LORICA – A new model for linking landscape and soil profile evolution: Development and sensitivity analysis
Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena concept. At the same time, soil properties are strong determinants of geomorphic processes such as overland erosion, landsliding and creep. We...
Saved in:
Published in | Computers & geosciences Vol. 90; pp. 131 - 143 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena concept. At the same time, soil properties are strong determinants of geomorphic processes such as overland erosion, landsliding and creep. We present a new soilscape evolution model; LORICA, to study these numerous interactions between soil and landscape development. The model is based on the existing landscape evolution model LAPSUS and the soil formation model MILESD. The model includes similar soil formation processes as MILESD, but the main novelties include the consideration of more layers and the dynamic adaption of the number of layers as a function of the soil profile's heterogeneity. New processes in the landscape evolution component include a negative feedback of vegetation and armouring and particle size selectivity of the erosion–deposition process. In order to quantify these different interactions, we present a full sensitivity analysis of the input parameters. First results show that the model successfully simulates various soil–landscape interactions, leading to outputs where the surface changes in the landscape clearly depend on soil development, and soil changes depend on landscape location. Sensitivity analysis of the model confirms that soil and landscape interact: variables controlling amount and position of fine clay have the largest effect on erosion, and erosion variables control among others the amount of chemical weathering. These results show the importance of particle size distribution, and especially processes controlling the presence of finer clay particles that are easily eroded, both for the resulting landscape form as for the resulting soil profiles. Further research will have to show whether this is specific to the boundary conditions of this study or a general phenomenon.
•We present a new soil–landscape model: LORICA.•Model assumptions and equations are discussed.•Example results appear satisfactory.•Global sensitivity analysis is performed.•Soil and landscape development are intimately linked. |
---|---|
AbstractList | Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena concept. At the same time, soil properties are strong determinants of geomorphic processes such as overland erosion, landsliding and creep. We present a new soilscape evolution model; LORICA, to study these numerous interactions between soil and landscape development. The model is based on the existing landscape evolution model LAPSUS and the soil formation model MILESD. The model includes similar soil formation processes as MILESD, but the main novelties include the consideration of more layers and the dynamic adaption of the number of layers as a function of the soil profile's heterogeneity. New processes in the landscape evolution component include a negative feedback of vegetation and armouring and particle size selectivity of the erosion-deposition process. In order to quantify these different interactions, we present a full sensitivity analysis of the input parameters. First results show that the model successfully simulates various soil-landscape interactions, leading to outputs where the surface changes in the landscape clearly depend on soil development, and soil changes depend on landscape location. Sensitivity analysis of the model confirms that soil and landscape interact: variables controlling amount and position of fine clay have the largest effect on erosion, and erosion variables control among others the amount of chemical weathering. These results show the importance of particle size distribution, and especially processes controlling the presence of finer clay particles that are easily eroded, both for the resulting landscape form as for the resulting soil profiles. Further research will have to show whether this is specific to the boundary conditions of this study or a general phenomenon. Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena concept. At the same time, soil properties are strong determinants of geomorphic processes such as overland erosion, landsliding and creep. We present a new soilscape evolution model; LORICA, to study these numerous interactions between soil and landscape development. The model is based on the existing landscape evolution model LAPSUS and the soil formation model MILESD. The model includes similar soil formation processes as MILESD, but the main novelties include the consideration of more layers and the dynamic adaption of the number of layers as a function of the soil profile's heterogeneity. New processes in the landscape evolution component include a negative feedback of vegetation and armouring and particle size selectivity of the erosion–deposition process. In order to quantify these different interactions, we present a full sensitivity analysis of the input parameters. First results show that the model successfully simulates various soil–landscape interactions, leading to outputs where the surface changes in the landscape clearly depend on soil development, and soil changes depend on landscape location. Sensitivity analysis of the model confirms that soil and landscape interact: variables controlling amount and position of fine clay have the largest effect on erosion, and erosion variables control among others the amount of chemical weathering. These results show the importance of particle size distribution, and especially processes controlling the presence of finer clay particles that are easily eroded, both for the resulting landscape form as for the resulting soil profiles. Further research will have to show whether this is specific to the boundary conditions of this study or a general phenomenon. •We present a new soil–landscape model: LORICA.•Model assumptions and equations are discussed.•Example results appear satisfactory.•Global sensitivity analysis is performed.•Soil and landscape development are intimately linked. Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena concept. At the same time, soil properties are strong determinants of geomorphic processes such as overland erosion, landsliding and creep. We present a new soilscape evolution model; LORICA, to study these numerous interactions between soil and landscape development. The model is based on the existing landscape evolution model LAPSUS and the soil formation model MILESD. The model includes similar soil formation processes as MILESD, but the main novelties include the consideration of more layers and the dynamic adaption of the number of layers as a function of the soil profile's heterogeneity. New processes in the landscape evolution component include a negative feedback of vegetation and armouring and particle size selectivity of the erosion-deposition process. In order to quantify these different interactions, we present a full sensitivity analysis of the input parameters. First results show that the model successfully simulates various soil-landscape interactions, leading to outputs where the surface changes in the landscape clearly depend on soil development, and soil changes depend on landscape location. Sensitivity analysis of the model confirms that soil and landscape interact: variables controlling amount and position of fine clay have the largest effect on erosion, and erosion variables control among others the amount of chemical weathering. These results show the importance of particle size distribution, and especially processes controlling the presence of finer clay particles that are easily eroded, both for the resulting landscape form as for the resulting soil profiles. Further research will have to show whether this is specific to the boundary conditions of this study or a general phenomenon. © 2015 Elsevier Ltd. |
Author | Temme, Arnaud J.A.M. Vanwalleghem, Tom |
Author_xml | – sequence: 1 givenname: Arnaud J.A.M. surname: Temme fullname: Temme, Arnaud J.A.M. organization: Environmental Sciences, Wageningen University, The Netherlands – sequence: 2 givenname: Tom surname: Vanwalleghem fullname: Vanwalleghem, Tom organization: Department of Agronomy, University of Cordoba, Spain |
BookMark | eNqNkU2O1DAQhS00SPQ0nICNl2wSynHidkZiMRp-pZZGQrC23E5l5Maxg510q3fcgRtyEhzCigWwqnLpfVbVe9fkygePhDxnUDJg4uWxNPoBQ1kBa0qQJUD9iGyY3PFiJ4FfkQ1AKwue50_IdUpHAKgq2WzIsL__-OHulv749p3eUo9nOoQOHe1DpM76L9Y_UKd9l4wekeaGpmAdHWPorUOKp-DmyQZ_Q1_jCV0YB_TTqkOf7GRPdrrkt3aXZNNT8rjXLuGz33VLPr998-nufbG_f5e32Be6rvlUcNF3fSdqA5Jji6xvhNYaKmhMs2v0QUjRgxDMaNHjQe9q1FXH61rwDk2V2y25Wf89Z1t8vgG98joam1TQVjl7iDpe1HmOyruljPMhqbrlFVQZfrHC-civM6ZJDTYZdNkGDHNSFWNCthX_DymTIBkDyEFsCV-lJoaUIvZqjHZYtmCglhDVUf0KUS0hKpAqh5Wp9g_K2Ekvhk9RW_cP9tXKYnb6ZDGqZCx6g52NaCbVBftX_if3m76F |
CitedBy_id | crossref_primary_10_5194_esurf_7_591_2019 crossref_primary_10_1016_j_geoderma_2018_03_009 crossref_primary_10_1016_j_earscirev_2019_04_006 crossref_primary_10_1007_s13762_023_05403_9 crossref_primary_10_1093_nsr_nwy003 crossref_primary_10_1016_j_geoderma_2019_06_014 crossref_primary_10_1029_2017JF004575 crossref_primary_10_1016_j_geoderma_2019_01_049 crossref_primary_10_1007_s11430_021_9990_5 crossref_primary_10_1016_j_geomorph_2023_108984 crossref_primary_10_31857_S0032180X22601037 crossref_primary_10_1016_j_scitotenv_2021_146083 crossref_primary_10_1111_ejss_12790 crossref_primary_10_1029_2018WR023634 crossref_primary_10_1002_esp_4377 crossref_primary_10_1002_2017WR020806 crossref_primary_10_5194_bg_20_3367_2023 crossref_primary_10_5194_soil_8_381_2022 crossref_primary_10_1016_j_cageo_2016_03_003 crossref_primary_10_1029_2019WR026005 crossref_primary_10_5194_soil_8_319_2022 crossref_primary_10_1016_j_earscirev_2018_09_001 crossref_primary_10_5194_esurf_9_1347_2021 crossref_primary_10_1016_j_geoderma_2025_117228 crossref_primary_10_1016_j_scitotenv_2016_07_119 crossref_primary_10_1016_j_quascirev_2016_10_002 crossref_primary_10_2136_vzj2016_05_0048 crossref_primary_10_1007_s11600_020_00401_8 crossref_primary_10_1002_esp_4209 crossref_primary_10_5194_soil_11_51_2025 crossref_primary_10_1016_j_geoderma_2020_114753 crossref_primary_10_1002_jpln_202200239 crossref_primary_10_1360_N072021_0358 crossref_primary_10_5194_soil_3_67_2017 crossref_primary_10_1134_S1064229322602396 crossref_primary_10_5194_gmd_11_1641_2018 crossref_primary_10_1002_esp_5060 crossref_primary_10_1038_s41598_020_73910_7 crossref_primary_10_5194_gchron_5_241_2023 crossref_primary_10_1016_j_spasta_2018_04_003 crossref_primary_10_1016_j_geomorph_2025_109726 crossref_primary_10_1016_j_geoderma_2021_115155 crossref_primary_10_1016_j_cageo_2020_104625 crossref_primary_10_1016_j_geomorph_2017_06_008 crossref_primary_10_5194_soil_6_337_2020 crossref_primary_10_1016_j_aej_2020_09_024 crossref_primary_10_1029_2018JF004963 crossref_primary_10_1029_2018JF004961 crossref_primary_10_1002_esp_4162 crossref_primary_10_1016_j_catena_2022_106217 crossref_primary_10_1111_ejss_12446 crossref_primary_10_1016_j_ecoinf_2023_102151 |
Cites_doi | 10.1016/j.geoderma.2008.01.012 10.1016/j.geomorph.2006.10.024 10.1016/j.geoderma.2007.12.013 10.1002/esp.1397 10.1016/j.gca.2009.01.030 10.1029/2006JF000714 10.1016/j.cageo.2005.08.001 10.1002/esp.3330 10.1002/esp.3514 10.1038/nature04452 10.1016/j.proeps.2014.08.006 10.1016/j.geoderma.2008.01.017 10.1029/2012WR012001 10.1002/esp.1315 10.1016/0098-3004(91)90048-I 10.1029/2011JF002296 10.1016/S0016-7061(02)00139-8 10.1016/j.geomorph.2010.10.007 10.1175/JCLI3590.1 10.1002/esp.1155 10.1016/j.geomorph.2007.04.011 10.1346/CCMN.1957.0060110 10.1016/j.ecolmodel.2011.02.015 10.2136/sssaj2002.1610 10.1016/j.catena.2008.09.004 10.1029/WR018i005p01409 10.1111/j.1475-2743.2007.00092.x 10.1002/hyp.3360080405 10.1016/j.geomorph.2011.03.020 10.2136/sssaj1994.03615995005800020030x 10.1016/j.epsl.2010.03.010 10.1016/S0016-7061(98)00115-3 10.1029/2006JG000174 10.1002/esp.1758 10.1002/esp.1952 10.1002/2014JF003186 10.1029/2010JG001304 10.1016/j.geoderma.2005.01.008 10.1002/esp.3520 10.1080/00401706.1991.10484804 10.1029/2001GB001822 10.1002/esp.3605 10.2136/sssaj1981.03615995004500010021x 10.2113/gselements.3.5.315 10.1006/jasc.2001.0770 10.1016/0016-7061(84)90080-6 10.1016/S0167-8809(01)00194-3 10.1029/2003JF000028 10.1111/j.1365-2389.2007.00961.x 10.1016/j.geoderma.2005.03.012 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Wageningen University & Research |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Wageningen University & Research |
DBID | AAYXX CITATION 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7S9 L.6 QVL |
DOI | 10.1016/j.cageo.2015.08.004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1873-7803 |
EndPage | 143 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_493202 10_1016_j_cageo_2015_08_004 S0098300415300297 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS FR3 H8D JQ2 KR7 L7M L~C L~D 7S9 L.6 02 08R 0R 1 6XO 8P ABPTK ADALY AFRUD G- HZ K M QVL STF UNR |
ID | FETCH-LOGICAL-a443t-36fdfd64c083e9e1f56aaa0205c575ab686f0661ca6feba74ea2d34463dec22d3 |
IEDL.DBID | .~1 |
ISSN | 0098-3004 |
IngestDate | Thu Feb 04 15:47:30 EST 2021 Mon Jul 21 10:48:47 EDT 2025 Mon Jul 21 10:39:49 EDT 2025 Tue Jul 01 02:26:45 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Fri Feb 23 02:34:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soilscape Sensitivity analysis Landscape evolution modelling Soil–landscape modelling LORICA Soil modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a443t-36fdfd64c083e9e1f56aaa0205c575ab686f0661ca6feba74ea2d34463dec22d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1808110087 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_493202 proquest_miscellaneous_2116892302 proquest_miscellaneous_1808110087 crossref_primary_10_1016_j_cageo_2015_08_004 crossref_citationtrail_10_1016_j_cageo_2015_08_004 elsevier_sciencedirect_doi_10_1016_j_cageo_2015_08_004 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computers & geosciences |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vanwalleghem, Stockmann, Minasny, McBratney (bib56) 2013; 118 Maher (bib30) 2010; 294 Soil Survey Staff (bib48) 1999 Temme, Veldkamp (bib52) 2009; 34 Temme, Claessens, Veldkamp, Schoorl (bib50) 2011; 125 Sommer, Gerke, Deumlich (bib49) 2008; 145 Canti (bib8) 2003; 30 Wells, Willgoose, Hancock (bib58) 2008; 113 Coulthard, Van de Wiel (bib14) 2006; 31 Schoorl, Veldkamp, Bouma (bib44) 2002; 66 Baisden, Amundson, Cook, Brenner (bib5) 2002; 16 Claessens, Heuvelink, Schoorl, Veldkamp (bib10) 2005; 30 Minasny, McBratney (bib34) 1999; 90 Cohen, Willgoose, Hancock (bib11) 2010; 115 Van de Wiel, Coulthard, Macklin, Lewin (bib55) 2007; 90 Braakhekke, Beer, Hoosbeek, Reichstein, Kruijt, Schrumpf, Kabat (bib7) 2011; 222 Freeman (bib22) 1991; 17 Morris (bib36) 1991; 33 Ewing, Sanderman, Baisden, Wang, Amundson (bib18) 2006; 111 Cohen, Willgoose, Svoray, Hancock, Sela (bib12) 2015; 120 Collins, Bras, Tucker (bib13) 2004; 109 Salvador-Blanes, Minasny, McBratney (bib41) 2007; 58 Johnson, Mudd, Pillans, Spooner, Keith Fifield, Kirkby, Gloor (bib27) 2014; 39 Yoo, Ji, Aufdenkampe, Klaminder (bib60) 2011; 116 Finke, Hutson (bib19) 2008; 145 Anderson, Anderson, Tucker (bib2) 2013; 38 Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., McBratney, B., in press. How does soil shape the landscape? Earth-Science Reviews, 2015. Minasny, McBratney, Salvador-Blanes (bib35) 2008; 144 Sharmeen, Willgoose (bib45) 2006; 31 Barshad (bib6) 1959; 6 Tucker, Hancock (bib54) 2010; 35 Holmgren (bib25) 1994; 8 Saco, Moreno-De Las Heras (bib39) 2013; 49 Shields (bib46) 1936 Legros (bib29) 1982 Schoorl, Veldkamp (bib43) 2001; 85 Smeck, Ritchie, Wilding, Drees (bib47) 1981; 45 Anderson, von Blanckenburg, White (bib4) 2007; 3 Chittleborough, Walker, Oades (bib9) 1984; 32 Goren, Willett, Herman, Braun (bib23) 2014; 39 Hjulström (bib24) 1935; 10 Istanbulluoglu, Bras (bib26) 2005; 110 Yoo, Amundson, Heimsath, Dietrich (bib59) 2006; 130 McBratney, Minasny, Cattle, Vervoort (bib32) 2002; 109 Saltelli, Chan, Scott (bib40) 2000 Keijsers, Schoorl, Chang, Chiang, Claessens, Veldkamp (bib28) 2011; 133 Anderson, Hinckley, Kelly, Langston (bib3) 2014; 10 Tranter, Minasny, McBratney, Murphy, McKenzie, Grundy, Brough (bib53) 2007; 23 Förster, Wunderlich (bib21) 2009; 77 Vincent, Chadwick (bib57) 1994; 58 Davy, Lague (bib16) 2009; 114 Temme, Schoorl, Veldkamp (bib51) 2006; 32 Amenu, Kumar, Liang (bib1) 2005; 18 Coulthard, Van De Wiel (bib15) 2007; 91 Pachepsky, Rawls, Lin (bib37) 2006; 131 Dietrich, Perron (bib17) 2006; 439 Finke, Vanwalleghem, Opolot, Poesen, Deckers (bib20) 2013; 118 Schoorl, J.M., Temme, A.J.A.M., Veldkamp, T., 2014. Modelling centennial sediment waves in an eroding landscape – catchment complexity. Maher, Steefel, White, Stonestrom (bib31) 2009; 73 Parker, Klingeman (bib38) 1982; 18 Saltelli (10.1016/j.cageo.2015.08.004_bib40) 2000 Barshad (10.1016/j.cageo.2015.08.004_bib6) 1959; 6 10.1016/j.cageo.2015.08.004_bib33 Schoorl (10.1016/j.cageo.2015.08.004_bib44) 2002; 66 Braakhekke (10.1016/j.cageo.2015.08.004_bib7) 2011; 222 Pachepsky (10.1016/j.cageo.2015.08.004_bib37) 2006; 131 Amenu (10.1016/j.cageo.2015.08.004_bib1) 2005; 18 Maher (10.1016/j.cageo.2015.08.004_bib31) 2009; 73 Hjulström (10.1016/j.cageo.2015.08.004_bib24) 1935; 10 Ewing (10.1016/j.cageo.2015.08.004_bib18) 2006; 111 Finke (10.1016/j.cageo.2015.08.004_bib20) 2013; 118 Chittleborough (10.1016/j.cageo.2015.08.004_bib9) 1984; 32 Cohen (10.1016/j.cageo.2015.08.004_bib12) 2015; 120 10.1016/j.cageo.2015.08.004_bib42 Dietrich (10.1016/j.cageo.2015.08.004_bib17) 2006; 439 Temme (10.1016/j.cageo.2015.08.004_bib52) 2009; 34 Yoo (10.1016/j.cageo.2015.08.004_bib59) 2006; 130 Anderson (10.1016/j.cageo.2015.08.004_bib4) 2007; 3 Temme (10.1016/j.cageo.2015.08.004_bib51) 2006; 32 Förster (10.1016/j.cageo.2015.08.004_bib21) 2009; 77 Smeck (10.1016/j.cageo.2015.08.004_bib47) 1981; 45 Collins (10.1016/j.cageo.2015.08.004_bib13) 2004; 109 Saco (10.1016/j.cageo.2015.08.004_bib39) 2013; 49 Freeman (10.1016/j.cageo.2015.08.004_bib22) 1991; 17 Minasny (10.1016/j.cageo.2015.08.004_bib34) 1999; 90 Keijsers (10.1016/j.cageo.2015.08.004_bib28) 2011; 133 Vanwalleghem (10.1016/j.cageo.2015.08.004_bib56) 2013; 118 McBratney (10.1016/j.cageo.2015.08.004_bib32) 2002; 109 Anderson (10.1016/j.cageo.2015.08.004_bib2) 2013; 38 Cohen (10.1016/j.cageo.2015.08.004_bib11) 2010; 115 Baisden (10.1016/j.cageo.2015.08.004_bib5) 2002; 16 Tranter (10.1016/j.cageo.2015.08.004_bib53) 2007; 23 Johnson (10.1016/j.cageo.2015.08.004_bib27) 2014; 39 Legros (10.1016/j.cageo.2015.08.004_bib29) 1982 Soil Survey Staff (10.1016/j.cageo.2015.08.004_bib48) 1999 Canti (10.1016/j.cageo.2015.08.004_bib8) 2003; 30 Davy (10.1016/j.cageo.2015.08.004_bib16) 2009; 114 Goren (10.1016/j.cageo.2015.08.004_bib23) 2014; 39 Sharmeen (10.1016/j.cageo.2015.08.004_bib45) 2006; 31 Salvador-Blanes (10.1016/j.cageo.2015.08.004_bib41) 2007; 58 Vincent (10.1016/j.cageo.2015.08.004_bib57) 1994; 58 Morris (10.1016/j.cageo.2015.08.004_bib36) 1991; 33 Istanbulluoglu (10.1016/j.cageo.2015.08.004_bib26) 2005; 110 Wells (10.1016/j.cageo.2015.08.004_bib58) 2008; 113 Sommer (10.1016/j.cageo.2015.08.004_bib49) 2008; 145 Maher (10.1016/j.cageo.2015.08.004_bib30) 2010; 294 Van de Wiel (10.1016/j.cageo.2015.08.004_bib55) 2007; 90 Temme (10.1016/j.cageo.2015.08.004_bib50) 2011; 125 Yoo (10.1016/j.cageo.2015.08.004_bib60) 2011; 116 Anderson (10.1016/j.cageo.2015.08.004_bib3) 2014; 10 Schoorl (10.1016/j.cageo.2015.08.004_bib43) 2001; 85 Coulthard (10.1016/j.cageo.2015.08.004_bib15) 2007; 91 Finke (10.1016/j.cageo.2015.08.004_bib19) 2008; 145 Shields (10.1016/j.cageo.2015.08.004_bib46) 1936 Tucker (10.1016/j.cageo.2015.08.004_bib54) 2010; 35 Coulthard (10.1016/j.cageo.2015.08.004_bib14) 2006; 31 Claessens (10.1016/j.cageo.2015.08.004_bib10) 2005; 30 Holmgren (10.1016/j.cageo.2015.08.004_bib25) 1994; 8 Minasny (10.1016/j.cageo.2015.08.004_bib35) 2008; 144 Parker (10.1016/j.cageo.2015.08.004_bib38) 1982; 18 |
References_xml | – volume: 23 start-page: 437 year: 2007 end-page: 443 ident: bib53 article-title: Building and testing conceptual and empirical models for predicting soil bulk density publication-title: Soil Use Manag. – volume: 32 start-page: 181 year: 1984 end-page: 202 ident: bib9 article-title: Textural differentiation in chronosequences from eastern Australia, I. Descriptions, chemical properties and micromorphologies of soils publication-title: Geoderma – volume: 10 year: 1935 ident: bib24 article-title: Studies of the Morphological Activity of Rivers as Illustrated by the River Fyris: Inaugural Dissertation – volume: 133 start-page: 168 year: 2011 end-page: 177 ident: bib28 article-title: Calibration and resolution effects on model performance for predicting shallow landslide locations in Taiwan publication-title: Geomorphology – volume: 18 start-page: 5024 year: 2005 end-page: 5045 ident: bib1 article-title: Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes publication-title: J. Clim. – year: 1982 ident: bib29 article-title: L'Évolution Granulometrique au Course de la Pedogénèse (Ph.D. thesis) – volume: 145 start-page: 462 year: 2008 end-page: 479 ident: bib19 article-title: Modelling soil genesis in calcareous loess publication-title: Geoderma – volume: 118 start-page: 331 year: 2013 end-page: 347 ident: bib56 article-title: A quantitative model for integrating landscape evolution and soil formation publication-title: J. Geophys. Res. F: Earth Surf. – volume: 35 start-page: 28 year: 2010 end-page: 50 ident: bib54 article-title: Modelling landscape evolution publication-title: Earth Surf. Process. Landf. – volume: 115 year: 2010 ident: bib11 article-title: The mARM3D spatially distributed soil evolution model: three-dimensional model framework and analysis of hillslope and landform responses publication-title: J. Geophys. Res. – volume: 30 start-page: 135 year: 2003 end-page: 148 ident: bib8 article-title: Earthworm activity and archaeological stratigraphy: a review of products and processes publication-title: J. Archaeol. Sci. – reference: Schoorl, J.M., Temme, A.J.A.M., Veldkamp, T., 2014. Modelling centennial sediment waves in an eroding landscape – catchment complexity. – volume: 3 start-page: 315 year: 2007 end-page: 319 ident: bib4 article-title: Physical and chemical controls on the critical zone publication-title: Elements – volume: 58 start-page: 1535 year: 2007 end-page: 1548 ident: bib41 article-title: Modelling long-term in situ soil profile evolution: application to the genesis of soil profiles containing stone layers publication-title: Eur. J. Soil Sci. – volume: 120 start-page: 260 year: 2015 end-page: 274 ident: bib12 article-title: The effects of sediment transport, weathering, and aeolian mechanisms on soil evolution publication-title: J. Geophys. Res. F: Earth Surf. – volume: 85 start-page: 281 year: 2001 end-page: 292 ident: bib43 article-title: Linking land use and landscape process modelling: a case study for the Alora region (south Spain) publication-title: Agric. Ecosyst. Environ. – year: 1936 ident: bib46 article-title: Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of Similarity Mechanics and Turbulence Research on Shear Flow] – volume: 39 start-page: 1188 year: 2014 end-page: 1196 ident: bib27 article-title: Quantifying the rate and depth dependence of bioturbation based on optically-stimulated luminescence (OSL) dates and meteoric 10Be publication-title: Earth Surf. Process. Landf. – volume: 34 start-page: 573 year: 2009 end-page: 589 ident: bib52 article-title: Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales publication-title: Earth Surf. Process. Landf. – volume: 33 start-page: 161 year: 1991 end-page: 174 ident: bib36 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics – year: 1999 ident: bib48 article-title: Soil taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys – volume: 90 start-page: 283 year: 2007 end-page: 301 ident: bib55 article-title: Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model publication-title: Geomorphology – reference: Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., McBratney, B., in press. How does soil shape the landscape? Earth-Science Reviews, 2015. – volume: 17 start-page: 413 year: 1991 end-page: 422 ident: bib22 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Comput. Geosci. – volume: 91 start-page: 216 year: 2007 end-page: 235 ident: bib15 article-title: Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution publication-title: Geomorphology – volume: 144 start-page: 140 year: 2008 end-page: 157 ident: bib35 article-title: Quantitative models for pedogenesis: a review publication-title: Geoderma – volume: 439 start-page: 411 year: 2006 end-page: 418 ident: bib17 article-title: The search for a topographic signature of life publication-title: Nature – volume: 109 year: 2004 ident: bib13 article-title: Modeling the effects of vegetation-erosion coupling on landscape evolution publication-title: J. Geophys. Res.: Earth Surf. – volume: 109 start-page: 41 year: 2002 end-page: 73 ident: bib32 article-title: From pedotransfer functions to soil inference systems publication-title: Geoderma – volume: 31 start-page: 123 year: 2006 end-page: 132 ident: bib14 article-title: A cellular model of river meandering publication-title: Earth Surf. Process. Landf. – volume: 16 start-page: 64-1 year: 2002 end-page: 64-16 ident: bib5 article-title: Turnover and storage of C and N in five density fractions from California annual grassland surface soils publication-title: Global Biogeochem. Cycles – volume: 30 start-page: 461 year: 2005 end-page: 477 ident: bib10 article-title: DEM resolution effects on shallow landslide hazard and soil redistribution modelling publication-title: Earth Surf. Process. Landf. – volume: 31 start-page: 1195 year: 2006 end-page: 1210 ident: bib45 article-title: The interaction between armouring and particle weathering for eroding landscapes publication-title: Earth Surf. Process. Landf. – volume: 131 start-page: 308 year: 2006 end-page: 316 ident: bib37 article-title: Hydropedology and pedotransfer functions publication-title: Geoderma – volume: 45 start-page: 95 year: 1981 end-page: 102 ident: bib47 article-title: Clay accumulation in sola of poorly drained soils of western Ohio publication-title: Soil Sci. Soc. Am. J. – volume: 130 start-page: 47 year: 2006 end-page: 65 ident: bib59 article-title: Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle publication-title: Geoderma – volume: 10 start-page: 28 year: 2014 end-page: 33 ident: bib3 article-title: Variation in critical zone processes and architecture across slope aspects publication-title: Procedia Earth Planet. Sci. – volume: 8 start-page: 327 year: 1994 end-page: 334 ident: bib25 article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation publication-title: Hydrol. Process. – volume: 18 start-page: 1409 year: 1982 end-page: 1423 ident: bib38 article-title: On why gravel bed streams are paved publication-title: Water Resour. Res. – volume: 114 year: 2009 ident: bib16 article-title: Fluvial erosion/transport equation of landscape evolution models revisited publication-title: J. Geophys. Res. B: Solid Earth – volume: 38 start-page: 299 year: 2013 end-page: 316 ident: bib2 article-title: Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone publication-title: Earth Surf. Process. Landf. – volume: 6 start-page: 110 year: 1959 end-page: 132 ident: bib6 article-title: Factors affecting clay formation publication-title: Clays Clay Miner. – year: 2000 ident: bib40 article-title: Sensitivity Analysis – volume: 90 start-page: 3 year: 1999 end-page: 21 ident: bib34 article-title: A rudimentary mechanistic model for soil production and landscape development publication-title: Geoderma – volume: 294 start-page: 101 year: 2010 end-page: 110 ident: bib30 article-title: The dependence of chemical weathering rates on fluid residence time publication-title: Earth Planet. Sci. Lett. – volume: 66 start-page: 1610 year: 2002 end-page: 1619 ident: bib44 article-title: Modeling water and soil redistribution in a dynamic landscape context publication-title: Soil Sci. Soc. Am. J. – volume: 113 year: 2008 ident: bib58 article-title: Modeling weathering pathways and processes of the fragmentation of salt weathered quartz‐chlorite schist publication-title: J. Geophys. Res.: Earth Surf. – volume: 110 year: 2005 ident: bib26 article-title: Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography publication-title: J. Geophys. Res. F: Earth Surf. – volume: 145 start-page: 480 year: 2008 end-page: 493 ident: bib49 article-title: Modelling soil landscape genesis: a “time split” approach for hummocky agricultural landscapes publication-title: Geoderma – volume: 39 start-page: 522 year: 2014 end-page: 545 ident: bib23 article-title: Coupled numerical–analytical approach to landscape evolution modeling publication-title: Earth Surf. Process. Lanf. – volume: 73 start-page: 2804 year: 2009 end-page: 2831 ident: bib31 article-title: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California publication-title: Geochim. Cosmochim. Acta – volume: 111 year: 2006 ident: bib18 article-title: Role of large‐scale soil structure in organic carbon turnover: evidence from California grassland soils publication-title: J. Geophys. Res.: Biogeosci. – volume: 77 start-page: 143 year: 2009 end-page: 149 ident: bib21 article-title: Holocene sediment budgets for upland catchments: the problem of soilscape model and data availability publication-title: Catena – volume: 125 start-page: 271 year: 2011 end-page: 281 ident: bib50 article-title: Evaluating choices in multi-process landscape evolution models publication-title: Geomorphology – volume: 58 start-page: 455 year: 1994 end-page: 464 ident: bib57 article-title: Synthesizing bulk density for soils with abundant rock fragments publication-title: Soil Sci. Soc. Am. J. – volume: 118, year: 2013 ident: bib20 article-title: Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area publication-title: J. Geophys. Res. – volume: 32 start-page: 452 year: 2006 end-page: 461 ident: bib51 article-title: Algorithm for dealing with depressions in dynamic landscape evolution models publication-title: Comput. Geosci. – volume: 49 start-page: 115 year: 2013 end-page: 126 ident: bib39 article-title: Ecogeomorphic coevolution of semiarid hillslopes: emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes publication-title: Water Resour. Res. – volume: 222 start-page: 1712 year: 2011 end-page: 1730 ident: bib7 article-title: SOMPROF: a vertically explicit soil organic matter model publication-title: Ecol. Model. – volume: 116 year: 2011 ident: bib60 article-title: Rates of soil mixing and associated carbon fluxes in a forest versus tilled agricultural field: Implications for modeling the soil carbon cycle publication-title: J. Geophysi. Res.: Biogeosci. – volume: 145 start-page: 480 issue: 3–4 year: 2008 ident: 10.1016/j.cageo.2015.08.004_bib49 article-title: Modelling soil landscape genesis: a “time split” approach for hummocky agricultural landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2008.01.012 – volume: 90 start-page: 283 issue: 3–4 year: 2007 ident: 10.1016/j.cageo.2015.08.004_bib55 article-title: Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.024 – volume: 144 start-page: 140 issue: 1–2 year: 2008 ident: 10.1016/j.cageo.2015.08.004_bib35 article-title: Quantitative models for pedogenesis: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2007.12.013 – volume: 31 start-page: 1195 issue: 10 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib45 article-title: The interaction between armouring and particle weathering for eroding landscapes publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1397 – volume: 73 start-page: 2804 issue: 10 year: 2009 ident: 10.1016/j.cageo.2015.08.004_bib31 article-title: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.01.030 – volume: 113 issue: F1 year: 2008 ident: 10.1016/j.cageo.2015.08.004_bib58 article-title: Modeling weathering pathways and processes of the fragmentation of salt weathered quartz‐chlorite schist publication-title: J. Geophys. Res.: Earth Surf. doi: 10.1029/2006JF000714 – volume: 110 issue: 2 year: 2005 ident: 10.1016/j.cageo.2015.08.004_bib26 article-title: Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography publication-title: J. Geophys. Res. F: Earth Surf. – volume: 32 start-page: 452 issue: 4 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib51 article-title: Algorithm for dealing with depressions in dynamic landscape evolution models publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.08.001 – volume: 38 start-page: 299 year: 2013 ident: 10.1016/j.cageo.2015.08.004_bib2 article-title: Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3330 – volume: 115 issue: F04013 year: 2010 ident: 10.1016/j.cageo.2015.08.004_bib11 article-title: The mARM3D spatially distributed soil evolution model: three-dimensional model framework and analysis of hillslope and landform responses publication-title: J. Geophys. Res. – volume: 39 start-page: 522 issue: 4 year: 2014 ident: 10.1016/j.cageo.2015.08.004_bib23 article-title: Coupled numerical–analytical approach to landscape evolution modeling publication-title: Earth Surf. Process. Lanf. doi: 10.1002/esp.3514 – volume: 439 start-page: 411 issue: 7075 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib17 article-title: The search for a topographic signature of life publication-title: Nature doi: 10.1038/nature04452 – volume: 10 start-page: 28 year: 2014 ident: 10.1016/j.cageo.2015.08.004_bib3 article-title: Variation in critical zone processes and architecture across slope aspects publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2014.08.006 – volume: 145 start-page: 462 issue: 3–4 year: 2008 ident: 10.1016/j.cageo.2015.08.004_bib19 article-title: Modelling soil genesis in calcareous loess publication-title: Geoderma doi: 10.1016/j.geoderma.2008.01.017 – year: 1936 ident: 10.1016/j.cageo.2015.08.004_bib46 – volume: 49 start-page: 115 issue: 1 year: 2013 ident: 10.1016/j.cageo.2015.08.004_bib39 article-title: Ecogeomorphic coevolution of semiarid hillslopes: emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes publication-title: Water Resour. Res. doi: 10.1029/2012WR012001 – volume: 31 start-page: 123 issue: 1 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib14 article-title: A cellular model of river meandering publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1315 – volume: 17 start-page: 413 issue: 3 year: 1991 ident: 10.1016/j.cageo.2015.08.004_bib22 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Comput. Geosci. doi: 10.1016/0098-3004(91)90048-I – volume: 118 start-page: 331 issue: 2 year: 2013 ident: 10.1016/j.cageo.2015.08.004_bib56 article-title: A quantitative model for integrating landscape evolution and soil formation publication-title: J. Geophys. Res. F: Earth Surf. doi: 10.1029/2011JF002296 – volume: 109 start-page: 41 issue: 1–2 year: 2002 ident: 10.1016/j.cageo.2015.08.004_bib32 article-title: From pedotransfer functions to soil inference systems publication-title: Geoderma doi: 10.1016/S0016-7061(02)00139-8 – volume: 10 year: 1935 ident: 10.1016/j.cageo.2015.08.004_bib24 – volume: 125 start-page: 271 issue: 2 year: 2011 ident: 10.1016/j.cageo.2015.08.004_bib50 article-title: Evaluating choices in multi-process landscape evolution models publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.10.007 – volume: 18 start-page: 5024 issue: 23 year: 2005 ident: 10.1016/j.cageo.2015.08.004_bib1 article-title: Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes publication-title: J. Clim. doi: 10.1175/JCLI3590.1 – volume: 30 start-page: 461 issue: 4 year: 2005 ident: 10.1016/j.cageo.2015.08.004_bib10 article-title: DEM resolution effects on shallow landslide hazard and soil redistribution modelling publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1155 – year: 1982 ident: 10.1016/j.cageo.2015.08.004_bib29 – volume: 91 start-page: 216 issue: 3–4 year: 2007 ident: 10.1016/j.cageo.2015.08.004_bib15 article-title: Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.04.011 – volume: 6 start-page: 110 year: 1959 ident: 10.1016/j.cageo.2015.08.004_bib6 article-title: Factors affecting clay formation publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1957.0060110 – volume: 222 start-page: 1712 issue: 10 year: 2011 ident: 10.1016/j.cageo.2015.08.004_bib7 article-title: SOMPROF: a vertically explicit soil organic matter model publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.02.015 – volume: 66 start-page: 1610 issue: 5 year: 2002 ident: 10.1016/j.cageo.2015.08.004_bib44 article-title: Modeling water and soil redistribution in a dynamic landscape context publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1610 – volume: 77 start-page: 143 issue: 2 year: 2009 ident: 10.1016/j.cageo.2015.08.004_bib21 article-title: Holocene sediment budgets for upland catchments: the problem of soilscape model and data availability publication-title: Catena doi: 10.1016/j.catena.2008.09.004 – ident: 10.1016/j.cageo.2015.08.004_bib33 – volume: 18 start-page: 1409 issue: 5 year: 1982 ident: 10.1016/j.cageo.2015.08.004_bib38 article-title: On why gravel bed streams are paved publication-title: Water Resour. Res. doi: 10.1029/WR018i005p01409 – volume: 23 start-page: 437 issue: 4 year: 2007 ident: 10.1016/j.cageo.2015.08.004_bib53 article-title: Building and testing conceptual and empirical models for predicting soil bulk density publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2007.00092.x – volume: 8 start-page: 327 issue: 4 year: 1994 ident: 10.1016/j.cageo.2015.08.004_bib25 article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation publication-title: Hydrol. Process. doi: 10.1002/hyp.3360080405 – volume: 133 start-page: 168 issue: 3 year: 2011 ident: 10.1016/j.cageo.2015.08.004_bib28 article-title: Calibration and resolution effects on model performance for predicting shallow landslide locations in Taiwan publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.03.020 – volume: 58 start-page: 455 issue: 2 year: 1994 ident: 10.1016/j.cageo.2015.08.004_bib57 article-title: Synthesizing bulk density for soils with abundant rock fragments publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800020030x – volume: 294 start-page: 101 issue: 1 year: 2010 ident: 10.1016/j.cageo.2015.08.004_bib30 article-title: The dependence of chemical weathering rates on fluid residence time publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.03.010 – volume: 90 start-page: 3 year: 1999 ident: 10.1016/j.cageo.2015.08.004_bib34 article-title: A rudimentary mechanistic model for soil production and landscape development publication-title: Geoderma doi: 10.1016/S0016-7061(98)00115-3 – volume: 111 issue: G3 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib18 article-title: Role of large‐scale soil structure in organic carbon turnover: evidence from California grassland soils publication-title: J. Geophys. Res.: Biogeosci. doi: 10.1029/2006JG000174 – volume: 34 start-page: 573 issue: 4 year: 2009 ident: 10.1016/j.cageo.2015.08.004_bib52 article-title: Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1758 – volume: 35 start-page: 28 issue: 1 year: 2010 ident: 10.1016/j.cageo.2015.08.004_bib54 article-title: Modelling landscape evolution publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1952 – volume: 120 start-page: 260 issue: 2 year: 2015 ident: 10.1016/j.cageo.2015.08.004_bib12 article-title: The effects of sediment transport, weathering, and aeolian mechanisms on soil evolution publication-title: J. Geophys. Res. F: Earth Surf. doi: 10.1002/2014JF003186 – volume: 116 issue: G1 year: 2011 ident: 10.1016/j.cageo.2015.08.004_bib60 article-title: Rates of soil mixing and associated carbon fluxes in a forest versus tilled agricultural field: Implications for modeling the soil carbon cycle publication-title: J. Geophysi. Res.: Biogeosci. doi: 10.1029/2010JG001304 – year: 1999 ident: 10.1016/j.cageo.2015.08.004_bib48 – volume: 114 issue: 3 year: 2009 ident: 10.1016/j.cageo.2015.08.004_bib16 article-title: Fluvial erosion/transport equation of landscape evolution models revisited publication-title: J. Geophys. Res. B: Solid Earth – volume: 130 start-page: 47 issue: 1–2 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib59 article-title: Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle publication-title: Geoderma doi: 10.1016/j.geoderma.2005.01.008 – year: 2000 ident: 10.1016/j.cageo.2015.08.004_bib40 – volume: 39 start-page: 1188 issue: 9 year: 2014 ident: 10.1016/j.cageo.2015.08.004_bib27 article-title: Quantifying the rate and depth dependence of bioturbation based on optically-stimulated luminescence (OSL) dates and meteoric 10Be publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3520 – volume: 33 start-page: 161 issue: 2 year: 1991 ident: 10.1016/j.cageo.2015.08.004_bib36 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics doi: 10.1080/00401706.1991.10484804 – volume: 16 start-page: 64-1 issue: 4 year: 2002 ident: 10.1016/j.cageo.2015.08.004_bib5 article-title: Turnover and storage of C and N in five density fractions from California annual grassland surface soils publication-title: Global Biogeochem. Cycles doi: 10.1029/2001GB001822 – ident: 10.1016/j.cageo.2015.08.004_bib42 doi: 10.1002/esp.3605 – volume: 45 start-page: 95 issue: 1 year: 1981 ident: 10.1016/j.cageo.2015.08.004_bib47 article-title: Clay accumulation in sola of poorly drained soils of western Ohio publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1981.03615995004500010021x – volume: 3 start-page: 315 issue: 5 year: 2007 ident: 10.1016/j.cageo.2015.08.004_bib4 article-title: Physical and chemical controls on the critical zone publication-title: Elements doi: 10.2113/gselements.3.5.315 – volume: 118, year: 2013 ident: 10.1016/j.cageo.2015.08.004_bib20 article-title: Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area publication-title: J. Geophys. Res. – volume: 30 start-page: 135 issue: 2 year: 2003 ident: 10.1016/j.cageo.2015.08.004_bib8 article-title: Earthworm activity and archaeological stratigraphy: a review of products and processes publication-title: J. Archaeol. Sci. doi: 10.1006/jasc.2001.0770 – volume: 32 start-page: 181 issue: 3 year: 1984 ident: 10.1016/j.cageo.2015.08.004_bib9 article-title: Textural differentiation in chronosequences from eastern Australia, I. Descriptions, chemical properties and micromorphologies of soils publication-title: Geoderma doi: 10.1016/0016-7061(84)90080-6 – volume: 85 start-page: 281 issue: 1–3 year: 2001 ident: 10.1016/j.cageo.2015.08.004_bib43 article-title: Linking land use and landscape process modelling: a case study for the Alora region (south Spain) publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00194-3 – volume: 109 issue: F3 year: 2004 ident: 10.1016/j.cageo.2015.08.004_bib13 article-title: Modeling the effects of vegetation-erosion coupling on landscape evolution publication-title: J. Geophys. Res.: Earth Surf. doi: 10.1029/2003JF000028 – volume: 58 start-page: 1535 issue: 6 year: 2007 ident: 10.1016/j.cageo.2015.08.004_bib41 article-title: Modelling long-term in situ soil profile evolution: application to the genesis of soil profiles containing stone layers publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2007.00961.x – volume: 131 start-page: 308 issue: 3–4 year: 2006 ident: 10.1016/j.cageo.2015.08.004_bib37 article-title: Hydropedology and pedotransfer functions publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.012 |
SSID | ssj0002285 |
Score | 2.3843298 |
Snippet | Soils and landscapes evolve in tandem. Landscape position is a strong determinant of vertical soil development, which has often been formalized in the catena... |
SourceID | wageningen proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Bodemgeografie en Landschap catenas clay Computer simulation computers Determinants Evolution Landscape evolution modelling landscape position Landscapes LORICA Mathematical models particle size particle size distribution PE&RC Sensitivity analysis Soil (material) Soil erosion soil formation Soil Geography and Landscape Soil modelling soil profiles soil properties Soilscape Soil–landscape modelling vegetation weathering |
Title | LORICA – A new model for linking landscape and soil profile evolution: Development and sensitivity analysis |
URI | https://dx.doi.org/10.1016/j.cageo.2015.08.004 https://www.proquest.com/docview/1808110087 https://www.proquest.com/docview/2116892302 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F493202 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA2iCG7EJ76J4NJq26Rp624QdXxvFNyFNE1gZOyIM6O4Ef_BP_RLvDdNdQR14apJSUqa3CQn7b3nELKleZ4VNgyDPE9twE1UBrnmRRBHNk6F1cw6noLzC9G-5ic3yc0Y2W9iYdCt0q_99ZruVmt_Z9f35u59p4Mxvnnm-KIS5iSYMIKdp2jlOy9fbh5xnCUNbyaWbpiHnI-XhjmLEYBR4ng8vVrbD7vTCPqceoJKlYt8GtmJDmfItIeQtFW3cpaMmWqOTB45id7neXJ3dok6jvT99Y22KKBm6tRuKKBT6pUSqAvwRdcnCgna73W61It3U_PojXGPjjgU1eXQ2b1Wm4B8TWayQK4PD67224EXVQgU52wQMGFLWwquAXuZ3EQ2EUopAI2JBuSmCpEJCzAk0kpYU6iUGxWXDA6NrDQ6huQiGa96lVkilAnDGYNaIuFcI_OZKYsSAJgKE3h0vEzipjOl9ozjKHzRlY1r2a10IyBxBCTKYYZ8mWx_VrqvCTf-Li6aUZLf7EbClvB3xc1mTCXMKPxNoirTG_ZlhGIkyHmU_l4Gjs0iA2wcwkuyL4OQFQpA9SVydvuvcPJp-CCrLl5ggvUlz1GxfuW_zV4lU5ATtcvlGhkfPAzNOsCiQbHh7H6DTLSOT9sXH1UeD48 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELWgCMFltXyJsiwYiSOBJHbchFuFFgoUuIDEzXIcWyoqKaItiAva_7D_kF_CjOMsRQIOnOIkduTYHvs5mXmPkG3NszS3YRhkWcsG3ERFkGmeB3Fk45awmlnHU3B2LjpX_OQ6uZ4iB3UsDLpV-rm_mtPdbO2v7PnW3Lvr9TDGN0sdX1TCnATTNJnhYL4oY7D7_ObnEcdpUhNnYvaaesg5eWkwWgwBjBJH5Onl2j5Ynibg5_wjFCpd6NPEUnT4k_zwGJK2q2oukClTLpLZI6fR-7REbrsXKORIX_7-o20KsJk6uRsK8JR6qQTqInzR94lCgg4HvT716t3UPPjRuE8nPIqqfOjtXslNwHnFZrJMrg7_XB50Aq-qECjO2Shgwha2EFwD-DKZiWwilFKAGhMN0E3lIhUWcEiklbAmVy1uVFww2DWywugYkiukUQ5Ks0ooE4YzBqVEwrlG6jNT5AUgMBUm8Oi4SeK6MaX2lOOofNGXtW_ZjXQ9ILEHJOphhrxJdv4XuqsYN77OLupeku8GjoQ14euCW3WfSjAp_E-iSjMYD2WEaiRIetT6PA_sm0UK4DiEl2RvA0KWqAA1lEja7T_DycfxvSz7eAALG0qeoWT92nervUnmOpdnXdk9Pj_9Rebhjqj8L9dJY3Q_Nr8BI43yDWcDr2UGER0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LORICA+%E2%80%93+A+new+model+for+linking+landscape+and+soil+profile+evolution%3A+Development+and+sensitivity+analysis&rft.jtitle=Computers+%26+geosciences&rft.au=Temme%2C+Arnaud+J.A.M.&rft.au=Vanwalleghem%2C+Tom&rft.date=2016-05-01&rft.issn=0098-3004&rft.volume=90&rft.spage=131&rft.epage=143&rft_id=info:doi/10.1016%2Fj.cageo.2015.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2015_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |