063/1.4923367
– ident: ref44/cit44
  doi: 10.1021/ct100473f
– ident: ref52/cit52
  doi: 10.1021/acs.jpca.6b12830
– ident: ref80/cit80
  doi: 10.1021/acscatal.6b02584
– ident: ref25/cit25
  doi: 10.1021/acs.jctc.6b01049
– ident: ref98/cit98
  doi: 10.1007/s12539-010-0093-y
– ident: ref21/cit21
  doi: 10.1021/jp902876n
– ident: ref114/cit114
  doi: 10.1039/B714136J
– ident: ref40/cit40
  doi: 10.1007/s002140000203
– ident: ref28/cit28
  doi: 10.1021/j100132a040
– ident: ref58/cit58
  doi: 10.1002/2211-5463.12224
– ident: ref65/cit65
  doi: 10.1021/jp973084f
– ident: ref112/cit112
  doi: 10.1039/c2cs15297e
– ident: ref71/cit71
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
– ident: ref7/cit7
  doi: 10.1103/PhysRev.136.B864
– ident: ref11/cit11
  doi: 10.1021/jp104069t
– ident: ref8/cit8
  doi: 10.1103/PhysRev.140.A1133
– ident: ref107/cit107
  doi: 10.1021/ja0256360
– ident: ref9/cit9
  doi: 10.1016/j.cplett.2014.06.010
– ident: ref24/cit24
  doi: 10.1021/acs.jpcb.6b07203
– ident: ref110/cit110
  doi: 10.1021/acscatal.8b00863
– ident: ref68/cit68
  doi: 10.1002/qua.24481
– ident: ref31/cit31
  doi: 10.1063/1.4864040
– ident: ref39/cit39
  doi: 10.1080/01442350903495417
– ident: ref88/cit88
  doi: 10.1103/RevModPhys.79.291
– ident: ref5/cit5
  doi: 10.1039/C8CP03632B
– ident: ref30/cit30
  doi: 10.1021/ct5005033
– ident: ref12/cit12
  doi: 10.1002/anie.200602711
– ident: ref19/cit19
  doi: 10.1021/acs.jpcb.6b07814
– ident: ref38/cit38
  doi: 10.1021/ja00150a037
– ident: ref6/cit6
  doi: 10.1039/C6FD00010J
– ident: ref87/cit87
  doi: 10.1063/1.1569242
– ident: ref90/cit90
  doi: 10.1016/0009-2614(90)87031-L
– ident: ref63/cit63
  doi: 10.1002/(SICI)1521-3951(200001)217:1<357::AID-PSSB357>3.0.CO;2-J
– ident: ref79/cit79
  doi: 10.1002/jcc.24395
– ident: ref47/cit47
  doi: 10.1016/0040-4039(96)00338-3
– ident: ref43/cit43
  doi: 10.1021/ja0356481
– ident: ref102/cit102
  doi: 10.1039/C7CP06508F
– ident: ref121/cit121
  doi: 10.1021/jz101279n
– ident: ref35/cit35
  doi: 10.1021/ct300544e
– ident: ref111/cit111
  doi: 10.1002/poc.1030
– ident: ref26/cit26
  doi: 10.1021/acs.jctc.7b00964
– ident: ref32/cit32
  doi: 10.1021/acs.jctc.6b00285
– ident: ref17/cit17
  doi: 10.1021/jz900096p
– ident: ref22/cit22
  doi: 10.1021/acs.jctc.6b00727
– ident: ref60/cit60
  doi: 10.1021/ja00311a111
– ident: ref49/cit49
  doi: 10.1080/00268970310001593286
– ident: ref59/cit59
  doi: 10.1073/pnas.90.18.8600
– ident: ref2/cit2
  doi: 10.1002/anie.201403924
– ident: ref50/cit50
  doi: 10.1021/ja021424r
– ident: ref115/cit115
  doi: 10.1002/anie.200802019
– ident: ref81/cit81
  doi: 10.1039/C6SC00635C
– ident: ref46/cit46
  doi: 10.1021/acs.jpcb.8b11059
– ident: ref64/cit64
  doi: 10.1021/jp0029109
SSID ssj0033962
Score 2.4387863
Snippet Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2063
SubjectTerms Catalytic Domain
Chorismate Mutase - chemistry
Chorismate Mutase - metabolism
Density
Density Functional Theory
Dependence
Embedded systems
Embedding
Enzymes
Enzymes - chemistry
Enzymes - metabolism
Mathematical analysis
Models, Molecular
Quantum mechanics
Thermodynamics
Title Projector-Based Embedding Eliminates Density Functional Dependence for QM/MM Calculations of Reactions in Enzymes and Solution
URI http://dx.doi.org/10.1021/acs.jcim.8b00940
https://www.ncbi.nlm.nih.gov/pubmed/30794388
https://www.proquest.com/docview/2241326899
https://www.proquest.com/docview/2185569478
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh7S1s3mOUFohpCJWiVtkO44EtCki6QEOfDvjLEWs4urYTmyPZ94smSFk3w9CaBtUckLuKsdjDBzpuokjfFCJL3QMxpoG-ufB6a13dufffaTJ-erB56wlddZ80PfDplA2DA7V8xkeiNAqWked65rrui4UxUNtxjEHfKhdkj_NYAWRzj4Lol_QZSFlegtluaKsSE5og0sem-NcNfXr99SN_1jAIpmvwCY9KqljiUyZdJnMduoabyvk7aI0xIyenWMUZzHtDpWJrTij3UFR7wuRKD2xQe75C-2hDCxNh9hU1s7VhiLqpZf9Vr9PO3Kgq2pgGR0l9MqUf01k9D6l3fT1ZYiTyTSmtS1uldz2ujedU6eqyOBIz3Nz5IxtniiDsEBK5JLKj5kKlEExKIOEKcZVwngIsZRKaAFGBgo8DdJIxjTTxl0j0-koNRuEctSkUHvSENuUX5qjXsPjUCN6Tby2lKZBDnDjoupGZVHhLOcsKhpxN6NqNxukVR9jpKu05ra6xuCPEYeTEU9lSo8_-m7XlPHxKYUvEmkQoEH2Jo_x5KyvRaZmNMY-iIP8ALxQNMh6SVGTlyFbBc8VYvOfS9wicwjTwMYscLFNpvPnsdlBKJSr3eIOvAOUuwQW
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXKO-FAkaiBw7ZXTsv-8ChbHe1pU3Fo5V6S23HkQq7WdRkhbYH_kv_Sn9Zx06yFQgqLpW4OrZje2Y839jjGYA3YRSLvkEjJ2a-8gJKhSd9P_d4KFQecp0JY48Gkv1ofBh8OAqPVuC8fQuDgyixp9Jd4l9FF6A9W_ZVn0y7XFlvuH7jR7lrFj_QSivf7WwjSTcZGw0PBmOvSSTgySDwKxToPsuVQW0mJQq3CjOqImVw95ZRThVlKqcsFpmUimsujIyUCLSQRlKqqTY-9nsLbiP2Yda-2xp8aTd73xcuZ6kNdOaJULQ3oX8asdV_uvxV__0F1DrlNroHF8tlcT4t37rzSnX12W8RI__rdVuHuw20Jlu1LNyHFVM8gLVBm9HuIfz8WB87zU6996i8MzKcKpNZ5U2GE5fdDHE32bYu_dWCjFDj1welWFRnCtaGIMYnn5JekpCBnOgm91lJZjn5bOo3IiU5KciwOFtMsTNZZKQ9eXwEhzcy_cewWswK8xQIQ7sRbUUtMhvgTDO04lgWa8TqedCX0nRgEwmVNvtHmTrXAEZTV4jUSxvqdaDXck-qmyDuNpfI5JoWb5ctvtcBTK6pu9Ey5NVQ3M0ri9Au78Dr5WeknL1ZkoWZzbEOor4wEkHMO_CkZuTlz1CJiMDn_Nk_TvEVrI0Pkr10b2d_9zncQYAqrLcG4xuwWp3OzQsEgZV66cSQwPFN8-8lFIZpQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR3LbtQwcFSKBFx4PxYKGIkeOGR37bzsA4eyD7WUrcqjUm_Br0htd7NVkxXaHvgbfoXvYuwki0BQcanE1bEd2zPjeXoG4GWcpKJvUclJWaiCiFIRyDDMAx4LlcdcG2GdaWCyl2wfRG8P48M1-Na-hcFFlDhT6Z34jqpPTd5kGKA9136sj2ZdrlxEXL-Jpdy1yy-oqZWvd4YI1k3GxqNPg-2gKSYQyCgKKyTqPsuVRY4mJRK4ig1VibJ4g8skp4oylVOWCiOl4poLKxMlIi2klZRqqm2I816Bq85L6HS8rcHH9sIPQ-HrlrpkZ4GIResN_dOKHQ_U5a888C-CrWdw41vwfXU0Pq7lpLuoVFef_5Y18r8_u9twsxGxyVZNE3dgzRZ34fqgrWx3D77u1-an-VnwBpm4IaOZssYxcTKa-ipnKH-ToQvtr5ZkjJy_NphiU10xWFuCsj55P-lNJmQgp7qpgVaSeU4-2PqtSEmOCjIqzpcznEwWhrQWyPtwcCnbfwDrxbywj4Aw1B9RZ9TCuERnmqE2x0yqUWbPo76UtgObCKisuUfKzIcIMJr5RoRe1kCvA70WgzLdJHN3NUWmF4x4tRpxWicyuaDvRouUP5fiPbAsQf28Ay9WnxFyzsMkCztfYB-U_uJERCnvwMMamVc_Q2YiopDzx_-4xedwbX84zt7t7O0-gRsopwoXtMH4BqxXZwv7FGXBSj3zlEjg82Wj7w_ZKWvD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projector-Based+Embedding+Eliminates+Density+Functional+Dependence+for+QM%2FMM+Calculations+of+Reactions+in+Enzymes+and+Solution&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Ranaghan%2C+Kara+E.&rft.au=Shchepanovska%2C+Darya&rft.au=Bennie%2C+Simon+J.&rft.au=Lawan%2C+Narin&rft.date=2019-05-28&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=59&rft.issue=5&rft.spage=2063&rft.epage=2078&rft_id=info:doi/10.1021%2Facs.jcim.8b00940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jcim_8b00940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon