Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers

Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquanti...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 12; no. 9; pp. 3344 - 3349
Main Authors Ling, Shengjie, Qi, Zeming, Knight, David P, Shao, Zhengzhong, Chen, Xin
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 12.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and 13C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.
AbstractList Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and (13)C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and (13)C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and (13)C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and 13C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the Delta *b-sheet content in a range of natural single silk fibers, 28 ? 4, 23 ? 2, and 17 ? 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of Delta *b-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and 13C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.
Author Knight, David P
Chen, Xin
Ling, Shengjie
Qi, Zeming
Shao, Zhengzhong
AuthorAffiliation University of Science and Technology of China
Fudan University
Oxford Biomaterials, Ltd
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Fudan University
– name: Oxford Biomaterials, Ltd
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Ling
  fullname: Ling, Shengjie
– sequence: 2
  givenname: Zeming
  surname: Qi
  fullname: Qi, Zeming
– sequence: 3
  givenname: David P
  surname: Knight
  fullname: Knight, David P
– sequence: 4
  givenname: Zhengzhong
  surname: Shao
  fullname: Shao, Zhengzhong
– sequence: 5
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  email: chenx@fudan.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524583$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21790142$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LwzAYB_AgE7epB7-A9CLioS5J0za5KcPpYCq4eS5pmmpmm8ykPezbm7k6QQZCIC_8kjz8nyHoaaMlAGcIXiOI0SivMYQJjPABGKAYJyFJIO59r-MwTVnaB0PnlhBCFpH4CPQxShlEBA_AzXytxbs1jTU6mCymL8GjEta4lRT-yAmzWgemDOZKv1UyeOJNa3nlt9VHMFG5tO4EHJa8cvK0m4_B6-RuMX4IZ8_30_HtLOSE4CYsGCmIoDRGNEKEMhlxSn19MCpSKKWIGc6L1BOSQ5aysii9KXIpCEoIx0V0DC63766s-Wyla7JaOSGrimtpWpcxhFBMYhb9KylliEJKUi_PO9nmtSyylVU1t-vsJx4PLjrAneBVabkWyv06EvtBN19ebd0mOmdluSMIZpsWZbsWeTv6Y4VqeKOMbixX1d4bXRVcuGxpWqt90HvcF2t1m4g
CitedBy_id crossref_primary_10_1038_s41598_023_46474_5
crossref_primary_10_1016_j_ijbiomac_2023_123371
crossref_primary_10_1016_j_jinsphys_2015_01_002
crossref_primary_10_3390_cancers15061725
crossref_primary_10_1016_j_polymer_2021_123534
crossref_primary_10_1016_j_culher_2024_01_015
crossref_primary_10_1007_s00216_014_8361_z
crossref_primary_10_1021_acs_macromol_0c02492
crossref_primary_10_1002_smll_202004129
crossref_primary_10_2116_analsci_33_579
crossref_primary_10_1016_j_polymdegradstab_2023_110576
crossref_primary_10_1016_j_cej_2021_129335
crossref_primary_10_3390_polym16172481
crossref_primary_10_1208_s12249_019_1494_9
crossref_primary_10_1016_j_desal_2024_118355
crossref_primary_10_1016_j_progpolymsci_2018_06_004
crossref_primary_10_1021_acsbiomaterials_8b00986
crossref_primary_10_1016_j_bbagen_2018_02_007
crossref_primary_10_1021_acsami_1c16855
crossref_primary_10_1002_jbm_a_37285
crossref_primary_10_1016_j_mtchem_2021_100570
crossref_primary_10_1080_15440478_2019_1701607
crossref_primary_10_1002_bip_22980
crossref_primary_10_3390_ma16051819
crossref_primary_10_1088_1758_5090_aa711b
crossref_primary_10_1016_j_isci_2020_101022
crossref_primary_10_1002_adfm_202302442
crossref_primary_10_1016_j_ijbiomac_2021_01_159
crossref_primary_10_1179_1432891714Z_000000000787
crossref_primary_10_1002_app_52842
crossref_primary_10_1002_sca_21224
crossref_primary_10_1080_00032719_2020_1843173
crossref_primary_10_3389_fchem_2021_669797
crossref_primary_10_3390_polym10080923
crossref_primary_10_1039_D1AN02088A
crossref_primary_10_1016_j_actbio_2020_01_045
crossref_primary_10_1021_acsami_4c15212
crossref_primary_10_1007_s41365_016_0067_9
crossref_primary_10_1002_advs_201902743
crossref_primary_10_1016_j_ijbiomac_2019_06_245
crossref_primary_10_1021_acsami_6b00891
crossref_primary_10_1016_j_nantod_2024_102228
crossref_primary_10_3390_coatings13010031
crossref_primary_10_1021_acs_biomac_7b01691
crossref_primary_10_1016_j_scp_2024_101804
crossref_primary_10_1016_j_bioadv_2022_212834
crossref_primary_10_1021_acsbiomaterials_6b00234
crossref_primary_10_1039_C4TB01808G
crossref_primary_10_1016_j_biomaterials_2017_08_025
crossref_primary_10_1002_mabi_201800216
crossref_primary_10_3389_fnut_2022_896664
crossref_primary_10_1039_C5SM00757G
crossref_primary_10_1016_j_cej_2021_132084
crossref_primary_10_1364_OSAC_383872
crossref_primary_10_3389_fchem_2020_00554
crossref_primary_10_1016_j_matpr_2021_01_424
crossref_primary_10_1557_mrs_2018_320
crossref_primary_10_2139_ssrn_3954362
crossref_primary_10_1038_nchembio_2269
crossref_primary_10_3390_coatings14050636
crossref_primary_10_1007_s10853_018_03213_w
crossref_primary_10_1039_C8GC01609G
crossref_primary_10_1021_ab5001468
crossref_primary_10_1155_2018_5049728
crossref_primary_10_2116_analsci_31_763
crossref_primary_10_1039_C8TB00567B
crossref_primary_10_1039_c3py00508a
crossref_primary_10_1016_j_ijbiomac_2022_05_084
crossref_primary_10_1021_acsapm_4c01476
crossref_primary_10_1007_s40843_018_9307_7
crossref_primary_10_1016_j_matdes_2019_108077
crossref_primary_10_3390_polym11122045
crossref_primary_10_1021_acs_biomac_5c00003
crossref_primary_10_1016_j_jprot_2019_103510
crossref_primary_10_1016_j_cclet_2023_109080
crossref_primary_10_1016_j_mtchem_2021_100494
crossref_primary_10_1021_acssuschemeng_5b00310
crossref_primary_10_1039_C6TB01049K
crossref_primary_10_1039_C8CP00802G
crossref_primary_10_1016_j_nanoen_2024_110540
crossref_primary_10_1016_j_ijbiomac_2018_02_022
crossref_primary_10_1021_acs_biomac_8b01576
crossref_primary_10_1016_j_ijbiomac_2018_11_203
crossref_primary_10_1039_C4TB00889H
crossref_primary_10_1002_adem_202201826
crossref_primary_10_1016_j_cej_2022_134901
crossref_primary_10_1177_08839115241233344
crossref_primary_10_1021_acsami_6b08610
crossref_primary_10_1016_j_ijbiomac_2024_134604
crossref_primary_10_1021_acs_biomac_0c00090
crossref_primary_10_1016_j_jcis_2014_08_015
crossref_primary_10_1016_j_ijbiomac_2022_03_136
crossref_primary_10_1016_j_saa_2021_120788
crossref_primary_10_1039_D1SM01120K
crossref_primary_10_1080_07391102_2021_2017347
crossref_primary_10_1007_s10971_015_3662_z
crossref_primary_10_1016_j_colsurfb_2020_111444
crossref_primary_10_1021_acsami_5b11245
crossref_primary_10_1088_1674_1056_ad51f5
crossref_primary_10_1016_j_xphs_2019_03_019
crossref_primary_10_3390_molecules29092023
crossref_primary_10_1021_acsami_9b07846
crossref_primary_10_3389_fbioe_2022_1026876
crossref_primary_10_1002_adfm_201705291
crossref_primary_10_1080_25740881_2022_2089576
crossref_primary_10_1002_marc_202000435
crossref_primary_10_3390_nano12071177
crossref_primary_10_1021_am5041797
crossref_primary_10_1039_C7TB01638G
crossref_primary_10_1016_j_ijbiomac_2024_138759
crossref_primary_10_1016_j_saa_2015_01_105
crossref_primary_10_1515_bmt_2015_0061
crossref_primary_10_3390_ijms241713492
crossref_primary_10_1002_mabi_201800252
crossref_primary_10_1007_s12221_013_1190_4
crossref_primary_10_1002_adfm_201704757
crossref_primary_10_1080_00405000_2021_1964766
crossref_primary_10_1002_adma_201601783
crossref_primary_10_1016_j_coco_2019_03_004
crossref_primary_10_1002_admt_202000430
crossref_primary_10_1080_15440478_2019_1623743
crossref_primary_10_1016_j_matdes_2021_109537
crossref_primary_10_1021_bm400267m
crossref_primary_10_1002_marc_201900583
crossref_primary_10_1002_adfm_201805305
crossref_primary_10_1038_s41598_017_07502_3
crossref_primary_10_1016_j_polymdegradstab_2018_09_022
crossref_primary_10_3390_polym12112537
crossref_primary_10_1002_adfm_202200267
crossref_primary_10_1134_S1061830921050089
crossref_primary_10_1016_j_compositesb_2020_108377
crossref_primary_10_1016_j_ijbiomac_2022_06_192
crossref_primary_10_1039_D1AN00290B
crossref_primary_10_1016_j_ijbiomac_2023_128678
crossref_primary_10_1038_ncomms8145
crossref_primary_10_1016_j_matdes_2017_04_096
crossref_primary_10_1002_adma_202200521
crossref_primary_10_1007_s10973_013_3340_8
crossref_primary_10_1039_C8RA09934K
crossref_primary_10_3390_molecules28041750
crossref_primary_10_1021_acsabm_0c00353
crossref_primary_10_1021_acs_biomac_4c00981
crossref_primary_10_1002_app_51913
crossref_primary_10_1016_j_cscm_2023_e02812
crossref_primary_10_1021_acs_biomac_1c00263
crossref_primary_10_1021_acsami_6b00959
crossref_primary_10_1002_marc_201800390
crossref_primary_10_1021_acsami_7b04623
crossref_primary_10_1016_j_saa_2015_01_131
crossref_primary_10_3390_app13169427
crossref_primary_10_1002_adma_201802306
crossref_primary_10_1007_s10118_018_2169_9
crossref_primary_10_1021_acsbiomaterials_7b00969
crossref_primary_10_1039_C8NJ05766D
crossref_primary_10_1016_j_jechem_2023_02_010
crossref_primary_10_1021_acsami_8b14521
crossref_primary_10_1021_acs_nanolett_6b03597
crossref_primary_10_1021_acs_biomac_4c00774
crossref_primary_10_1016_j_giant_2020_100044
crossref_primary_10_1016_j_apmt_2020_100683
crossref_primary_10_1021_acsmacrolett_3c00172
crossref_primary_10_1016_j_nanoen_2018_05_014
crossref_primary_10_1039_C4RA07567F
crossref_primary_10_1021_acsami_6b03518
crossref_primary_10_1021_acs_biomac_0c01378
crossref_primary_10_1002_tcr_202000060
crossref_primary_10_1126_sciadv_1601939
crossref_primary_10_1039_c3tb21148g
crossref_primary_10_1016_j_coco_2021_100810
crossref_primary_10_1021_acsami_3c16602
crossref_primary_10_1007_s10895_021_02841_x
crossref_primary_10_1021_acsnano_8b02430
crossref_primary_10_3390_pharmaceutics13122198
crossref_primary_10_1038_s41467_022_31883_3
crossref_primary_10_3390_ma12010014
crossref_primary_10_3390_molecules23071821
crossref_primary_10_1002_adfm_202003635
crossref_primary_10_1002_adfm_202410415
crossref_primary_10_1007_s00289_018_2434_7
crossref_primary_10_1021_acsbiomaterials_9b00305
crossref_primary_10_1039_C6LC00519E
crossref_primary_10_1021_acsabm_9b01062
crossref_primary_10_1039_C5TB00448A
crossref_primary_10_1021_acsomega_9b04109
crossref_primary_10_1021_acsbiomaterials_4c00237
crossref_primary_10_1007_s10853_019_03469_w
crossref_primary_10_1039_D0BM00624F
crossref_primary_10_1016_j_molliq_2022_120449
crossref_primary_10_1002_admt_202100124
crossref_primary_10_1002_admt_202400547
crossref_primary_10_3390_molecules26123706
crossref_primary_10_1007_s10854_020_04332_4
crossref_primary_10_1016_j_matdes_2018_03_005
crossref_primary_10_1021_acsanm_3c00386
crossref_primary_10_1016_j_ijbiomac_2024_136644
crossref_primary_10_1016_j_micromeso_2021_110998
crossref_primary_10_1007_s40820_019_0303_z
crossref_primary_10_1021_acsbiomaterials_9b01586
crossref_primary_10_3390_ijms25116129
crossref_primary_10_1021_acssuschemeng_9b02713
crossref_primary_10_1016_j_polymdegradstab_2014_04_008
crossref_primary_10_1016_j_polymdegradstab_2023_110532
crossref_primary_10_1038_s41467_017_00613_5
crossref_primary_10_1002_aenm_201803027
crossref_primary_10_1002_jbm_a_33265
crossref_primary_10_1016_j_pnsc_2015_09_006
crossref_primary_10_1021_acs_nanolett_6b01195
crossref_primary_10_2116_analsci_19P222
crossref_primary_10_1016_j_ijbiomac_2025_142262
crossref_primary_10_1016_j_inoche_2024_113593
crossref_primary_10_1039_C4BM00214H
crossref_primary_10_1016_j_orgel_2017_02_024
crossref_primary_10_1016_j_actbio_2025_02_016
crossref_primary_10_1021_acsnano_2c12855
crossref_primary_10_1140_epjp_i2019_12671_5
crossref_primary_10_1021_acssuschemeng_9b05799
crossref_primary_10_1016_j_clay_2019_03_038
crossref_primary_10_1016_j_polymertesting_2020_106916
crossref_primary_10_1021_acs_iecr_8b06455
crossref_primary_10_1177_0040517513499432
crossref_primary_10_1002_cssc_201902979
crossref_primary_10_3390_pharmaceutics15020383
crossref_primary_10_1021_acsbiomaterials_6b00392
crossref_primary_10_1002_adfm_202406920
crossref_primary_10_1039_C4CP00556B
crossref_primary_10_1021_acsami_2c20339
crossref_primary_10_1039_c3cc43737j
crossref_primary_10_1016_j_polymdegradstab_2012_12_021
crossref_primary_10_1021_acs_biomac_9b01607
crossref_primary_10_1021_acsami_7b19204
crossref_primary_10_1016_j_jpowsour_2023_233267
crossref_primary_10_1080_00222348_2013_763703
crossref_primary_10_1166_jbt_2016_1490
crossref_primary_10_1016_j_nanoen_2022_107963
crossref_primary_10_1021_acs_jafc_7b02789
crossref_primary_10_1002_app_50759
crossref_primary_10_1039_C9TB02032B
crossref_primary_10_1016_j_compositesb_2022_109884
crossref_primary_10_32604_jrm_2022_021087
crossref_primary_10_32628_IJSRSET218623
crossref_primary_10_1080_15440478_2020_1856272
crossref_primary_10_1021_acsapm_3c01892
crossref_primary_10_1039_C7NR03016A
crossref_primary_10_3390_polym13030416
crossref_primary_10_1016_j_molstruc_2014_03_068
crossref_primary_10_1021_acsami_9b06920
crossref_primary_10_1038_s41598_019_45698_8
crossref_primary_10_1007_s10570_024_06358_x
crossref_primary_10_1021_acsami_0c03936
crossref_primary_10_3390_su142215071
crossref_primary_10_1016_j_jddst_2022_103611
Cites_doi 10.1021/bm9010672
10.1021/bm0156126
10.1021/ma049787u
10.1126/science.287.5457.1477
10.1002/app.1990.070400928
10.1002/app.1901
10.1021/nl101341w
10.1002/prot.21414
10.1366/0003702944028065
10.1021/ma00152a009
10.1163/156856209X423126
10.1021/bm049598j
10.1021/ja972069l
10.1021/ma980281j
10.1110/ps.0221702
10.1366/000370205774783151
10.1021/ma071551d
10.1016/S0032-3861(01)00104-5
10.1021/ma961293c
10.1002/adfm.201001046
10.1016/j.trac.2010.03.002
10.1002/bip.20083
10.1039/b900908f
10.1016/S0032-3861(98)00475-3
10.1016/S0301-4622(00)00213-1
10.1529/biophysj.106.100339
10.1016/S0301-4622(99)00060-5
10.1016/j.bbamem.2006.04.010
10.1016/S0141-8130(98)00095-6
10.1016/j.abb.2006.12.027
10.1038/418741a
10.1002/polb.1994.090320812
10.1098/rspb.2001.1590
10.1039/B701220A
10.1002/polb.1986.090240219
10.1021/bm0506290
10.1111/j.1744-7410.2005.00016.x
10.1021/bm700935w
10.1016/S0141-8130(98)00084-1
10.1021/ja020244e
10.1039/b821349f
10.1038/nmat1534
10.1111/j.1745-7270.2007.00320.x
10.1021/bm000047c
10.1021/ma990442z
10.1021/bm0256956
10.1002/anie.200803341
10.1021/ma7021875
10.3109/10409239509085140
10.1007/s004250100554
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1021/bm2006032
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
DocumentTitleAlternate Notes
EISSN 1526-4602
EndPage 3349
ExternalDocumentID 21790142
24524583
10_1021_bm2006032
c94576747
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
23N
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
RSW
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ZCA
~02
AFFNX
IHE
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-a442t-d94d4c8851831489e3a8815203d70eec592bd7d4c4b0979fdf89edbec4164a2d3
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Thu Jul 10 19:16:43 EDT 2025
Fri Jul 11 02:14:59 EDT 2025
Mon Jul 21 05:49:33 EDT 2025
Wed Apr 02 07:28:23 EDT 2025
Tue Jul 01 01:12:05 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Fourier transformation
Saturniidae
Insecta
Bombyx mori
Experimental study
Infrared spectrometry
Solid state
Silk
Arthropoda
Natural fiber
Bombycidae
Lepidoptera
Antheraea pernyi
Invertebrata
Comparative study
Synchrotron radiation
Conformation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-d94d4c8851831489e3a8815203d70eec592bd7d4c4b0979fdf89edbec4164a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21790142
PQID 889180847
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_911154593
proquest_miscellaneous_889180847
pubmed_primary_21790142
pascalfrancis_primary_24524583
crossref_primary_10_1021_bm2006032
crossref_citationtrail_10_1021_bm2006032
acs_journals_10_1021_bm2006032
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-12
PublicationDateYYYYMMDD 2011-09-12
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-12
  day: 12
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Bassan P. (ref28/cit28) 2009; 134
Gillepsie D. B. (ref12/cit12) 1994; 544
Jenkins J. E. (ref38/cit38) 2010; 11
Martin M. C. (ref56/cit56) 2010; 29
Blackledge T. A. (ref5/cit5) 2005; 124
Yu P. Q. (ref19/cit19) 2006; 20
Shao Z. Z. (ref57/cit57) 2002; 418
Chen X. (ref25/cit25) 2007; 68
Riekel C. (ref11/cit11) 2000; 1
Tsukada M. (ref35/cit35) 1986; 24
Rossle M. (ref31/cit31) 2004; 74
Drummy L. F. (ref54/cit54) 2007; 3
Cai S. W. (ref40/cit40) 1999; 80
Hu X. (ref30/cit30) 2008; 41
Sirichaisit J. (ref14/cit14) 2003; 4
Yu P. Q. (ref26/cit26) 2005; 59
Vollrath F. (ref9/cit9) 1999; 24
Yang M. Y. (ref48/cit48) 2004; 37
Shen Y. (ref41/cit41) 1998; 31
Tsukada M. (ref36/cit36) 1994; 32
Shao Z. Z. (ref13/cit13) 1999; 40
Fu C. J. (ref50/cit50) 2011; 21
Raab T. K. (ref21/cit21) 2001; 213
Yoshimizu H. (ref47/cit47) 1990; 40
Kweon H. Y. (ref33/cit33) 2001; 42
Chen X. (ref22/cit22) 2001; 89
Asakura T. (ref42/cit42) 2002; 124
Nova A. (ref3/cit3) 2010; 10
Asakura T. (ref46/cit46) 1985; 18
Yan J. P. (ref55/cit55) 2008; 20
Chen X. (ref32/cit32) 2009; 5
Fu F. N. (ref39/cit39) 1994; 48
Szczerbowska-Boruchowska M. (ref27/cit27) 2007; 459
Hayashi C. Y. (ref7/cit7) 2000; 287
Asakura T. (ref52/cit52) 2002; 11
Zhu Z. H. (ref49/cit49) 2010; 21
Heim M. (ref1/cit1) 2009; 48
Fu C. J. (ref2/cit2) 2009; 43
Dumas P. (ref20/cit20) 2003; 15
Zhou W. (ref29/cit29) 2006; 18
Martel A. (ref53/cit53) 2007; 8
Jackson M. (ref17/cit17) 1995; 30
Grubb D. T. (ref44/cit44) 1997; 30
Kaplan D. L. (ref4/cit4) 1990; 18
Lefevre T. (ref15/cit15) 2007; 92
Miller L. M. (ref18/cit18) 2006; 1758
Peng X. N. (ref24/cit24) 2005; 6
Kong J. (ref16/cit16) 2007; 39
Chen X. (ref23/cit23) 2002; 3
Demura M. (ref51/cit51) 1998; 120
Kweon H. (ref34/cit34) 2001; 82
Vollrath F. (ref6/cit6) 2001; 268
Riekel C. (ref10/cit10) 1999; 24
Liu Y. (ref8/cit8) 2005; 4
Tanaka C. (ref43/cit43) 2008; 41
Asakura T. (ref45/cit45) 1999; 32
Taddei P. (ref37/cit37) 2006; 7
References_xml – volume: 20
  start-page: 229
  year: 2006
  ident: ref19/cit19
  publication-title: Spectroscopy (Amsterdam, Neth.)
– volume: 11
  start-page: 192
  year: 2010
  ident: ref38/cit38
  publication-title: Biomacromolecules
  doi: 10.1021/bm9010672
– volume: 3
  start-page: 644
  year: 2002
  ident: ref23/cit23
  publication-title: Biomacromolecules
  doi: 10.1021/bm0156126
– volume: 37
  start-page: 3497
  year: 2004
  ident: ref48/cit48
  publication-title: Macromolecules
  doi: 10.1021/ma049787u
– volume: 287
  start-page: 1477
  year: 2000
  ident: ref7/cit7
  publication-title: Science
  doi: 10.1126/science.287.5457.1477
– volume: 40
  start-page: 1745
  year: 1990
  ident: ref47/cit47
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1990.070400928
– volume: 18
  start-page: 297
  year: 1990
  ident: ref4/cit4
  publication-title: J. Arachnol.
– volume: 15
  start-page: 17
  year: 2003
  ident: ref20/cit20
  publication-title: Spectrosc. Eur.
– volume: 82
  start-page: 750
  year: 2001
  ident: ref34/cit34
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1901
– volume: 10
  start-page: 2626
  year: 2010
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl101341w
– volume: 68
  start-page: 223
  year: 2007
  ident: ref25/cit25
  publication-title: Proteins
  doi: 10.1002/prot.21414
– volume: 48
  start-page: 1432
  year: 1994
  ident: ref39/cit39
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702944028065
– volume: 18
  start-page: 1514
  year: 2006
  ident: ref29/cit29
  publication-title: Prog. Chem.
– volume: 18
  start-page: 1841
  year: 1985
  ident: ref46/cit46
  publication-title: Macromolecules
  doi: 10.1021/ma00152a009
– volume: 21
  start-page: 395
  year: 2010
  ident: ref49/cit49
  publication-title: J. Biomater. Sci., Polym. Ed.
  doi: 10.1163/156856209X423126
– volume: 6
  start-page: 302
  year: 2005
  ident: ref24/cit24
  publication-title: Biomacromolecules
  doi: 10.1021/bm049598j
– volume: 120
  start-page: 1300
  year: 1998
  ident: ref51/cit51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972069l
– volume: 31
  start-page: 8857
  year: 1998
  ident: ref41/cit41
  publication-title: Macromolecules
  doi: 10.1021/ma980281j
– volume: 11
  start-page: 2706
  year: 2002
  ident: ref52/cit52
  publication-title: Protein Sci.
  doi: 10.1110/ps.0221702
– volume: 59
  start-page: 1372
  year: 2005
  ident: ref26/cit26
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370205774783151
– volume: 41
  start-page: 3939
  year: 2008
  ident: ref30/cit30
  publication-title: Macromolecules
  doi: 10.1021/ma071551d
– volume: 42
  start-page: 6651
  year: 2001
  ident: ref33/cit33
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00104-5
– volume: 30
  start-page: 2860
  year: 1997
  ident: ref44/cit44
  publication-title: Macromolecules
  doi: 10.1021/ma961293c
– volume: 21
  start-page: 729
  year: 2011
  ident: ref50/cit50
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001046
– volume: 29
  start-page: 453
  year: 2010
  ident: ref56/cit56
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.03.002
– volume: 74
  start-page: 316
  year: 2004
  ident: ref31/cit31
  publication-title: Biopolymers
  doi: 10.1002/bip.20083
– volume: 5
  start-page: 2777
  year: 2009
  ident: ref32/cit32
  publication-title: Soft Matter
  doi: 10.1039/b900908f
– volume: 40
  start-page: 2493
  year: 1999
  ident: ref13/cit13
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00475-3
– volume: 544
  start-page: 155
  year: 1994
  ident: ref12/cit12
  publication-title: ACS Symp. Ser.
– volume: 89
  start-page: 25
  year: 2001
  ident: ref22/cit22
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(00)00213-1
– volume: 92
  start-page: 2885
  year: 2007
  ident: ref15/cit15
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.100339
– volume: 80
  start-page: 7
  year: 1999
  ident: ref40/cit40
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(99)00060-5
– volume: 1758
  start-page: 846
  year: 2006
  ident: ref18/cit18
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2006.04.010
– volume: 24
  start-page: 243
  year: 1999
  ident: ref9/cit9
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(98)00095-6
– volume: 459
  start-page: 241
  year: 2007
  ident: ref27/cit27
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2006.12.027
– volume: 418
  start-page: 741
  year: 2002
  ident: ref57/cit57
  publication-title: Nature
  doi: 10.1038/418741a
– volume: 32
  start-page: 1407
  year: 1994
  ident: ref36/cit36
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.1994.090320812
– volume: 268
  start-page: 2339
  year: 2001
  ident: ref6/cit6
  publication-title: Proc. R. Soc. London, Ser. B
  doi: 10.1098/rspb.2001.1590
– volume: 3
  start-page: 877
  year: 2007
  ident: ref54/cit54
  publication-title: Soft Matter
  doi: 10.1039/B701220A
– volume: 24
  start-page: 457
  year: 1986
  ident: ref35/cit35
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.1986.090240219
– volume: 7
  start-page: 259
  year: 2006
  ident: ref37/cit37
  publication-title: Biomacromolecules
  doi: 10.1021/bm0506290
– volume: 124
  start-page: 165
  year: 2005
  ident: ref5/cit5
  publication-title: Invertebr. Biol.
  doi: 10.1111/j.1744-7410.2005.00016.x
– volume: 20
  start-page: 1768
  year: 2008
  ident: ref55/cit55
  publication-title: Prog. Chem.
– volume: 8
  start-page: 3548
  year: 2007
  ident: ref53/cit53
  publication-title: Biomacromolecules
  doi: 10.1021/bm700935w
– volume: 24
  start-page: 179
  year: 1999
  ident: ref10/cit10
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(98)00084-1
– volume: 124
  start-page: 8794
  year: 2002
  ident: ref42/cit42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020244e
– volume: 134
  start-page: 1171
  year: 2009
  ident: ref28/cit28
  publication-title: Analyst
  doi: 10.1039/b821349f
– volume: 4
  start-page: 901
  year: 2005
  ident: ref8/cit8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1534
– volume: 39
  start-page: 549
  year: 2007
  ident: ref16/cit16
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1111/j.1745-7270.2007.00320.x
– volume: 1
  start-page: 622
  year: 2000
  ident: ref11/cit11
  publication-title: Biomacromolecules
  doi: 10.1021/bm000047c
– volume: 32
  start-page: 4940
  year: 1999
  ident: ref45/cit45
  publication-title: Macromolecules
  doi: 10.1021/ma990442z
– volume: 4
  start-page: 387
  year: 2003
  ident: ref14/cit14
  publication-title: Biomacromolecules
  doi: 10.1021/bm0256956
– volume: 48
  start-page: 3584
  year: 2009
  ident: ref1/cit1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803341
– volume: 43
  start-page: 6515
  year: 2009
  ident: ref2/cit2
  publication-title: Chem. Commun.
– volume: 41
  start-page: 796
  year: 2008
  ident: ref43/cit43
  publication-title: Macromolecules
  doi: 10.1021/ma7021875
– volume: 30
  start-page: 95
  year: 1995
  ident: ref17/cit17
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409239509085140
– volume: 213
  start-page: 881
  year: 2001
  ident: ref21/cit21
  publication-title: Planta
  doi: 10.1007/s004250100554
SSID ssj0009345
Score 2.4973528
Snippet Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3344
SubjectTerms Animals
Antheraea pernyi
Applied sciences
Araneae
Biocompatible Materials - analysis
Biocompatible Materials - chemistry
Bombyx - chemistry
Bombyx mori
Exact sciences and technology
Fibers and threads
Fibroins - analysis
Fibroins - chemistry
Forms of application and semi-finished materials
Magnetic Resonance Spectroscopy
Nephila edulis
Polymer industry, paints, wood
Protein Structure, Secondary
Silk - analysis
Silk - chemistry
Spectroscopy, Fourier Transform Infrared - methods
Spectrum Analysis, Raman
Spiders - chemistry
Synchrotrons
Technology of polymers
Title Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers
URI http://dx.doi.org/10.1021/bm2006032
https://www.ncbi.nlm.nih.gov/pubmed/21790142
https://www.proquest.com/docview/889180847
https://www.proquest.com/docview/911154593
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI4QHEBCvB_jMUXAgUuhTbK2uYEG00CCA2MStypNUiEx2oluh_Hrsdt1A7HBsaobKXZcf4mdz4ScWSUsd1XiKF8zR9jAOhJwsSN4LFmiAq41Hug_PPrtrrh_abwskNM5GXzmXcbvuOt1Ofxnl5gPzov4p9mZMuvyohMx9vEBqCiDij7o-6cYenT-I_Ss9lUOWkjK9hXz8WURZ1rr5Ka6rVOWl7xdDAfxhf78Td741xQ2yNoYZ9LrcmFskgWbbpHlZtXebZtcdUapfv3I8Cictp7vnugD1uYVNy-R4TLrj2iW0A6Etp6lj6rg54DH3httYZVJvkO6rdvnZtsZt1NwlBBs4BgpjNAhQKyQwyZIWq7CENTmchO41uqGZLEJQETErgxkYhKQMWBjwGxCMcN3yWKapXaf0NjFbZ0Pr3wrjBdLZbUFzw_B221iRI3UQd_R2B3yqMh0My-aKKJGzitTRHpMRo49MXqzRE8mov2SgWOWUP2HPSeSmFjG1HCN0MrAESgasyIqtdkwj8JQeqELQXq-CAYEQJoSRtkr18Z0fGQ48wQ7-G_Gh2SlPI7G7hNHZHHwMbTHgGcGcb1Yz18zTuwH
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHEBCvB_jMSLEgUuhbcLa3JgmpvHYDmxI3Ko0SYW00U50O4xfj512GyAQHKu6UWo78Zc4-UzImZHcMFcmjqwp3-EmMI4AXOxwFgs_kQFTCjf0251a64nfPV89lzQ5eBcGOpFDS7lN4s_ZBbzL-BUXvy6D6XYJQIiP3lxvdOcEu8wWJMZyPoAYRTBlEfr8KUYglX-JQKtDmYMykqKKxe8w04ab5npRt8h21J4y6V-MR_GFev_G4fi_P9kgayXqpPXCTTbJgkm3yHJjWuxtm1x3J6l6ectwY5w2e7ePtI0n9ew9TOS7zIYTmiW0C4FuYGhHWrYOeBz0aRPPnOQ75Kl502u0nLK4giM590eOFlxzFQLgChksiYRhMgxBey7TgWuMuhJ-rAMQ4bErApHoBGQ0WBwQHJe-ZrtkMc1Ss09o7OIirwavaoZrLxbSKAPzQAhj3ySaV0gV9BCVgyOPbN7b96KZIirkfGqRSJXU5FghY_CT6OlMdFjwcfwkVP1i1pkkppkxUVwhdGrnCBSNORKZmmycR2EovNCFkP27CIYHwJ0CWtkrXGTePvKdedw_-OuPT8hyq9d-iB5uO_eHZKXYqMa6FEdkcfQ2NseAdEZx1br4Bzk_9Gg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-ioIL4_TE_ZhAffKm2TVybN2Va_JziJvhW0iRF2GyH3R70r_eu7aaTDX0svYb07pL7JZf8jpBDI7lhtowtWVOuxY1nLAG42OIsEm4sPaYUbujfN2pXz_zm5fSlXCjiXRjoRAYtZXkSH0d1V8clw4BzEr3hAthmMOXOYLoOPfq83vwm2WV5UWIs6QOoUXgDJqGfn2IUUtlIFFroygwUEheVLCZDzTzkBEvkYdjZ_KRJ-7jfi47V5y8ex___zTJZLNEnPS_cZYVMmWSVzNUHRd_WyFnzI1Gv7ylukNOgdf1E7_HEXn4fE3kv0-4HTWPahIDXMbQhc9YOeOy0aYBnT7J18hxctupXVllkwZKcuz1LC6658gF4-QyWRsIw6fugQZtpzzZGnQo30h6I8MgWnoh1DDIaLA9IjktXsw0ynaSJ2SI0snGxV4NXNcO1EwlplIH5wIc5wMSaV0gVdBGWgyQL8_y364RDRVTI0cAqoSopyrFSRmec6MFQtFvwcowTqo6YdiiJ6WZMGFcIHdg6BEVjrkQmJu1noe8Lx7chdE8WwTAB-FNAK5uFm3y3j7xnDne3__rjfTL7eBGEd9eN2x0yX-xXY3mKXTLde--bPQA8vaiae_kXUWP26w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchrotron+FTIR+Microspectroscopy+of+Single+Natural+Silk+Fibers&rft.jtitle=Biomacromolecules&rft.au=Ling%2C+Shengjie&rft.au=Qi%2C+Zeming&rft.au=Knight%2C+David+P&rft.au=Shao%2C+Zhengzhong&rft.date=2011-09-12&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=12&rft.issue=9&rft.spage=3344&rft.epage=3349&rft_id=info:doi/10.1021%2Fbm2006032&rft.externalDocID=c94576747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon