Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquanti...
Saved in:
Published in | Biomacromolecules Vol. 12; no. 9; pp. 3344 - 3349 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
12.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and 13C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7797 1526-4602 1526-4602 |
DOI: | 10.1021/bm2006032 |