Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic–aerobic transition
Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an anaerobic–aerobic transition. Bottom: results highlighting the correlation between reduction of Fe phases and mobilization of soil organic carbon in the p...
Saved in:
Published in | Geoderma Vol. 376; no. C; p. 114535 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2020.114535 |
Cover
Loading…
Abstract | Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an anaerobic–aerobic transition. Bottom: results highlighting the correlation between reduction of Fe phases and mobilization of soil organic carbon in the presence of glucose with subsequent carbon mineralization when aerobic conditions return.
[Display omitted]
•Glucose increases reductive release of iron oxide-bound carbon under anaerobic conditions.•Released carbon positively primes soil organic carbon mineralization.•Priming effect is larger when glucose is added under anaerobic, not aerobic, conditions.•Results have implications for modeling CO2 fluxes from soils experiencing redox fluctuations.
Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which contribute around one third of the global terrestrial C reservoir. Priming effects (PE), induction of changes in C mineralization due to additions of energy-rich organic carbon (OC) substrates, have been largely ignored during redox transitions in current modelling and experimental efforts for evaluating C cycles. In this study, we investigated the effects of glucose input on the mineralization of soil OC during an anaerobic–aerobic transition. Substantially more soil OC was mineralized under aerobic conditions in samples that received glucose under preceding anaerobic conditions compared to controls that did not receive glucose and to samples that received glucose under aerobic-only conditions. Our results reveal a novel PE by which glucose indirectly primes the mineralization of soil OC by increasing the reductive release of iron oxide-associated OC under anaerobic conditions, followed by a dramatic positive PE when aerobic conditions are reestablished. Inclusion of this novel indirect priming mechanism is crucial for accurately predicting the contribution of atmospheric greenhouse gases from soils experiencing redox fluctuations (e.g., wetlands). |
---|---|
AbstractList | Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an anaerobic–aerobic transition. Bottom: results highlighting the correlation between reduction of Fe phases and mobilization of soil organic carbon in the presence of glucose with subsequent carbon mineralization when aerobic conditions return.
[Display omitted]
•Glucose increases reductive release of iron oxide-bound carbon under anaerobic conditions.•Released carbon positively primes soil organic carbon mineralization.•Priming effect is larger when glucose is added under anaerobic, not aerobic, conditions.•Results have implications for modeling CO2 fluxes from soils experiencing redox fluctuations.
Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which contribute around one third of the global terrestrial C reservoir. Priming effects (PE), induction of changes in C mineralization due to additions of energy-rich organic carbon (OC) substrates, have been largely ignored during redox transitions in current modelling and experimental efforts for evaluating C cycles. In this study, we investigated the effects of glucose input on the mineralization of soil OC during an anaerobic–aerobic transition. Substantially more soil OC was mineralized under aerobic conditions in samples that received glucose under preceding anaerobic conditions compared to controls that did not receive glucose and to samples that received glucose under aerobic-only conditions. Our results reveal a novel PE by which glucose indirectly primes the mineralization of soil OC by increasing the reductive release of iron oxide-associated OC under anaerobic conditions, followed by a dramatic positive PE when aerobic conditions are reestablished. Inclusion of this novel indirect priming mechanism is crucial for accurately predicting the contribution of atmospheric greenhouse gases from soils experiencing redox fluctuations (e.g., wetlands). Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which contribute around one third of the global terrestrial C reservoir. Priming effects (PE), induction of changes in C mineralization due to additions of energy-rich organic carbon (OC) substrates, have been largely ignored during redox transitions in current modelling and experimental efforts for evaluating C cycles. In this study, we investigated the effects of glucose input on the mineralization of soil OC during an anaerobic–aerobic transition. Substantially more soil OC was mineralized under aerobic conditions in samples that received glucose under preceding anaerobic conditions compared to controls that did not receive glucose and to samples that received glucose under aerobic-only conditions. Our results reveal a novel PE by which glucose indirectly primes the mineralization of soil OC by increasing the reductive release of iron oxide-associated OC under anaerobic conditions, followed by a dramatic positive PE when aerobic conditions are reestablished. Inclusion of this novel indirect priming mechanism is crucial for accurately predicting the contribution of atmospheric greenhouse gases from soils experiencing redox fluctuations (e.g., wetlands). |
ArticleNumber | 114535 |
Author | Yang, Yu Zhao, Qian Dunham-Cheatham, Sarrah M. Obrist, Daniel |
Author_xml | – sequence: 1 givenname: Sarrah M. surname: Dunham-Cheatham fullname: Dunham-Cheatham, Sarrah M. email: sdunhamcheatham@unr.edu organization: Department of Natural Resources & Environmental Science, University of Nevada, Reno, 1664 N.Virginia Street, Mail Stop 186, Reno, NV 89557, USA – sequence: 2 givenname: Qian surname: Zhao fullname: Zhao, Qian organization: Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Mail Stop 258, Reno, NV 89557, USA – sequence: 3 givenname: Daniel surname: Obrist fullname: Obrist, Daniel organization: Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, 220 Pawtucket St, Lowell, MA 01854, USA – sequence: 4 givenname: Yu surname: Yang fullname: Yang, Yu organization: The Global Water Center, University of Nevada, Reno, 1664 N.Virginia Street, Mail Stop 186, Reno, NV 89557, USA |
BackLink | https://www.osti.gov/biblio/1633817$$D View this record in Osti.gov |
BookMark | eNqFkc1u1DAUhS1UpE4Lr1BFrNhksOO_scQCVPEnVWLTri3Hvhk8SuzBziBgxTvwhn0SbkjZsKlkyb72d6587rkgZyknIOSK0S2jTL06bPeQA5TJbTva4SUTkssnZMN2umtVJ80Z2VAkW00VOycXtR6w1MhuSLlL8P0IfobQTOC_uBTr1Ay5NPvx5HOF9ljihI81x7HJZY-Ab7wrfU7NFBMUN8afbo5YnhL-onEJl4OS--jvf_1-ODVzcanGhXtGng5urPD8Yb8kd-_f3V5_bG8-f_h0_famdULwuWXGBKp7Jc3Ah2CAas061bMgegGaB28U9EIwpRgdtA5cSAGGSif0wBlIfklerH1znaOtPs7oz-eU0K1livMd0wi9XKFjyV9PUGc7xephHF2CfKq2k5IZLvXOIPp6RX3JtRYYLLb86xy9xdEyapc87MH-y8Muedg1D5Sr_-TLZF358bjwzSoEHNa3CGXxAslDiGWxEnJ8rMUfCoatmg |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119387 crossref_primary_10_1016_j_geoderma_2020_114894 crossref_primary_10_1021_acs_est_4c12966 crossref_primary_10_1016_j_geoderma_2020_114800 crossref_primary_10_5194_bg_20_3873_2023 crossref_primary_10_1371_journal_pone_0262961 crossref_primary_10_1139_cjss_2023_0097 crossref_primary_10_1016_j_geoderma_2024_116825 crossref_primary_10_1021_acs_est_3c01336 crossref_primary_10_3390_app122010239 |
Cites_doi | 10.1016/j.scitotenv.2018.09.271 10.1890/14-2097.1 10.5194/bg-13-4777-2016 10.1111/gcb.12229 10.1021/es402812j 10.1007/978-90-481-3585-1_128 10.1016/j.gca.2017.06.017 10.1021/ac60289a016 10.1007/s00442-015-3290-x 10.1016/j.scitotenv.2017.08.290 10.1016/j.apsoil.2016.09.001 10.1111/gcb.14859 10.1029/2019GL082187 10.1016/j.chemgeo.2016.12.014 10.1146/annurev.energy.30.050504.144248 10.4155/cmt.13.77 10.1016/S0038-0717(97)00031-X 10.1007/s00374-008-0334-y 10.3389/fmicb.2015.00609 10.1016/0004-6981(87)90374-X 10.1021/acs.est.6b05709 10.1007/s10533-015-0180-6 10.1016/S0038-0717(01)00020-7 10.2136/sssaj1985.03615995004900030024x 10.1128/AEM.62.7.2411-2415.1996 10.1007/s00374-005-0049-2 10.1016/j.geoderma.2019.114160 10.1007/s00374-004-0790-y 10.1016/j.apsoil.2007.05.002 10.1146/annurev.earth.35.031306.140057 10.1525/bio.2012.62.3.5 10.1038/nature10386 10.1016/j.chemgeo.2016.03.013 10.1016/S0038-0717(00)00084-5 10.1038/srep11214 10.1021/es2045579 10.1016/j.soilbio.2004.06.010 10.1021/es104384m 10.3389/fmicb.2012.00050 10.1111/gcb.12475 10.1016/j.soilbio.2017.01.017 10.1038/ncomms3947 10.1016/j.scitotenv.2019.02.441 10.1016/j.gca.2006.08.047 10.1038/s41467-017-01406-6 10.1038/nrmicro3347 10.1016/j.soilbio.2008.02.020 10.1016/j.geoderma.2017.07.026 10.1016/j.chemosphere.2015.03.087 10.1007/s10533-017-0383-0 10.7930/Soccr2.2018 10.1016/0038-0717(94)90184-8 10.1038/s41467-017-01998-z |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1016/j.geoderma.2020.114535 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 1633817 10_1016_j_geoderma_2020_114535 S0016706120305383 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 AALMO AAPBV ABPIF ABPTK ABQIS OTOTI |
ID | FETCH-LOGICAL-a443t-199d07b659f3fd9e077126b1d4b4e73dc96eb4416610f77d3454e905a47f31e53 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri May 19 00:41:34 EDT 2023 Thu Jul 10 23:02:34 EDT 2025 Tue Jul 01 04:04:53 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Fri Feb 23 02:47:06 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Redox fluctuations Glucose Iron reduction Soil organic carbon Priming effect Reductive dissolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a443t-199d07b659f3fd9e077126b1d4b4e73dc96eb4416610f77d3454e905a47f31e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0014275 USDOE |
OpenAccessLink | https://www.osti.gov/biblio/1633817 |
PQID | 2551935789 |
PQPubID | 24069 |
ParticipantIDs | osti_scitechconnect_1633817 proquest_miscellaneous_2551935789 crossref_citationtrail_10_1016_j_geoderma_2020_114535 crossref_primary_10_1016_j_geoderma_2020_114535 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wordofa, Adhikari, Dunham-Cheatham, Zhao, Poulson, Tang, Yang (b0285) 2019; 668 Blagodatskaya, Blagodatsky, Anderson, Kuzyakov (b0025) 2007; 37 Sexstone, Revsbech, Parkin, Tiedje (b0210) 1985; 49 Qiao, Xu, Hu, Blagodatskaya, Liu, Schaefer, Kuzyakov (b0180) 2016 Blagodatskaya, Kuzyakov (b0030) 2008; 45 De Nobili, Contin, Mondini, Brookes (b0060) 2001; 33 Vogel, Mueller, Hoschen, Buegger, Heister, Schulz, Schloter, Kogel-Knabner (b0260) 2014 Kuzyakov, Friedel, Stahr (b0135) 2000; 32 Shen, Bartha (b0215) 1997; 29 Yin, Phillips, Liang, Xu, Liu (b0295) 2016; 108 Bremer, Kuikman (b0045) 1994; 26 Adhikari, Poulson, Sumaila, Dynes, McBeth, Yang (b0010) 2016; 430 Blagodatskaya, Kuzyakov (b0035) 2011 Scharlemann, Tanner, Hiederer, Kapos (b0195) 2014; 5 Coward, Thompson, Plante (b0055) 2017; 306 Hall, Huang (b0100) 2017; 136 2017. Zedler, Kercher (b0300) 2005; 30 retrieved 30 June 2019. 2015. Shi, Rosso, Clarke, Richardson, Zachara, Fredrickson (b0225) 2012; 3 Wang, Xu, Hu, Dai, Jiang, Bai (b0275) 2015; 178 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online. Accessed 03/01/2018. Porras, Hicks Pries, Torn, Nico (b0175) 2018; 613–614 Fredrickson, Romine, Beliaev, Auchtung, Driscoll, Gardner, Nealson, Osterman, Pinchuk, Reed, Rodionov, Rodrigues, Saffarini, Serres, Spormann, Zhulin, Tiedje (b0080) 2008; 6 Farquharson, L.M., Romanovsky, V.E., Cable, W.L., Walker, D.A., Kokelj, S.V., Nicolsky, D., 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canandian High Arctic. Geophys. Res. Lett. doi: 10.1029/2019GL082187. Mondini, Cayuela, Sanchez-Monedero, Roig, Brookes (b0155) 2006; 42 Yang, Liptzin (b0290) 2015; 96 Shen, Bartha (b0220) 1996; 62 Ginn, Meile, Wilmoth, Tang, Thompson (b0085) 2017; 51 Herlihy, Galloway, Mills (b0105) 1987; 21 Schneckenberger, Demin, Stahr, Kuzyakov (b0205) 2008; 40 Food and Agriculture Organization of the United Nations. Soils help to combat and adapt to climate change by playing a key role in the carbon cycle. Keiluweit, Wanzek, Kleber, Nico, Fendorf (b0125) 2017 Zhao, Poulson, Obrist, Sumaila, Dynes, McBeth, Yang (b0310) 2016; 13 Shimizu (b0230) 2013; 47 Obrist (b0160) 2012; 46 Hall, Silver (b0095) 2013; 19 Santruckova, Picek, Tykva, Simek, Pavlu (b0190) 2004; 40 Di Lonardo, De Boer, Klein Gunnewiek, Hannula, Van der Wal (b0065) 2017; 108 Obrist, Zielinksa, Perlinger (b0170) 2015; 134 Wagai, Mayer (b0265) 2007; 71 Adhikari, Yang (b0005) 2015 Sigma-Aldrich. Glucose (HK) Assay Kit Technical Bulletin. 2004. Houghton (b0110) 2007; 35 Wang, Boutton, Xu, Hu, Jiang, Bai (b0270) 2015 Huang, Hall (b0115) 2017 Adhikari, Dunham-Cheatham, Wordofa, Verburg, Poulson, Yang (b0020) 2019; 651 Haddix, Gregorich, Helgason, Janzen, Ellert, Cotrufo (b0090) 2020; 363 Stookey (b0245) 1970; 42 Keiluweit, Nico, Kleber, Fendorf (b0120) 2016; 127 van Hees, Jones, Finlay, Godbold, Lundström (b0255) 2005; 37 Zhao, Adhikari, Mejia, Huang, Patel, Wang, Tang, Obrist, Roden, Yang (b0305) 2017; 464 Chen, Senbayram, Blagodatsky, Myachina, Dittert, Lin, Blagodtskaya, Kuzyakov (b0050) 2013; 20 Obrist, Johnson, Lindberg, Luo, Hararuk, Bracho, Battles, Dail, Edmonds, Monson, Ollinger, Pallardy, Pregitzer, Todd (b0165) 2011; 45 Adhikari, Zhao, Das, Mejia, Huang, Wang, Poulson, Tang, Roden, Yang (b0015) 2017; 212 Melton, Swanner, Behrens, Schmidt, Kappler (b0145) 2014; 12 Mitsch, Zhang, Stefanik, Nahlik, Anderson, Bernal, Hernandez, Song (b0150) 2012; 62 Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (b0200) 2011; 478 USGCRP, 2018: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z. (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 878 pp., doi: 10.7930/SOCCR2.2018. Kouzuma, Kasai, Hirose, Watanabe (b0130) 2015; 6 Lavallee, Soong, Cotrufo (b0140) 2019; 26 Wang, Wang, He, Feng (b0280) 2017 R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Wordofa (10.1016/j.geoderma.2020.114535_b0285) 2019; 668 Schneckenberger (10.1016/j.geoderma.2020.114535_b0205) 2008; 40 Obrist (10.1016/j.geoderma.2020.114535_b0160) 2012; 46 Adhikari (10.1016/j.geoderma.2020.114535_b0015) 2017; 212 Keiluweit (10.1016/j.geoderma.2020.114535_b0120) 2016; 127 Shimizu (10.1016/j.geoderma.2020.114535_b0230) 2013; 47 Vogel (10.1016/j.geoderma.2020.114535_b0260) 2014 Shi (10.1016/j.geoderma.2020.114535_b0225) 2012; 3 Santruckova (10.1016/j.geoderma.2020.114535_b0190) 2004; 40 10.1016/j.geoderma.2020.114535_b0185 Bremer (10.1016/j.geoderma.2020.114535_b0045) 1994; 26 Mondini (10.1016/j.geoderma.2020.114535_b0155) 2006; 42 Adhikari (10.1016/j.geoderma.2020.114535_b0005) 2015 Lavallee (10.1016/j.geoderma.2020.114535_b0140) 2019; 26 Adhikari (10.1016/j.geoderma.2020.114535_b0020) 2019; 651 Coward (10.1016/j.geoderma.2020.114535_b0055) 2017; 306 van Hees (10.1016/j.geoderma.2020.114535_b0255) 2005; 37 Chen (10.1016/j.geoderma.2020.114535_b0050) 2013; 20 Mitsch (10.1016/j.geoderma.2020.114535_b0150) 2012; 62 Wagai (10.1016/j.geoderma.2020.114535_b0265) 2007; 71 Obrist (10.1016/j.geoderma.2020.114535_b0165) 2011; 45 Scharlemann (10.1016/j.geoderma.2020.114535_b0195) 2014; 5 Melton (10.1016/j.geoderma.2020.114535_b0145) 2014; 12 Sexstone (10.1016/j.geoderma.2020.114535_b0210) 1985; 49 Stookey (10.1016/j.geoderma.2020.114535_b0245) 1970; 42 10.1016/j.geoderma.2020.114535_b0250 Hall (10.1016/j.geoderma.2020.114535_b0095) 2013; 19 Qiao (10.1016/j.geoderma.2020.114535_b0180) 2016 Wang (10.1016/j.geoderma.2020.114535_b0280) 2017 10.1016/j.geoderma.2020.114535_b0235 Wang (10.1016/j.geoderma.2020.114535_b0270) 2015 Shen (10.1016/j.geoderma.2020.114535_b0215) 1997; 29 Hall (10.1016/j.geoderma.2020.114535_b0100) 2017; 136 Haddix (10.1016/j.geoderma.2020.114535_b0090) 2020; 363 Yang (10.1016/j.geoderma.2020.114535_b0290) 2015; 96 Herlihy (10.1016/j.geoderma.2020.114535_b0105) 1987; 21 Houghton (10.1016/j.geoderma.2020.114535_b0110) 2007; 35 Huang (10.1016/j.geoderma.2020.114535_b0115) 2017 Porras (10.1016/j.geoderma.2020.114535_b0175) 2018; 613–614 Schmidt (10.1016/j.geoderma.2020.114535_b0200) 2011; 478 10.1016/j.geoderma.2020.114535_b0240 Yin (10.1016/j.geoderma.2020.114535_b0295) 2016; 108 Wang (10.1016/j.geoderma.2020.114535_b0275) 2015; 178 Di Lonardo (10.1016/j.geoderma.2020.114535_b0065) 2017; 108 De Nobili (10.1016/j.geoderma.2020.114535_b0060) 2001; 33 Kuzyakov (10.1016/j.geoderma.2020.114535_b0135) 2000; 32 Shen (10.1016/j.geoderma.2020.114535_b0220) 1996; 62 Zedler (10.1016/j.geoderma.2020.114535_b0300) 2005; 30 Zhao (10.1016/j.geoderma.2020.114535_b0305) 2017; 464 Kouzuma (10.1016/j.geoderma.2020.114535_b0130) 2015; 6 Ginn (10.1016/j.geoderma.2020.114535_b0085) 2017; 51 Adhikari (10.1016/j.geoderma.2020.114535_b0010) 2016; 430 Zhao (10.1016/j.geoderma.2020.114535_b0310) 2016; 13 10.1016/j.geoderma.2020.114535_b0070 Blagodatskaya (10.1016/j.geoderma.2020.114535_b0035) 2011 10.1016/j.geoderma.2020.114535_b0075 Keiluweit (10.1016/j.geoderma.2020.114535_b0125) 2017 Blagodatskaya (10.1016/j.geoderma.2020.114535_b0025) 2007; 37 Blagodatskaya (10.1016/j.geoderma.2020.114535_b0030) 2008; 45 Fredrickson (10.1016/j.geoderma.2020.114535_b0080) 2008; 6 Obrist (10.1016/j.geoderma.2020.114535_b0170) 2015; 134 |
References_xml | – volume: 178 start-page: 1239 year: 2015 end-page: 1250 ident: b0275 article-title: The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest publication-title: Oecologia – volume: 42 start-page: 542 year: 2006 end-page: 549 ident: b0155 article-title: Soil microbial biomass activation by trace amounts of readily available substrate publication-title: Biol. Fertil. Soils – year: 2011 ident: b0035 article-title: Priming effects in relation to soil conditions - mechanisms publication-title: Encyclopedia of Agrophysics. – volume: 306 start-page: 206 year: 2017 end-page: 216 ident: b0055 article-title: Iron-mediated mineralogical control of organic matter accumulation in tropical soils publication-title: Geoderma – volume: 12 start-page: 797 year: 2014 end-page: 808 ident: b0145 article-title: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle publication-title: Nat. Rev. Microbiol. – volume: 127 start-page: 157 year: 2016 end-page: 171 ident: b0120 article-title: Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? publication-title: Biogeochemistry – volume: 19 start-page: 2804 year: 2013 end-page: 2813 ident: b0095 article-title: Iron oxidation stimulates organic matter decomposition in humid tropical forest soils publication-title: Glob. Change Biol. – volume: 51 start-page: 3250 year: 2017 end-page: 3259 ident: b0085 article-title: Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil publication-title: Environ. Sci. Technol. – year: 2016 ident: b0180 article-title: Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum publication-title: Sci. Rep. – volume: 40 start-page: 1981 year: 2008 end-page: 1988 ident: b0205 article-title: Microbial utilization and mineralization of [14C]glucose added in six orders of concentration to soil publication-title: Soil Biol. Biochem. – volume: 37 start-page: 1 year: 2005 end-page: 13 ident: b0255 article-title: The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review publication-title: Soil Biol. Biochem. – volume: 45 start-page: 3974 year: 2011 end-page: 3981 ident: b0165 article-title: Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils publication-title: Environ. Sci. Technol. – volume: 363 year: 2020 ident: b0090 article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil publication-title: Geoderma – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: b0135 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – reference: Farquharson, L.M., Romanovsky, V.E., Cable, W.L., Walker, D.A., Kokelj, S.V., Nicolsky, D., 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canandian High Arctic. Geophys. Res. Lett. doi: 10.1029/2019GL082187. – volume: 96 start-page: 2015 year: 2015 end-page: 2020 ident: b0290 article-title: High potential for iron reduction in upland soils publication-title: Ecology – volume: 108 start-page: 41 year: 2017 end-page: 54 ident: b0065 article-title: Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content publication-title: Soil Biol. Biochem. – year: 2015 ident: b0005 article-title: Selective stabilization of aliphatic organic carbon by iron oxide publication-title: Sci. Rep. – volume: 212 start-page: 221 year: 2017 end-page: 233 ident: b0015 article-title: Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction publication-title: Geochim. Cosmochim. Acta – volume: 6 start-page: 609 year: 2015 ident: b0130 article-title: Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells publication-title: Front. Microbiol. – volume: 108 start-page: 248 year: 2016 end-page: 257 ident: b0295 article-title: Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils publication-title: Appl. Soil Ecol. – year: 2017 ident: b0125 article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization publication-title: Nat. Commun. – volume: 30 start-page: 39 year: 2005 end-page: 74 ident: b0300 article-title: Wetland resources: Status, trends, ecosystem services, and restorability publication-title: Annu. Rev. Environ. Resour. – year: 2015 ident: b0270 article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes publication-title: Sci. Rep. – reference: > 2017. – volume: 613–614 start-page: 342 year: 2018 end-page: 351 ident: b0175 article-title: Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon publication-title: Sci. Total Environ. – year: 2017 ident: b0280 article-title: Iron-mediated soil carbon response to water-table decline in an alpine wetland publication-title: Nat. Commun. – volume: 49 start-page: 645 year: 1985 end-page: 651 ident: b0210 article-title: Direct measurement of oxygen profiles and denitrification rates in soil aggregates publication-title: Soil Sci. Soc. Am. J. – volume: 62 start-page: 237 year: 2012 end-page: 250 ident: b0150 article-title: Creating wetlands: Primary succession, water quality changes, and self-design over 15 years publication-title: Bioscience – volume: 20 start-page: 2356 year: 2013 end-page: 2367 ident: b0050 article-title: Soil C and N availability determine the priming effect: microbial N and stoichiometric decomposition theories publication-title: Glob. Change Biol. – volume: 134 start-page: 98 year: 2015 end-page: 105 ident: b0170 article-title: Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests publication-title: Chemosphere – year: 2017 ident: b0115 article-title: Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter publication-title: Nat. Commun. – reference: Food and Agriculture Organization of the United Nations. Soils help to combat and adapt to climate change by playing a key role in the carbon cycle. – volume: 26 start-page: 261 year: 2019 end-page: 273 ident: b0140 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21 publication-title: Glob. Change Biol. – volume: 62 start-page: 2411 year: 1996 end-page: 2415 ident: b0220 article-title: Metabolic efficiency and turnover of soil microbial communities in biodegradation tests publication-title: Appl. Environ. Microbiol. – volume: 46 start-page: 5921 year: 2012 end-page: 5930 ident: b0160 article-title: Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury publication-title: Environ. Sci. Technol. – reference: USGCRP, 2018: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z. (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 878 pp., doi: 10.7930/SOCCR2.2018. – volume: 430 start-page: 13 year: 2016 end-page: 20 ident: b0010 article-title: Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes publication-title: Chem. Geol. – volume: 37 start-page: 95 year: 2007 end-page: 105 ident: b0025 article-title: Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies publication-title: Appl. Soil Ecol. – volume: 5 start-page: 81 year: 2014 end-page: 91 ident: b0195 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manage. – volume: 71 start-page: 25 year: 2007 end-page: 35 ident: b0265 article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides publication-title: Geochim. Cosmochim. Acta – volume: 668 start-page: 216 year: 2019 end-page: 223 ident: b0285 article-title: Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction publication-title: Sci. Total Environ. – reference: R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. < – volume: 47 start-page: 13375 year: 2013 end-page: 13384 ident: b0230 article-title: Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates publication-title: Environ. Sci. Technol. – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: b0200 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 6 start-page: 592 year: 2008 end-page: 603 ident: b0080 article-title: Towards environmental systems biology of Shewanella publication-title: Nat. Rev. – year: 2014 ident: b0260 article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils publication-title: Nat. Commun. – volume: 136 start-page: 91 year: 2017 end-page: 102 ident: b0100 article-title: Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils? publication-title: Biogeochemistry – volume: 3 start-page: 50 year: 2012 ident: b0225 article-title: Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1 publication-title: Front. Microbiol. – volume: 45 start-page: 115 year: 2008 end-page: 131 ident: b0030 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: A critical review publication-title: Biol. Fertil. Soils – volume: 42 start-page: 779 year: 1970 end-page: 781 ident: b0245 article-title: Ferrozine: a new spectrophotometric reagent for iron publication-title: Anal. Chem. – volume: 26 start-page: 511 year: 1994 end-page: 517 ident: b0045 article-title: Microbial utilization of 14C[U]glucose in soil is affected by the amount and timing of glucose additions publication-title: Soil Biol. Biochem. – volume: 13 start-page: 4777 year: 2016 end-page: 4788 ident: b0310 article-title: Iron-bound organic carbon in forest soils: Quantification and characterization publication-title: Biogeosciences – volume: 35 start-page: 313 year: 2007 end-page: 347 ident: b0110 article-title: Balancing the global carbon budget publication-title: Annu. Rev. Earth Planet. Sci. – volume: 29 start-page: 1195 year: 1997 end-page: 1198 ident: b0215 article-title: Priming effect of glucose polymers in soil-based biodegradation tests publication-title: Soil Biol. Biochem. – reference: Sigma-Aldrich. Glucose (HK) Assay Kit Technical Bulletin. 2004. – volume: 21 start-page: 2397 year: 1987 end-page: 2402 ident: b0105 article-title: Bacterial utilization of formic and acetic acid in rainwater publication-title: Atmos. Environ. – reference: , retrieved 30 June 2019. 2015. – reference: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online. Accessed 03/01/2018. – volume: 33 start-page: 1163 year: 2001 end-page: 1170 ident: b0060 article-title: Soil microbial biomass is triggered into activity by trace amounts of substrate publication-title: Soil Biol. Biochem. – volume: 40 start-page: 386 year: 2004 end-page: 392 ident: b0190 article-title: Short-term partitioning of C-14-[U]-glucose in the soil microbial pool under varied aeration status publication-title: Biol. Fertil. Soils – volume: 464 start-page: 118 year: 2017 end-page: 126 ident: b0305 article-title: Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction publication-title: Chem. Geol. – volume: 651 start-page: 1253 year: 2019 end-page: 1260 ident: b0020 article-title: Aerobic respiration of mineral-bound organic carbon in a soil publication-title: Sci. Total Environ. – volume: 651 start-page: 1253 year: 2019 ident: 10.1016/j.geoderma.2020.114535_b0020 article-title: Aerobic respiration of mineral-bound organic carbon in a soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.271 – volume: 96 start-page: 2015 year: 2015 ident: 10.1016/j.geoderma.2020.114535_b0290 article-title: High potential for iron reduction in upland soils publication-title: Ecology doi: 10.1890/14-2097.1 – volume: 13 start-page: 4777 year: 2016 ident: 10.1016/j.geoderma.2020.114535_b0310 article-title: Iron-bound organic carbon in forest soils: Quantification and characterization publication-title: Biogeosciences doi: 10.5194/bg-13-4777-2016 – volume: 19 start-page: 2804 year: 2013 ident: 10.1016/j.geoderma.2020.114535_b0095 article-title: Iron oxidation stimulates organic matter decomposition in humid tropical forest soils publication-title: Glob. Change Biol. doi: 10.1111/gcb.12229 – volume: 47 start-page: 13375 year: 2013 ident: 10.1016/j.geoderma.2020.114535_b0230 article-title: Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates publication-title: Environ. Sci. Technol. doi: 10.1021/es402812j – year: 2011 ident: 10.1016/j.geoderma.2020.114535_b0035 article-title: Priming effects in relation to soil conditions - mechanisms publication-title: Encyclopedia of Agrophysics. doi: 10.1007/978-90-481-3585-1_128 – volume: 212 start-page: 221 year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0015 article-title: Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.06.017 – volume: 42 start-page: 779 year: 1970 ident: 10.1016/j.geoderma.2020.114535_b0245 article-title: Ferrozine: a new spectrophotometric reagent for iron publication-title: Anal. Chem. doi: 10.1021/ac60289a016 – volume: 178 start-page: 1239 year: 2015 ident: 10.1016/j.geoderma.2020.114535_b0275 article-title: The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest publication-title: Oecologia doi: 10.1007/s00442-015-3290-x – ident: 10.1016/j.geoderma.2020.114535_b0075 – volume: 613–614 start-page: 342 year: 2018 ident: 10.1016/j.geoderma.2020.114535_b0175 article-title: Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.290 – volume: 108 start-page: 248 year: 2016 ident: 10.1016/j.geoderma.2020.114535_b0295 article-title: Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.09.001 – volume: 26 start-page: 261 year: 2019 ident: 10.1016/j.geoderma.2020.114535_b0140 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Change Biol. doi: 10.1111/gcb.14859 – volume: 6 start-page: 592 year: 2008 ident: 10.1016/j.geoderma.2020.114535_b0080 article-title: Towards environmental systems biology of Shewanella publication-title: Nat. Rev. – ident: 10.1016/j.geoderma.2020.114535_b0070 doi: 10.1029/2019GL082187 – volume: 464 start-page: 118 year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0305 article-title: Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2016.12.014 – volume: 30 start-page: 39 year: 2005 ident: 10.1016/j.geoderma.2020.114535_b0300 article-title: Wetland resources: Status, trends, ecosystem services, and restorability publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev.energy.30.050504.144248 – volume: 5 start-page: 81 year: 2014 ident: 10.1016/j.geoderma.2020.114535_b0195 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manage. doi: 10.4155/cmt.13.77 – volume: 29 start-page: 1195 year: 1997 ident: 10.1016/j.geoderma.2020.114535_b0215 article-title: Priming effect of glucose polymers in soil-based biodegradation tests publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00031-X – year: 2015 ident: 10.1016/j.geoderma.2020.114535_b0270 article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes publication-title: Sci. Rep. – volume: 45 start-page: 115 year: 2008 ident: 10.1016/j.geoderma.2020.114535_b0030 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: A critical review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-008-0334-y – volume: 6 start-page: 609 year: 2015 ident: 10.1016/j.geoderma.2020.114535_b0130 article-title: Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00609 – volume: 21 start-page: 2397 year: 1987 ident: 10.1016/j.geoderma.2020.114535_b0105 article-title: Bacterial utilization of formic and acetic acid in rainwater publication-title: Atmos. Environ. doi: 10.1016/0004-6981(87)90374-X – volume: 51 start-page: 3250 year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0085 article-title: Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05709 – volume: 127 start-page: 157 year: 2016 ident: 10.1016/j.geoderma.2020.114535_b0120 article-title: Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? publication-title: Biogeochemistry doi: 10.1007/s10533-015-0180-6 – ident: 10.1016/j.geoderma.2020.114535_b0240 – volume: 33 start-page: 1163 year: 2001 ident: 10.1016/j.geoderma.2020.114535_b0060 article-title: Soil microbial biomass is triggered into activity by trace amounts of substrate publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00020-7 – volume: 49 start-page: 645 year: 1985 ident: 10.1016/j.geoderma.2020.114535_b0210 article-title: Direct measurement of oxygen profiles and denitrification rates in soil aggregates publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1985.03615995004900030024x – volume: 62 start-page: 2411 year: 1996 ident: 10.1016/j.geoderma.2020.114535_b0220 article-title: Metabolic efficiency and turnover of soil microbial communities in biodegradation tests publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.62.7.2411-2415.1996 – volume: 42 start-page: 542 year: 2006 ident: 10.1016/j.geoderma.2020.114535_b0155 article-title: Soil microbial biomass activation by trace amounts of readily available substrate publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-005-0049-2 – volume: 363 year: 2020 ident: 10.1016/j.geoderma.2020.114535_b0090 article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114160 – volume: 40 start-page: 386 year: 2004 ident: 10.1016/j.geoderma.2020.114535_b0190 article-title: Short-term partitioning of C-14-[U]-glucose in the soil microbial pool under varied aeration status publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-004-0790-y – volume: 37 start-page: 95 year: 2007 ident: 10.1016/j.geoderma.2020.114535_b0025 article-title: Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2007.05.002 – volume: 35 start-page: 313 year: 2007 ident: 10.1016/j.geoderma.2020.114535_b0110 article-title: Balancing the global carbon budget publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.35.031306.140057 – volume: 62 start-page: 237 year: 2012 ident: 10.1016/j.geoderma.2020.114535_b0150 article-title: Creating wetlands: Primary succession, water quality changes, and self-design over 15 years publication-title: Bioscience doi: 10.1525/bio.2012.62.3.5 – volume: 478 start-page: 49 year: 2011 ident: 10.1016/j.geoderma.2020.114535_b0200 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 430 start-page: 13 year: 2016 ident: 10.1016/j.geoderma.2020.114535_b0010 article-title: Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2016.03.013 – volume: 32 start-page: 1485 year: 2000 ident: 10.1016/j.geoderma.2020.114535_b0135 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – year: 2015 ident: 10.1016/j.geoderma.2020.114535_b0005 article-title: Selective stabilization of aliphatic organic carbon by iron oxide publication-title: Sci. Rep. doi: 10.1038/srep11214 – volume: 46 start-page: 5921 year: 2012 ident: 10.1016/j.geoderma.2020.114535_b0160 article-title: Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury publication-title: Environ. Sci. Technol. doi: 10.1021/es2045579 – volume: 37 start-page: 1 year: 2005 ident: 10.1016/j.geoderma.2020.114535_b0255 article-title: The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.06.010 – volume: 45 start-page: 3974 year: 2011 ident: 10.1016/j.geoderma.2020.114535_b0165 article-title: Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils publication-title: Environ. Sci. Technol. doi: 10.1021/es104384m – volume: 3 start-page: 50 year: 2012 ident: 10.1016/j.geoderma.2020.114535_b0225 article-title: Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00050 – volume: 20 start-page: 2356 year: 2013 ident: 10.1016/j.geoderma.2020.114535_b0050 article-title: Soil C and N availability determine the priming effect: microbial N and stoichiometric decomposition theories publication-title: Glob. Change Biol. doi: 10.1111/gcb.12475 – volume: 108 start-page: 41 year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0065 article-title: Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.01.017 – year: 2014 ident: 10.1016/j.geoderma.2020.114535_b0260 article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils publication-title: Nat. Commun. doi: 10.1038/ncomms3947 – volume: 668 start-page: 216 year: 2019 ident: 10.1016/j.geoderma.2020.114535_b0285 article-title: Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.441 – volume: 71 start-page: 25 year: 2007 ident: 10.1016/j.geoderma.2020.114535_b0265 article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.08.047 – year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0125 article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization publication-title: Nat. Commun. doi: 10.1038/s41467-017-01406-6 – volume: 12 start-page: 797 year: 2014 ident: 10.1016/j.geoderma.2020.114535_b0145 article-title: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3347 – volume: 40 start-page: 1981 year: 2008 ident: 10.1016/j.geoderma.2020.114535_b0205 article-title: Microbial utilization and mineralization of [14C]glucose added in six orders of concentration to soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.02.020 – volume: 306 start-page: 206 year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0055 article-title: Iron-mediated mineralogical control of organic matter accumulation in tropical soils publication-title: Geoderma doi: 10.1016/j.geoderma.2017.07.026 – ident: 10.1016/j.geoderma.2020.114535_b0185 – volume: 134 start-page: 98 year: 2015 ident: 10.1016/j.geoderma.2020.114535_b0170 article-title: Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.087 – year: 2016 ident: 10.1016/j.geoderma.2020.114535_b0180 article-title: Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum publication-title: Sci. Rep. – volume: 136 start-page: 91 year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0100 article-title: Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils? publication-title: Biogeochemistry doi: 10.1007/s10533-017-0383-0 – ident: 10.1016/j.geoderma.2020.114535_b0235 – ident: 10.1016/j.geoderma.2020.114535_b0250 doi: 10.7930/Soccr2.2018 – year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0280 article-title: Iron-mediated soil carbon response to water-table decline in an alpine wetland publication-title: Nat. Commun. – volume: 26 start-page: 511 year: 1994 ident: 10.1016/j.geoderma.2020.114535_b0045 article-title: Microbial utilization of 14C[U]glucose in soil is affected by the amount and timing of glucose additions publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(94)90184-8 – year: 2017 ident: 10.1016/j.geoderma.2020.114535_b0115 article-title: Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter publication-title: Nat. Commun. doi: 10.1038/s41467-017-01998-z |
SSID | ssj0017020 |
Score | 2.3784983 |
Snippet | Top: Schematic diagram for the dominant pathways of indirect priming of soil organic carbon mineralization by glucose in soils that experience an... Redox reactions are important for cycling of carbon (C) in soils frequently subject to fluctuations in redox conditions, such as wetland soils, which... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114535 |
SubjectTerms | Glucose greenhouses Iron reduction mineralization Priming effect Redox fluctuations Reductive dissolution Soil organic carbon wetlands |
Title | Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic–aerobic transition |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114535 https://www.proquest.com/docview/2551935789 https://www.osti.gov/biblio/1633817 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BitswEBUhvbSH0m5bmqa7qNCrGyuWpegYwoZ0l-bUQG5CtqTikNjB8V7L_sP-Yb-kM7a8tLSQw4IPtvHYRk-eGeF5bwj5HEvpvTAisjB7I25mPpohwUcZaxSzmeIM-c7f1mK14TfbdDsgi54Lg2WVwfd3Pr311uHMJIzm5FgUyPFlQmKExjkLCy1ksHOJ-vlffj6WeTAZB2lGJiK8-g-W8A4wwoZjrf7QtJXNTdu2b_8NUMMKvrl_PHYbhpavyMuQP9J594qvycCVF-TF_EcdNDTcG1JvStTtzyGXpAeHzN7idKCQnNJQnx4dUdPf0lNV7GnX1imnuamzqqSHopWhDuxMihSzmpoSNuNQsin_df8Q9miDca4t-XpLNsvr74tVFForRIbzpMHyEhvLTKTKJ94qB5CxqciY5Rl3MrG5Ei6DTAmid-yltAlPuVNxarj0CXNp8o4My6p07wk1KJEmhfVWei4yC3eegRdwMSr1eR6PSNqPp86D7ji2v9jrvsBsp3scNOKgOxxGZPJod-yUN85aqB4u_dcc0hAeztqOEV-0Q_HcHKuMwBCyVZQwHJFPPewaPj_8p2JKV92dNKzIIAUGt6c-POHpY_IcjzAmsvQjGTb1nbuEZKfJrtrZfEWezb_erta_AdcKAQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB3R5UA5VNBSsdAWI_UabUIce31coaKlwJ5YiZvlxHYVxCar7HLnH_hDvoSZxEFUrcQBKYco0SSR32Rmosx7A_AzltJ7YURk0XsjbsY-GhPBRxlrVGJzxRPiO1_NxHTOf99kNxtw2nNhqK0yxP4uprfROhwZhdUcLcuSOL6JkJShyWfxQ-sDbJI6FTr75uT8Yjp7-Zkg46DOmIiIDF4RhW8RJpo51koQnbTKuVk7-e2_OWpQ42v3T9BuM9HZDnwKJSSbdE-5Cxuu-gzbkz9NkNFwX6CZVyTdX2A5yRaOyL3lasGwPmWhRT1akqy_Zau6vGPdZKeCFabJ64otylaJOhA0GbHMGmYq3Iwj1abi6eEx7LE1pbq262sP5me_rk-nUZiuEBnO0zV1mNhY5iJTPvVWOUQtORF5YnnOnUxtoYTLsVjCBB57KW2Ki-tUnBkufZq4LP0Kg6qu3D4wQyppUlhvpecit3jlMQYCF5NYn-fxELJ-PXURpMdpAsad7nvMbnWPgyYcdIfDEEYvdstOfONNC9XDpf9yI40Z4k3bQ8KX7Eg_t6BGIzTEgpVUDIdw3MOu8Q2k3yqmcvX9SuNHGVbBGPnUwTvufgRb0-urS315Prs4hI90hlJkkn2Dwbq5d9-x9lnnP4JvPwOaMgO1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+mechanism+for+glucose-primed+soil+organic+carbon+mineralization+under+an+anaerobic%E2%80%93aerobic+transition&rft.jtitle=Geoderma&rft.au=Dunham-Cheatham%2C+Sarrah+M.&rft.au=Zhao%2C+Qian&rft.au=Obrist%2C+Daniel&rft.au=Yang%2C+Yu&rft.date=2020-10-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=376&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114535&rft.externalDocID=S0016706120305383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |