Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic–aerobic transition

Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an anaerobic–aerobic transition. Bottom: results highlighting the correlation between reduction of Fe phases and mobilization of soil organic carbon in the p...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 376; no. C; p. 114535
Main Authors Dunham-Cheatham, Sarrah M., Zhao, Qian, Obrist, Daniel, Yang, Yu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.10.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2020.114535

Cover

Loading…
Abstract Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an anaerobic–aerobic transition. Bottom: results highlighting the correlation between reduction of Fe phases and mobilization of soil organic carbon in the presence of glucose with subsequent carbon mineralization when aerobic conditions return. [Display omitted] •Glucose increases reductive release of iron oxide-bound carbon under anaerobic conditions.•Released carbon positively primes soil organic carbon mineralization.•Priming effect is larger when glucose is added under anaerobic, not aerobic, conditions.•Results have implications for modeling CO2 fluxes from soils experiencing redox fluctuations. Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which contribute around one third of the global terrestrial C reservoir. Priming effects (PE), induction of changes in C mineralization due to additions of energy-rich organic carbon (OC) substrates, have been largely ignored during redox transitions in current modelling and experimental efforts for evaluating C cycles. In this study, we investigated the effects of glucose input on the mineralization of soil OC during an anaerobic–aerobic transition. Substantially more soil OC was mineralized under aerobic conditions in samples that received glucose under preceding anaerobic conditions compared to controls that did not receive glucose and to samples that received glucose under aerobic-only conditions. Our results reveal a novel PE by which glucose indirectly primes the mineralization of soil OC by increasing the reductive release of iron oxide-associated OC under anaerobic conditions, followed by a dramatic positive PE when aerobic conditions are reestablished. Inclusion of this novel indirect priming mechanism is crucial for accurately predicting the contribution of atmospheric greenhouse gases from soils experiencing redox fluctuations (e.g., wetlands).
AbstractList Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an anaerobic–aerobic transition. Bottom: results highlighting the correlation between reduction of Fe phases and mobilization of soil organic carbon in the presence of glucose with subsequent carbon mineralization when aerobic conditions return. [Display omitted] •Glucose increases reductive release of iron oxide-bound carbon under anaerobic conditions.•Released carbon positively primes soil organic carbon mineralization.•Priming effect is larger when glucose is added under anaerobic, not aerobic, conditions.•Results have implications for modeling CO2 fluxes from soils experiencing redox fluctuations. Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which contribute around one third of the global terrestrial C reservoir. Priming effects (PE), induction of changes in C mineralization due to additions of energy-rich organic carbon (OC) substrates, have been largely ignored during redox transitions in current modelling and experimental efforts for evaluating C cycles. In this study, we investigated the effects of glucose input on the mineralization of soil OC during an anaerobic–aerobic transition. Substantially more soil OC was mineralized under aerobic conditions in samples that received glucose under preceding anaerobic conditions compared to controls that did not receive glucose and to samples that received glucose under aerobic-only conditions. Our results reveal a novel PE by which glucose indirectly primes the mineralization of soil OC by increasing the reductive release of iron oxide-associated OC under anaerobic conditions, followed by a dramatic positive PE when aerobic conditions are reestablished. Inclusion of this novel indirect priming mechanism is crucial for accurately predicting the contribution of atmospheric greenhouse gases from soils experiencing redox fluctuations (e.g., wetlands).
Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which contribute around one third of the global terrestrial C reservoir. Priming effects (PE), induction of changes in C mineralization due to additions of energy-rich organic carbon (OC) substrates, have been largely ignored during redox transitions in current modelling and experimental efforts for evaluating C cycles. In this study, we investigated the effects of glucose input on the mineralization of soil OC during an anaerobic–aerobic transition. Substantially more soil OC was mineralized under aerobic conditions in samples that received glucose under preceding anaerobic conditions compared to controls that did not receive glucose and to samples that received glucose under aerobic-only conditions. Our results reveal a novel PE by which glucose indirectly primes the mineralization of soil OC by increasing the reductive release of iron oxide-associated OC under anaerobic conditions, followed by a dramatic positive PE when aerobic conditions are reestablished. Inclusion of this novel indirect priming mechanism is crucial for accurately predicting the contribution of atmospheric greenhouse gases from soils experiencing redox fluctuations (e.g., wetlands).
ArticleNumber 114535
Author Yang, Yu
Zhao, Qian
Dunham-Cheatham, Sarrah M.
Obrist, Daniel
Author_xml – sequence: 1
  givenname: Sarrah M.
  surname: Dunham-Cheatham
  fullname: Dunham-Cheatham, Sarrah M.
  email: sdunhamcheatham@unr.edu
  organization: Department of Natural Resources & Environmental Science, University of Nevada, Reno, 1664 N.Virginia Street, Mail Stop 186, Reno, NV 89557, USA
– sequence: 2
  givenname: Qian
  surname: Zhao
  fullname: Zhao, Qian
  organization: Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Mail Stop 258, Reno, NV 89557, USA
– sequence: 3
  givenname: Daniel
  surname: Obrist
  fullname: Obrist, Daniel
  organization: Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, 220 Pawtucket St, Lowell, MA 01854, USA
– sequence: 4
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
  organization: The Global Water Center, University of Nevada, Reno, 1664 N.Virginia Street, Mail Stop 186, Reno, NV 89557, USA
BackLink https://www.osti.gov/biblio/1633817$$D View this record in Osti.gov
BookMark eNqFkc1u1DAUhS1UpE4Lr1BFrNhksOO_scQCVPEnVWLTri3Hvhk8SuzBziBgxTvwhn0SbkjZsKlkyb72d6587rkgZyknIOSK0S2jTL06bPeQA5TJbTva4SUTkssnZMN2umtVJ80Z2VAkW00VOycXtR6w1MhuSLlL8P0IfobQTOC_uBTr1Ay5NPvx5HOF9ljihI81x7HJZY-Ab7wrfU7NFBMUN8afbo5YnhL-onEJl4OS--jvf_1-ODVzcanGhXtGng5urPD8Yb8kd-_f3V5_bG8-f_h0_famdULwuWXGBKp7Jc3Ah2CAas061bMgegGaB28U9EIwpRgdtA5cSAGGSif0wBlIfklerH1znaOtPs7oz-eU0K1livMd0wi9XKFjyV9PUGc7xephHF2CfKq2k5IZLvXOIPp6RX3JtRYYLLb86xy9xdEyapc87MH-y8Muedg1D5Sr_-TLZF358bjwzSoEHNa3CGXxAslDiGWxEnJ8rMUfCoatmg
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_119387
crossref_primary_10_1016_j_geoderma_2020_114894
crossref_primary_10_1021_acs_est_4c12966
crossref_primary_10_1016_j_geoderma_2020_114800
crossref_primary_10_5194_bg_20_3873_2023
crossref_primary_10_1371_journal_pone_0262961
crossref_primary_10_1139_cjss_2023_0097
crossref_primary_10_1016_j_geoderma_2024_116825
crossref_primary_10_1021_acs_est_3c01336
crossref_primary_10_3390_app122010239
Cites_doi 10.1016/j.scitotenv.2018.09.271
10.1890/14-2097.1
10.5194/bg-13-4777-2016
10.1111/gcb.12229
10.1021/es402812j
10.1007/978-90-481-3585-1_128
10.1016/j.gca.2017.06.017
10.1021/ac60289a016
10.1007/s00442-015-3290-x
10.1016/j.scitotenv.2017.08.290
10.1016/j.apsoil.2016.09.001
10.1111/gcb.14859
10.1029/2019GL082187
10.1016/j.chemgeo.2016.12.014
10.1146/annurev.energy.30.050504.144248
10.4155/cmt.13.77
10.1016/S0038-0717(97)00031-X
10.1007/s00374-008-0334-y
10.3389/fmicb.2015.00609
10.1016/0004-6981(87)90374-X
10.1021/acs.est.6b05709
10.1007/s10533-015-0180-6
10.1016/S0038-0717(01)00020-7
10.2136/sssaj1985.03615995004900030024x
10.1128/AEM.62.7.2411-2415.1996
10.1007/s00374-005-0049-2
10.1016/j.geoderma.2019.114160
10.1007/s00374-004-0790-y
10.1016/j.apsoil.2007.05.002
10.1146/annurev.earth.35.031306.140057
10.1525/bio.2012.62.3.5
10.1038/nature10386
10.1016/j.chemgeo.2016.03.013
10.1016/S0038-0717(00)00084-5
10.1038/srep11214
10.1021/es2045579
10.1016/j.soilbio.2004.06.010
10.1021/es104384m
10.3389/fmicb.2012.00050
10.1111/gcb.12475
10.1016/j.soilbio.2017.01.017
10.1038/ncomms3947
10.1016/j.scitotenv.2019.02.441
10.1016/j.gca.2006.08.047
10.1038/s41467-017-01406-6
10.1038/nrmicro3347
10.1016/j.soilbio.2008.02.020
10.1016/j.geoderma.2017.07.026
10.1016/j.chemosphere.2015.03.087
10.1007/s10533-017-0383-0
10.7930/Soccr2.2018
10.1016/0038-0717(94)90184-8
10.1038/s41467-017-01998-z
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.geoderma.2020.114535
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 1633817
10_1016_j_geoderma_2020_114535
S0016706120305383
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-a443t-199d07b659f3fd9e077126b1d4b4e73dc96eb4416610f77d3454e905a47f31e53
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri May 19 00:41:34 EDT 2023
Thu Jul 10 23:02:34 EDT 2025
Tue Jul 01 04:04:53 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Redox fluctuations
Glucose
Iron reduction
Soil organic carbon
Priming effect
Reductive dissolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a443t-199d07b659f3fd9e077126b1d4b4e73dc96eb4416610f77d3454e905a47f31e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0014275
USDOE
OpenAccessLink https://www.osti.gov/biblio/1633817
PQID 2551935789
PQPubID 24069
ParticipantIDs osti_scitechconnect_1633817
proquest_miscellaneous_2551935789
crossref_citationtrail_10_1016_j_geoderma_2020_114535
crossref_primary_10_1016_j_geoderma_2020_114535
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wordofa, Adhikari, Dunham-Cheatham, Zhao, Poulson, Tang, Yang (b0285) 2019; 668
Blagodatskaya, Blagodatsky, Anderson, Kuzyakov (b0025) 2007; 37
Sexstone, Revsbech, Parkin, Tiedje (b0210) 1985; 49
Qiao, Xu, Hu, Blagodatskaya, Liu, Schaefer, Kuzyakov (b0180) 2016
Blagodatskaya, Kuzyakov (b0030) 2008; 45
De Nobili, Contin, Mondini, Brookes (b0060) 2001; 33
Vogel, Mueller, Hoschen, Buegger, Heister, Schulz, Schloter, Kogel-Knabner (b0260) 2014
Kuzyakov, Friedel, Stahr (b0135) 2000; 32
Shen, Bartha (b0215) 1997; 29
Yin, Phillips, Liang, Xu, Liu (b0295) 2016; 108
Bremer, Kuikman (b0045) 1994; 26
Adhikari, Poulson, Sumaila, Dynes, McBeth, Yang (b0010) 2016; 430
Blagodatskaya, Kuzyakov (b0035) 2011
Scharlemann, Tanner, Hiederer, Kapos (b0195) 2014; 5
Coward, Thompson, Plante (b0055) 2017; 306
Hall, Huang (b0100) 2017; 136
2017.
Zedler, Kercher (b0300) 2005; 30
retrieved 30 June 2019. 2015.
Shi, Rosso, Clarke, Richardson, Zachara, Fredrickson (b0225) 2012; 3
Wang, Xu, Hu, Dai, Jiang, Bai (b0275) 2015; 178
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online. Accessed 03/01/2018.
Porras, Hicks Pries, Torn, Nico (b0175) 2018; 613–614
Fredrickson, Romine, Beliaev, Auchtung, Driscoll, Gardner, Nealson, Osterman, Pinchuk, Reed, Rodionov, Rodrigues, Saffarini, Serres, Spormann, Zhulin, Tiedje (b0080) 2008; 6
Farquharson, L.M., Romanovsky, V.E., Cable, W.L., Walker, D.A., Kokelj, S.V., Nicolsky, D., 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canandian High Arctic. Geophys. Res. Lett. doi: 10.1029/2019GL082187.
Mondini, Cayuela, Sanchez-Monedero, Roig, Brookes (b0155) 2006; 42
Yang, Liptzin (b0290) 2015; 96
Shen, Bartha (b0220) 1996; 62
Ginn, Meile, Wilmoth, Tang, Thompson (b0085) 2017; 51
Herlihy, Galloway, Mills (b0105) 1987; 21
Schneckenberger, Demin, Stahr, Kuzyakov (b0205) 2008; 40
Food and Agriculture Organization of the United Nations. Soils help to combat and adapt to climate change by playing a key role in the carbon cycle.
Keiluweit, Wanzek, Kleber, Nico, Fendorf (b0125) 2017
Zhao, Poulson, Obrist, Sumaila, Dynes, McBeth, Yang (b0310) 2016; 13
Shimizu (b0230) 2013; 47
Obrist (b0160) 2012; 46
Hall, Silver (b0095) 2013; 19
Santruckova, Picek, Tykva, Simek, Pavlu (b0190) 2004; 40
Di Lonardo, De Boer, Klein Gunnewiek, Hannula, Van der Wal (b0065) 2017; 108
Obrist, Zielinksa, Perlinger (b0170) 2015; 134
Wagai, Mayer (b0265) 2007; 71
Adhikari, Yang (b0005) 2015
Sigma-Aldrich. Glucose (HK) Assay Kit Technical Bulletin. 2004.
Houghton (b0110) 2007; 35
Wang, Boutton, Xu, Hu, Jiang, Bai (b0270) 2015
Huang, Hall (b0115) 2017
Adhikari, Dunham-Cheatham, Wordofa, Verburg, Poulson, Yang (b0020) 2019; 651
Haddix, Gregorich, Helgason, Janzen, Ellert, Cotrufo (b0090) 2020; 363
Stookey (b0245) 1970; 42
Keiluweit, Nico, Kleber, Fendorf (b0120) 2016; 127
van Hees, Jones, Finlay, Godbold, Lundström (b0255) 2005; 37
Zhao, Adhikari, Mejia, Huang, Patel, Wang, Tang, Obrist, Roden, Yang (b0305) 2017; 464
Chen, Senbayram, Blagodatsky, Myachina, Dittert, Lin, Blagodtskaya, Kuzyakov (b0050) 2013; 20
Obrist, Johnson, Lindberg, Luo, Hararuk, Bracho, Battles, Dail, Edmonds, Monson, Ollinger, Pallardy, Pregitzer, Todd (b0165) 2011; 45
Adhikari, Zhao, Das, Mejia, Huang, Wang, Poulson, Tang, Roden, Yang (b0015) 2017; 212
Melton, Swanner, Behrens, Schmidt, Kappler (b0145) 2014; 12
Mitsch, Zhang, Stefanik, Nahlik, Anderson, Bernal, Hernandez, Song (b0150) 2012; 62
Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (b0200) 2011; 478
USGCRP, 2018: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z. (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 878 pp., doi: 10.7930/SOCCR2.2018.
Kouzuma, Kasai, Hirose, Watanabe (b0130) 2015; 6
Lavallee, Soong, Cotrufo (b0140) 2019; 26
Wang, Wang, He, Feng (b0280) 2017
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Wordofa (10.1016/j.geoderma.2020.114535_b0285) 2019; 668
Schneckenberger (10.1016/j.geoderma.2020.114535_b0205) 2008; 40
Obrist (10.1016/j.geoderma.2020.114535_b0160) 2012; 46
Adhikari (10.1016/j.geoderma.2020.114535_b0015) 2017; 212
Keiluweit (10.1016/j.geoderma.2020.114535_b0120) 2016; 127
Shimizu (10.1016/j.geoderma.2020.114535_b0230) 2013; 47
Vogel (10.1016/j.geoderma.2020.114535_b0260) 2014
Shi (10.1016/j.geoderma.2020.114535_b0225) 2012; 3
Santruckova (10.1016/j.geoderma.2020.114535_b0190) 2004; 40
10.1016/j.geoderma.2020.114535_b0185
Bremer (10.1016/j.geoderma.2020.114535_b0045) 1994; 26
Mondini (10.1016/j.geoderma.2020.114535_b0155) 2006; 42
Adhikari (10.1016/j.geoderma.2020.114535_b0005) 2015
Lavallee (10.1016/j.geoderma.2020.114535_b0140) 2019; 26
Adhikari (10.1016/j.geoderma.2020.114535_b0020) 2019; 651
Coward (10.1016/j.geoderma.2020.114535_b0055) 2017; 306
van Hees (10.1016/j.geoderma.2020.114535_b0255) 2005; 37
Chen (10.1016/j.geoderma.2020.114535_b0050) 2013; 20
Mitsch (10.1016/j.geoderma.2020.114535_b0150) 2012; 62
Wagai (10.1016/j.geoderma.2020.114535_b0265) 2007; 71
Obrist (10.1016/j.geoderma.2020.114535_b0165) 2011; 45
Scharlemann (10.1016/j.geoderma.2020.114535_b0195) 2014; 5
Melton (10.1016/j.geoderma.2020.114535_b0145) 2014; 12
Sexstone (10.1016/j.geoderma.2020.114535_b0210) 1985; 49
Stookey (10.1016/j.geoderma.2020.114535_b0245) 1970; 42
10.1016/j.geoderma.2020.114535_b0250
Hall (10.1016/j.geoderma.2020.114535_b0095) 2013; 19
Qiao (10.1016/j.geoderma.2020.114535_b0180) 2016
Wang (10.1016/j.geoderma.2020.114535_b0280) 2017
10.1016/j.geoderma.2020.114535_b0235
Wang (10.1016/j.geoderma.2020.114535_b0270) 2015
Shen (10.1016/j.geoderma.2020.114535_b0215) 1997; 29
Hall (10.1016/j.geoderma.2020.114535_b0100) 2017; 136
Haddix (10.1016/j.geoderma.2020.114535_b0090) 2020; 363
Yang (10.1016/j.geoderma.2020.114535_b0290) 2015; 96
Herlihy (10.1016/j.geoderma.2020.114535_b0105) 1987; 21
Houghton (10.1016/j.geoderma.2020.114535_b0110) 2007; 35
Huang (10.1016/j.geoderma.2020.114535_b0115) 2017
Porras (10.1016/j.geoderma.2020.114535_b0175) 2018; 613–614
Schmidt (10.1016/j.geoderma.2020.114535_b0200) 2011; 478
10.1016/j.geoderma.2020.114535_b0240
Yin (10.1016/j.geoderma.2020.114535_b0295) 2016; 108
Wang (10.1016/j.geoderma.2020.114535_b0275) 2015; 178
Di Lonardo (10.1016/j.geoderma.2020.114535_b0065) 2017; 108
De Nobili (10.1016/j.geoderma.2020.114535_b0060) 2001; 33
Kuzyakov (10.1016/j.geoderma.2020.114535_b0135) 2000; 32
Shen (10.1016/j.geoderma.2020.114535_b0220) 1996; 62
Zedler (10.1016/j.geoderma.2020.114535_b0300) 2005; 30
Zhao (10.1016/j.geoderma.2020.114535_b0305) 2017; 464
Kouzuma (10.1016/j.geoderma.2020.114535_b0130) 2015; 6
Ginn (10.1016/j.geoderma.2020.114535_b0085) 2017; 51
Adhikari (10.1016/j.geoderma.2020.114535_b0010) 2016; 430
Zhao (10.1016/j.geoderma.2020.114535_b0310) 2016; 13
10.1016/j.geoderma.2020.114535_b0070
Blagodatskaya (10.1016/j.geoderma.2020.114535_b0035) 2011
10.1016/j.geoderma.2020.114535_b0075
Keiluweit (10.1016/j.geoderma.2020.114535_b0125) 2017
Blagodatskaya (10.1016/j.geoderma.2020.114535_b0025) 2007; 37
Blagodatskaya (10.1016/j.geoderma.2020.114535_b0030) 2008; 45
Fredrickson (10.1016/j.geoderma.2020.114535_b0080) 2008; 6
Obrist (10.1016/j.geoderma.2020.114535_b0170) 2015; 134
References_xml – volume: 178
  start-page: 1239
  year: 2015
  end-page: 1250
  ident: b0275
  article-title: The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest
  publication-title: Oecologia
– volume: 42
  start-page: 542
  year: 2006
  end-page: 549
  ident: b0155
  article-title: Soil microbial biomass activation by trace amounts of readily available substrate
  publication-title: Biol. Fertil. Soils
– year: 2011
  ident: b0035
  article-title: Priming effects in relation to soil conditions - mechanisms
  publication-title: Encyclopedia of Agrophysics.
– volume: 306
  start-page: 206
  year: 2017
  end-page: 216
  ident: b0055
  article-title: Iron-mediated mineralogical control of organic matter accumulation in tropical soils
  publication-title: Geoderma
– volume: 12
  start-page: 797
  year: 2014
  end-page: 808
  ident: b0145
  article-title: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle
  publication-title: Nat. Rev. Microbiol.
– volume: 127
  start-page: 157
  year: 2016
  end-page: 171
  ident: b0120
  article-title: Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?
  publication-title: Biogeochemistry
– volume: 19
  start-page: 2804
  year: 2013
  end-page: 2813
  ident: b0095
  article-title: Iron oxidation stimulates organic matter decomposition in humid tropical forest soils
  publication-title: Glob. Change Biol.
– volume: 51
  start-page: 3250
  year: 2017
  end-page: 3259
  ident: b0085
  article-title: Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil
  publication-title: Environ. Sci. Technol.
– year: 2016
  ident: b0180
  article-title: Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum
  publication-title: Sci. Rep.
– volume: 40
  start-page: 1981
  year: 2008
  end-page: 1988
  ident: b0205
  article-title: Microbial utilization and mineralization of [14C]glucose added in six orders of concentration to soil
  publication-title: Soil Biol. Biochem.
– volume: 37
  start-page: 1
  year: 2005
  end-page: 13
  ident: b0255
  article-title: The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review
  publication-title: Soil Biol. Biochem.
– volume: 45
  start-page: 3974
  year: 2011
  end-page: 3981
  ident: b0165
  article-title: Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils
  publication-title: Environ. Sci. Technol.
– volume: 363
  year: 2020
  ident: b0090
  article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil
  publication-title: Geoderma
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: b0135
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
– reference: Farquharson, L.M., Romanovsky, V.E., Cable, W.L., Walker, D.A., Kokelj, S.V., Nicolsky, D., 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canandian High Arctic. Geophys. Res. Lett. doi: 10.1029/2019GL082187.
– volume: 96
  start-page: 2015
  year: 2015
  end-page: 2020
  ident: b0290
  article-title: High potential for iron reduction in upland soils
  publication-title: Ecology
– volume: 108
  start-page: 41
  year: 2017
  end-page: 54
  ident: b0065
  article-title: Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content
  publication-title: Soil Biol. Biochem.
– year: 2015
  ident: b0005
  article-title: Selective stabilization of aliphatic organic carbon by iron oxide
  publication-title: Sci. Rep.
– volume: 212
  start-page: 221
  year: 2017
  end-page: 233
  ident: b0015
  article-title: Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction
  publication-title: Geochim. Cosmochim. Acta
– volume: 6
  start-page: 609
  year: 2015
  ident: b0130
  article-title: Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells
  publication-title: Front. Microbiol.
– volume: 108
  start-page: 248
  year: 2016
  end-page: 257
  ident: b0295
  article-title: Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils
  publication-title: Appl. Soil Ecol.
– year: 2017
  ident: b0125
  article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization
  publication-title: Nat. Commun.
– volume: 30
  start-page: 39
  year: 2005
  end-page: 74
  ident: b0300
  article-title: Wetland resources: Status, trends, ecosystem services, and restorability
  publication-title: Annu. Rev. Environ. Resour.
– year: 2015
  ident: b0270
  article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes
  publication-title: Sci. Rep.
– reference: > 2017.
– volume: 613–614
  start-page: 342
  year: 2018
  end-page: 351
  ident: b0175
  article-title: Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon
  publication-title: Sci. Total Environ.
– year: 2017
  ident: b0280
  article-title: Iron-mediated soil carbon response to water-table decline in an alpine wetland
  publication-title: Nat. Commun.
– volume: 49
  start-page: 645
  year: 1985
  end-page: 651
  ident: b0210
  article-title: Direct measurement of oxygen profiles and denitrification rates in soil aggregates
  publication-title: Soil Sci. Soc. Am. J.
– volume: 62
  start-page: 237
  year: 2012
  end-page: 250
  ident: b0150
  article-title: Creating wetlands: Primary succession, water quality changes, and self-design over 15 years
  publication-title: Bioscience
– volume: 20
  start-page: 2356
  year: 2013
  end-page: 2367
  ident: b0050
  article-title: Soil C and N availability determine the priming effect: microbial N and stoichiometric decomposition theories
  publication-title: Glob. Change Biol.
– volume: 134
  start-page: 98
  year: 2015
  end-page: 105
  ident: b0170
  article-title: Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests
  publication-title: Chemosphere
– year: 2017
  ident: b0115
  article-title: Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter
  publication-title: Nat. Commun.
– reference: Food and Agriculture Organization of the United Nations. Soils help to combat and adapt to climate change by playing a key role in the carbon cycle.
– volume: 26
  start-page: 261
  year: 2019
  end-page: 273
  ident: b0140
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21
  publication-title: Glob. Change Biol.
– volume: 62
  start-page: 2411
  year: 1996
  end-page: 2415
  ident: b0220
  article-title: Metabolic efficiency and turnover of soil microbial communities in biodegradation tests
  publication-title: Appl. Environ. Microbiol.
– volume: 46
  start-page: 5921
  year: 2012
  end-page: 5930
  ident: b0160
  article-title: Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury
  publication-title: Environ. Sci. Technol.
– reference: USGCRP, 2018: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z. (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 878 pp., doi: 10.7930/SOCCR2.2018.
– volume: 430
  start-page: 13
  year: 2016
  end-page: 20
  ident: b0010
  article-title: Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes
  publication-title: Chem. Geol.
– volume: 37
  start-page: 95
  year: 2007
  end-page: 105
  ident: b0025
  article-title: Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies
  publication-title: Appl. Soil Ecol.
– volume: 5
  start-page: 81
  year: 2014
  end-page: 91
  ident: b0195
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manage.
– volume: 71
  start-page: 25
  year: 2007
  end-page: 35
  ident: b0265
  article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides
  publication-title: Geochim. Cosmochim. Acta
– volume: 668
  start-page: 216
  year: 2019
  end-page: 223
  ident: b0285
  article-title: Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction
  publication-title: Sci. Total Environ.
– reference: R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <
– volume: 47
  start-page: 13375
  year: 2013
  end-page: 13384
  ident: b0230
  article-title: Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates
  publication-title: Environ. Sci. Technol.
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: b0200
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 6
  start-page: 592
  year: 2008
  end-page: 603
  ident: b0080
  article-title: Towards environmental systems biology of Shewanella
  publication-title: Nat. Rev.
– year: 2014
  ident: b0260
  article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils
  publication-title: Nat. Commun.
– volume: 136
  start-page: 91
  year: 2017
  end-page: 102
  ident: b0100
  article-title: Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils?
  publication-title: Biogeochemistry
– volume: 3
  start-page: 50
  year: 2012
  ident: b0225
  article-title: Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1
  publication-title: Front. Microbiol.
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  ident: b0030
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: A critical review
  publication-title: Biol. Fertil. Soils
– volume: 42
  start-page: 779
  year: 1970
  end-page: 781
  ident: b0245
  article-title: Ferrozine: a new spectrophotometric reagent for iron
  publication-title: Anal. Chem.
– volume: 26
  start-page: 511
  year: 1994
  end-page: 517
  ident: b0045
  article-title: Microbial utilization of 14C[U]glucose in soil is affected by the amount and timing of glucose additions
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 4777
  year: 2016
  end-page: 4788
  ident: b0310
  article-title: Iron-bound organic carbon in forest soils: Quantification and characterization
  publication-title: Biogeosciences
– volume: 35
  start-page: 313
  year: 2007
  end-page: 347
  ident: b0110
  article-title: Balancing the global carbon budget
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 29
  start-page: 1195
  year: 1997
  end-page: 1198
  ident: b0215
  article-title: Priming effect of glucose polymers in soil-based biodegradation tests
  publication-title: Soil Biol. Biochem.
– reference: Sigma-Aldrich. Glucose (HK) Assay Kit Technical Bulletin. 2004.
– volume: 21
  start-page: 2397
  year: 1987
  end-page: 2402
  ident: b0105
  article-title: Bacterial utilization of formic and acetic acid in rainwater
  publication-title: Atmos. Environ.
– reference: , retrieved 30 June 2019. 2015.
– reference: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online. Accessed 03/01/2018.
– volume: 33
  start-page: 1163
  year: 2001
  end-page: 1170
  ident: b0060
  article-title: Soil microbial biomass is triggered into activity by trace amounts of substrate
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 386
  year: 2004
  end-page: 392
  ident: b0190
  article-title: Short-term partitioning of C-14-[U]-glucose in the soil microbial pool under varied aeration status
  publication-title: Biol. Fertil. Soils
– volume: 464
  start-page: 118
  year: 2017
  end-page: 126
  ident: b0305
  article-title: Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction
  publication-title: Chem. Geol.
– volume: 651
  start-page: 1253
  year: 2019
  end-page: 1260
  ident: b0020
  article-title: Aerobic respiration of mineral-bound organic carbon in a soil
  publication-title: Sci. Total Environ.
– volume: 651
  start-page: 1253
  year: 2019
  ident: 10.1016/j.geoderma.2020.114535_b0020
  article-title: Aerobic respiration of mineral-bound organic carbon in a soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.271
– volume: 96
  start-page: 2015
  year: 2015
  ident: 10.1016/j.geoderma.2020.114535_b0290
  article-title: High potential for iron reduction in upland soils
  publication-title: Ecology
  doi: 10.1890/14-2097.1
– volume: 13
  start-page: 4777
  year: 2016
  ident: 10.1016/j.geoderma.2020.114535_b0310
  article-title: Iron-bound organic carbon in forest soils: Quantification and characterization
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-4777-2016
– volume: 19
  start-page: 2804
  year: 2013
  ident: 10.1016/j.geoderma.2020.114535_b0095
  article-title: Iron oxidation stimulates organic matter decomposition in humid tropical forest soils
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12229
– volume: 47
  start-page: 13375
  year: 2013
  ident: 10.1016/j.geoderma.2020.114535_b0230
  article-title: Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402812j
– year: 2011
  ident: 10.1016/j.geoderma.2020.114535_b0035
  article-title: Priming effects in relation to soil conditions - mechanisms
  publication-title: Encyclopedia of Agrophysics.
  doi: 10.1007/978-90-481-3585-1_128
– volume: 212
  start-page: 221
  year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0015
  article-title: Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.06.017
– volume: 42
  start-page: 779
  year: 1970
  ident: 10.1016/j.geoderma.2020.114535_b0245
  article-title: Ferrozine: a new spectrophotometric reagent for iron
  publication-title: Anal. Chem.
  doi: 10.1021/ac60289a016
– volume: 178
  start-page: 1239
  year: 2015
  ident: 10.1016/j.geoderma.2020.114535_b0275
  article-title: The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest
  publication-title: Oecologia
  doi: 10.1007/s00442-015-3290-x
– ident: 10.1016/j.geoderma.2020.114535_b0075
– volume: 613–614
  start-page: 342
  year: 2018
  ident: 10.1016/j.geoderma.2020.114535_b0175
  article-title: Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.290
– volume: 108
  start-page: 248
  year: 2016
  ident: 10.1016/j.geoderma.2020.114535_b0295
  article-title: Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.09.001
– volume: 26
  start-page: 261
  year: 2019
  ident: 10.1016/j.geoderma.2020.114535_b0140
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14859
– volume: 6
  start-page: 592
  year: 2008
  ident: 10.1016/j.geoderma.2020.114535_b0080
  article-title: Towards environmental systems biology of Shewanella
  publication-title: Nat. Rev.
– ident: 10.1016/j.geoderma.2020.114535_b0070
  doi: 10.1029/2019GL082187
– volume: 464
  start-page: 118
  year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0305
  article-title: Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2016.12.014
– volume: 30
  start-page: 39
  year: 2005
  ident: 10.1016/j.geoderma.2020.114535_b0300
  article-title: Wetland resources: Status, trends, ecosystem services, and restorability
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev.energy.30.050504.144248
– volume: 5
  start-page: 81
  year: 2014
  ident: 10.1016/j.geoderma.2020.114535_b0195
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manage.
  doi: 10.4155/cmt.13.77
– volume: 29
  start-page: 1195
  year: 1997
  ident: 10.1016/j.geoderma.2020.114535_b0215
  article-title: Priming effect of glucose polymers in soil-based biodegradation tests
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(97)00031-X
– year: 2015
  ident: 10.1016/j.geoderma.2020.114535_b0270
  article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes
  publication-title: Sci. Rep.
– volume: 45
  start-page: 115
  year: 2008
  ident: 10.1016/j.geoderma.2020.114535_b0030
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: A critical review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 6
  start-page: 609
  year: 2015
  ident: 10.1016/j.geoderma.2020.114535_b0130
  article-title: Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00609
– volume: 21
  start-page: 2397
  year: 1987
  ident: 10.1016/j.geoderma.2020.114535_b0105
  article-title: Bacterial utilization of formic and acetic acid in rainwater
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(87)90374-X
– volume: 51
  start-page: 3250
  year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0085
  article-title: Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05709
– volume: 127
  start-page: 157
  year: 2016
  ident: 10.1016/j.geoderma.2020.114535_b0120
  article-title: Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0180-6
– ident: 10.1016/j.geoderma.2020.114535_b0240
– volume: 33
  start-page: 1163
  year: 2001
  ident: 10.1016/j.geoderma.2020.114535_b0060
  article-title: Soil microbial biomass is triggered into activity by trace amounts of substrate
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00020-7
– volume: 49
  start-page: 645
  year: 1985
  ident: 10.1016/j.geoderma.2020.114535_b0210
  article-title: Direct measurement of oxygen profiles and denitrification rates in soil aggregates
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1985.03615995004900030024x
– volume: 62
  start-page: 2411
  year: 1996
  ident: 10.1016/j.geoderma.2020.114535_b0220
  article-title: Metabolic efficiency and turnover of soil microbial communities in biodegradation tests
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.62.7.2411-2415.1996
– volume: 42
  start-page: 542
  year: 2006
  ident: 10.1016/j.geoderma.2020.114535_b0155
  article-title: Soil microbial biomass activation by trace amounts of readily available substrate
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-005-0049-2
– volume: 363
  year: 2020
  ident: 10.1016/j.geoderma.2020.114535_b0090
  article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114160
– volume: 40
  start-page: 386
  year: 2004
  ident: 10.1016/j.geoderma.2020.114535_b0190
  article-title: Short-term partitioning of C-14-[U]-glucose in the soil microbial pool under varied aeration status
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-004-0790-y
– volume: 37
  start-page: 95
  year: 2007
  ident: 10.1016/j.geoderma.2020.114535_b0025
  article-title: Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2007.05.002
– volume: 35
  start-page: 313
  year: 2007
  ident: 10.1016/j.geoderma.2020.114535_b0110
  article-title: Balancing the global carbon budget
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.35.031306.140057
– volume: 62
  start-page: 237
  year: 2012
  ident: 10.1016/j.geoderma.2020.114535_b0150
  article-title: Creating wetlands: Primary succession, water quality changes, and self-design over 15 years
  publication-title: Bioscience
  doi: 10.1525/bio.2012.62.3.5
– volume: 478
  start-page: 49
  year: 2011
  ident: 10.1016/j.geoderma.2020.114535_b0200
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 430
  start-page: 13
  year: 2016
  ident: 10.1016/j.geoderma.2020.114535_b0010
  article-title: Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2016.03.013
– volume: 32
  start-page: 1485
  year: 2000
  ident: 10.1016/j.geoderma.2020.114535_b0135
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– year: 2015
  ident: 10.1016/j.geoderma.2020.114535_b0005
  article-title: Selective stabilization of aliphatic organic carbon by iron oxide
  publication-title: Sci. Rep.
  doi: 10.1038/srep11214
– volume: 46
  start-page: 5921
  year: 2012
  ident: 10.1016/j.geoderma.2020.114535_b0160
  article-title: Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2045579
– volume: 37
  start-page: 1
  year: 2005
  ident: 10.1016/j.geoderma.2020.114535_b0255
  article-title: The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.06.010
– volume: 45
  start-page: 3974
  year: 2011
  ident: 10.1016/j.geoderma.2020.114535_b0165
  article-title: Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104384m
– volume: 3
  start-page: 50
  year: 2012
  ident: 10.1016/j.geoderma.2020.114535_b0225
  article-title: Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00050
– volume: 20
  start-page: 2356
  year: 2013
  ident: 10.1016/j.geoderma.2020.114535_b0050
  article-title: Soil C and N availability determine the priming effect: microbial N and stoichiometric decomposition theories
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12475
– volume: 108
  start-page: 41
  year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0065
  article-title: Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.01.017
– year: 2014
  ident: 10.1016/j.geoderma.2020.114535_b0260
  article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3947
– volume: 668
  start-page: 216
  year: 2019
  ident: 10.1016/j.geoderma.2020.114535_b0285
  article-title: Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.441
– volume: 71
  start-page: 25
  year: 2007
  ident: 10.1016/j.geoderma.2020.114535_b0265
  article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.08.047
– year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0125
  article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01406-6
– volume: 12
  start-page: 797
  year: 2014
  ident: 10.1016/j.geoderma.2020.114535_b0145
  article-title: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3347
– volume: 40
  start-page: 1981
  year: 2008
  ident: 10.1016/j.geoderma.2020.114535_b0205
  article-title: Microbial utilization and mineralization of [14C]glucose added in six orders of concentration to soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.02.020
– volume: 306
  start-page: 206
  year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0055
  article-title: Iron-mediated mineralogical control of organic matter accumulation in tropical soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.07.026
– ident: 10.1016/j.geoderma.2020.114535_b0185
– volume: 134
  start-page: 98
  year: 2015
  ident: 10.1016/j.geoderma.2020.114535_b0170
  article-title: Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.03.087
– year: 2016
  ident: 10.1016/j.geoderma.2020.114535_b0180
  article-title: Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum
  publication-title: Sci. Rep.
– volume: 136
  start-page: 91
  year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0100
  article-title: Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0383-0
– ident: 10.1016/j.geoderma.2020.114535_b0235
– ident: 10.1016/j.geoderma.2020.114535_b0250
  doi: 10.7930/Soccr2.2018
– year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0280
  article-title: Iron-mediated soil carbon response to water-table decline in an alpine wetland
  publication-title: Nat. Commun.
– volume: 26
  start-page: 511
  year: 1994
  ident: 10.1016/j.geoderma.2020.114535_b0045
  article-title: Microbial utilization of 14C[U]glucose in soil is affected by the amount and timing of glucose additions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)90184-8
– year: 2017
  ident: 10.1016/j.geoderma.2020.114535_b0115
  article-title: Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01998-z
SSID ssj0017020
Score 2.3784983
Snippet Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an...
Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114535
SubjectTerms Glucose
greenhouses
Iron reduction
mineralization
Priming effect
Redox fluctuations
Reductive dissolution
Soil organic carbon
wetlands
Title Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic–aerobic transition
URI https://dx.doi.org/10.1016/j.geoderma.2020.114535
https://www.proquest.com/docview/2551935789
https://www.osti.gov/biblio/1633817
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BitswEBUhvbSH0m5bmqa7qNCrGyuWpegYwoZ0l-bUQG5CtqTikNjB8V7L_sP-Yb-kM7a8tLSQw4IPtvHYRk-eGeF5bwj5HEvpvTAisjB7I25mPpohwUcZaxSzmeIM-c7f1mK14TfbdDsgi54Lg2WVwfd3Pr311uHMJIzm5FgUyPFlQmKExjkLCy1ksHOJ-vlffj6WeTAZB2lGJiK8-g-W8A4wwoZjrf7QtJXNTdu2b_8NUMMKvrl_PHYbhpavyMuQP9J594qvycCVF-TF_EcdNDTcG1JvStTtzyGXpAeHzN7idKCQnNJQnx4dUdPf0lNV7GnX1imnuamzqqSHopWhDuxMihSzmpoSNuNQsin_df8Q9miDca4t-XpLNsvr74tVFForRIbzpMHyEhvLTKTKJ94qB5CxqciY5Rl3MrG5Ei6DTAmid-yltAlPuVNxarj0CXNp8o4My6p07wk1KJEmhfVWei4yC3eegRdwMSr1eR6PSNqPp86D7ji2v9jrvsBsp3scNOKgOxxGZPJod-yUN85aqB4u_dcc0hAeztqOEV-0Q_HcHKuMwBCyVZQwHJFPPewaPj_8p2JKV92dNKzIIAUGt6c-POHpY_IcjzAmsvQjGTb1nbuEZKfJrtrZfEWezb_erta_AdcKAQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB3R5UA5VNBSsdAWI_UabUIce31coaKlwJ5YiZvlxHYVxCar7HLnH_hDvoSZxEFUrcQBKYco0SSR32Rmosx7A_AzltJ7YURk0XsjbsY-GhPBRxlrVGJzxRPiO1_NxHTOf99kNxtw2nNhqK0yxP4uprfROhwZhdUcLcuSOL6JkJShyWfxQ-sDbJI6FTr75uT8Yjp7-Zkg46DOmIiIDF4RhW8RJpo51koQnbTKuVk7-e2_OWpQ42v3T9BuM9HZDnwKJSSbdE-5Cxuu-gzbkz9NkNFwX6CZVyTdX2A5yRaOyL3lasGwPmWhRT1akqy_Zau6vGPdZKeCFabJ64otylaJOhA0GbHMGmYq3Iwj1abi6eEx7LE1pbq262sP5me_rk-nUZiuEBnO0zV1mNhY5iJTPvVWOUQtORF5YnnOnUxtoYTLsVjCBB57KW2Ki-tUnBkufZq4LP0Kg6qu3D4wQyppUlhvpecit3jlMQYCF5NYn-fxELJ-PXURpMdpAsad7nvMbnWPgyYcdIfDEEYvdstOfONNC9XDpf9yI40Z4k3bQ8KX7Eg_t6BGIzTEgpVUDIdw3MOu8Q2k3yqmcvX9SuNHGVbBGPnUwTvufgRb0-urS315Prs4hI90hlJkkn2Dwbq5d9-x9lnnP4JvPwOaMgO1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+mechanism+for+glucose-primed+soil+organic+carbon+mineralization+under+an+anaerobic%E2%80%93aerobic+transition&rft.jtitle=Geoderma&rft.au=Dunham-Cheatham%2C+Sarrah+M.&rft.au=Zhao%2C+Qian&rft.au=Obrist%2C+Daniel&rft.au=Yang%2C+Yu&rft.date=2020-10-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=376&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114535&rft.externalDocID=S0016706120305383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon