An Accessible Protocol for Solid-Phase Extraction of N‑Linked Glycopeptides through Reductive Amination by Amine-Functionalized Magnetic Nanoparticles
In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employ...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 85; no. 11; pp. 5535 - 5541 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/ac400733y |
Cover
Loading…
Abstract | In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What’s more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling. |
---|---|
AbstractList | In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling. In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling. In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 ...L. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Zhang, Ying Zhang, Lijuan Lu, Haojie Kuang, Min Yang, Pengyuan |
AuthorAffiliation | Department of Chemistry Fudan University |
AuthorAffiliation_xml | – name: Fudan University – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 2 givenname: Min surname: Kuang fullname: Kuang, Min – sequence: 3 givenname: Lijuan surname: Zhang fullname: Zhang, Lijuan – sequence: 4 givenname: Pengyuan surname: Yang fullname: Yang, Pengyuan – sequence: 5 givenname: Haojie surname: Lu fullname: Lu, Haojie email: luhaojie@fudan.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23659689$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URLeFAy-ALCEkOISO48ROjquqLUhLqfhzjhx70nXx2oudIJYTr8CN5-NJMLstQgWJ03ik3_dp_M0ckD0fPBLykMFzBiU7UroCkJxv7pAZq0soRNOUe2QGALwoJcA-OUjpCoAxYOIe2S-5qFvRtDPyfe7pXGtMyfYO6UUMY9DB0SFE-jY4a4qLpUpITz6PUenRBk_DQM9_fP22sP4DGnrmNjqscT1ag4mOyximyyV9g2bK9Cek85X1aqvrN9sGi9PJb52Us1-ywyt16XG0mp4rH9Yq5qfDdJ_cHZRL-OC6HpL3pyfvjl8Ui9dnL4_ni0JVVTkWLZelEaxRQmochGmk4b2Ug2qYbPXAe8h51I0wkuVGYZtz0pwzrFg9GFD8kDzd-a5j-DhhGruVTRqdUx7DlLoyh1i2shbwX5TlVKEGCXVGH99Cr8IU8493lKhlVbeZenRNTf0KTbeOdqXiprtZTwaOdoCOIaWIQ6ftuE0zb8O6jkH36wC63weQFc9uKW5M_8U-2bFKpz_m-4v7Cfdivac |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1016_j_watres_2016_06_007 crossref_primary_10_1002_jssc_201600854 crossref_primary_10_1002_admi_201500135 crossref_primary_10_1021_acs_analchem_9b02068 crossref_primary_10_1080_14789450_2016_1213132 crossref_primary_10_1021_acssuschemeng_9b01382 crossref_primary_10_1021_acsami_5b06445 crossref_primary_10_1186_1559_0275_11_21 crossref_primary_10_3390_nano4020242 crossref_primary_10_1002_jssc_201800275 crossref_primary_10_1016_j_talanta_2022_123956 crossref_primary_10_1021_acs_analchem_5b04040 crossref_primary_10_1021_am501110e crossref_primary_10_1021_acs_analchem_6b04054 crossref_primary_10_1039_C4CS00529E crossref_primary_10_1039_C7NR04206J crossref_primary_10_1039_C8RA07192F crossref_primary_10_4028_www_scientific_net_AMM_675_677_181 crossref_primary_10_1007_s00216_023_04575_0 crossref_primary_10_1039_C6AN00285D crossref_primary_10_1007_s00604_019_3938_z crossref_primary_10_1002_jssc_201400010 crossref_primary_10_1016_j_carbpol_2018_01_035 crossref_primary_10_1021_acs_analchem_9b04651 crossref_primary_10_1021_acs_chemrev_7b00732 crossref_primary_10_1038_srep29776 crossref_primary_10_1039_C6RA05848E crossref_primary_10_1007_s11427_014_4714_2 crossref_primary_10_1016_j_cclet_2022_05_012 crossref_primary_10_1039_C4CC10285A crossref_primary_10_1021_acsami_6b06343 crossref_primary_10_1021_acs_analchem_9b04938 crossref_primary_10_1016_j_chroma_2014_04_092 crossref_primary_10_1021_ac5018666 crossref_primary_10_1039_C5AN00599J crossref_primary_10_1016_j_foodchem_2020_126969 crossref_primary_10_1039_C6AN00113K crossref_primary_10_1002_rcm_7744 crossref_primary_10_1016_j_cclet_2022_06_042 crossref_primary_10_1016_j_foodchem_2019_125999 crossref_primary_10_5702_massspectrometry_S0063 crossref_primary_10_1039_C4AN01659A crossref_primary_10_1016_j_cej_2019_122627 crossref_primary_10_1016_j_microc_2021_106018 crossref_primary_10_1002_jssc_201600112 crossref_primary_10_1080_00032719_2020_1789161 crossref_primary_10_1016_j_chroma_2019_01_027 crossref_primary_10_1021_cr400559g crossref_primary_10_1016_j_talanta_2015_08_037 crossref_primary_10_1002_cjoc_202000515 crossref_primary_10_1039_C5TB01684C crossref_primary_10_1021_ac402332z crossref_primary_10_1021_acsami_0c22221 crossref_primary_10_1021_acs_analchem_2c01002 crossref_primary_10_1007_s11426_015_5370_5 crossref_primary_10_1016_j_aca_2021_338412 crossref_primary_10_1021_acs_jproteome_4c00545 crossref_primary_10_1016_j_talanta_2014_03_012 crossref_primary_10_1039_C5AN00572H crossref_primary_10_1002_med_21420 crossref_primary_10_1021_acs_jproteome_5b00306 crossref_primary_10_1016_j_cclet_2021_01_037 crossref_primary_10_1093_nsr_nww019 crossref_primary_10_1021_acsami_5b05241 crossref_primary_10_1021_acssuschemeng_7b01368 crossref_primary_10_1134_S1995078017050135 crossref_primary_10_1016_j_aca_2022_339988 crossref_primary_10_1016_j_jprot_2018_04_017 crossref_primary_10_1021_acs_analchem_7b01283 crossref_primary_10_1016_j_aca_2019_12_001 crossref_primary_10_1007_s00604_018_3092_z crossref_primary_10_1002_smll_201900099 crossref_primary_10_1186_1559_0275_11_18 crossref_primary_10_1007_s10337_019_03742_9 crossref_primary_10_1021_ac403236q crossref_primary_10_1080_10934529_2019_1579535 crossref_primary_10_1021_acsami_6b14733 crossref_primary_10_1039_C7RA12054K crossref_primary_10_1016_j_aca_2016_11_062 crossref_primary_10_1016_j_jmrt_2021_05_072 crossref_primary_10_1016_j_aca_2020_04_056 crossref_primary_10_1016_j_talanta_2018_05_053 |
Cites_doi | 10.1021/ac103312e 10.1016/j.talanta.2011.03.029 10.1039/c2jm35196j 10.1016/j.cell.2010.04.012 10.1038/nbt827 10.1093/glycob/8.11.1045 10.1016/j.cell.2006.08.019 10.1021/ac801912t 10.1021/la7025285 10.1515/hsz-2011-0245 10.1016/j.chroma.2010.03.050 10.1021/jo960057x 10.1021/pr300346c 10.1074/mcp.M110.000893 10.1038/nmeth.1392 10.1021/pr034112b 10.1021/ac3000732 10.1002/ange.200462551 10.1039/c2cc33600f 10.1038/nprot.2007.42 10.1021/pr8008012 10.1039/c000094a 10.1016/j.jprot.2011.06.010 10.1021/pr070112q 10.1021/ac050222l 10.1021/pr900845m 10.1021/jp807081b 10.1021/ac1001965 10.1038/nprot.2012.062 10.1021/ac1001096 10.1038/nm1760 10.1021/ac102262m 10.1038/nbt829 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society Copyright American Chemical Society Jun 4, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: Copyright American Chemical Society Jun 4, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/ac400733y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 5541 |
ExternalDocumentID | 2990126761 23659689 10_1021_ac400733y a230980574 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a442t-9372d618a67cef6d87d3b77fa8179cf3b0520586d71f3bae9073c331e415fd0a3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 03:56:35 EDT 2025 Thu Jul 10 18:01:40 EDT 2025 Mon Jun 30 10:35:15 EDT 2025 Mon Jul 21 05:43:13 EDT 2025 Tue Jul 01 02:48:51 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 Thu Aug 27 13:42:23 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a442t-9372d618a67cef6d87d3b77fa8179cf3b0520586d71f3bae9073c331e415fd0a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23659689 |
PQID | 1365657459 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000297560 proquest_miscellaneous_1365050705 proquest_journals_1365657459 pubmed_primary_23659689 crossref_citationtrail_10_1021_ac400733y crossref_primary_10_1021_ac400733y acs_journals_10_1021_ac400733y |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-04 |
PublicationDateYYYYMMDD | 2013-06-04 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Nilsson J. (ref4/cit4) 2009; 6 Deng H. (ref30/cit30) 2005; 117 Berven F. S. (ref23/cit23) 2010; 9 Zhang Q. (ref14/cit14) 2007; 6 Xiong Z. (ref1/cit1) 2012; 83 Ma W. F. (ref28/cit28) 2012; 22 Madera M. (ref19/cit19) 2005; 77 Kaji H. (ref11/cit11) 2003; 21 Chen Y. (ref21/cit21) 2011; 85 Yan J. (ref3/cit3) 2010; 46 Abdel-Magid A. F. (ref26/cit26) 1996; 61 Xu Y. (ref13/cit13) 2009; 81 Chen R. (ref16/cit16) 2009; 8 Pasing Y. (ref7/cit7) 2012; 393 Zhu J. (ref2/cit2) 2012; 84 Rohmer M. (ref25/cit25) 2010; 82 Hägglund P. (ref18/cit18) 2004; 3 Duan J. (ref31/cit31) 2010; 82 Chen F. T. A. (ref24/cit24) 1998; 8 Ohtsubo K. (ref5/cit5) 2006; 126 Zielinska D. F. (ref10/cit10) 2010; 141 Di Palma S. (ref17/cit17) 2011; 83 Kaji H. (ref20/cit20) 2012; 11 Suksrichavalit T. (ref8/cit8) 2010; 1217 Hartlen K. D. (ref27/cit27) 2008; 24 Zhang H. (ref15/cit15) 2003; 21 Kolarich D. (ref9/cit9) 2012; 7 Ahn Y. H. (ref12/cit12) 2010; 82 Ishihara T. (ref32/cit32) 2011; 74 Kang K. (ref29/cit29) 2009; 113 Ueda K. (ref33/cit33) 2010; 9 Grewal P. K. (ref6/cit6) 2008; 14 Tian Y. (ref22/cit22) 2007; 2 |
References_xml | – volume: 83 start-page: 3440 year: 2011 ident: ref17/cit17 publication-title: Anal. Chem. doi: 10.1021/ac103312e – volume: 85 start-page: 70 year: 2011 ident: ref21/cit21 publication-title: Talanta doi: 10.1016/j.talanta.2011.03.029 – volume: 22 start-page: 23981 year: 2012 ident: ref28/cit28 publication-title: J. Mater. Chem. doi: 10.1039/c2jm35196j – volume: 141 start-page: 897 year: 2010 ident: ref10/cit10 publication-title: Cell doi: 10.1016/j.cell.2010.04.012 – volume: 21 start-page: 660 year: 2003 ident: ref15/cit15 publication-title: Nat. Biotechnol. doi: 10.1038/nbt827 – volume: 8 start-page: 1045 year: 1998 ident: ref24/cit24 publication-title: Glycobiology doi: 10.1093/glycob/8.11.1045 – volume: 126 start-page: 855 year: 2006 ident: ref5/cit5 publication-title: Cell doi: 10.1016/j.cell.2006.08.019 – volume: 81 start-page: 503 year: 2009 ident: ref13/cit13 publication-title: Anal. Chem. doi: 10.1021/ac801912t – volume: 24 start-page: 1714 year: 2008 ident: ref27/cit27 publication-title: Langmuir doi: 10.1021/la7025285 – volume: 393 start-page: 249 year: 2012 ident: ref7/cit7 publication-title: Biol. Chem. doi: 10.1515/hsz-2011-0245 – volume: 1217 start-page: 3635 year: 2010 ident: ref8/cit8 publication-title: J. Chromatogr., A. doi: 10.1016/j.chroma.2010.03.050 – volume: 61 start-page: 3849 year: 1996 ident: ref26/cit26 publication-title: J. Org. Chem. doi: 10.1021/jo960057x – volume: 11 start-page: 4553 year: 2012 ident: ref20/cit20 publication-title: J. Proteome Res. doi: 10.1021/pr300346c – volume: 9 start-page: 1819 year: 2010 ident: ref33/cit33 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M110.000893 – volume: 6 start-page: 809 year: 2009 ident: ref4/cit4 publication-title: Nat. Methods doi: 10.1038/nmeth.1392 – volume: 3 start-page: 556 year: 2004 ident: ref18/cit18 publication-title: J. Proteome Res. doi: 10.1021/pr034112b – volume: 84 start-page: 5146 year: 2012 ident: ref2/cit2 publication-title: Anal. Chem. doi: 10.1021/ac3000732 – volume: 117 start-page: 2842 year: 2005 ident: ref30/cit30 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200462551 – volume: 83 start-page: 8138 year: 2012 ident: ref1/cit1 publication-title: Chem. Commun. (Cambridge, U.K.) doi: 10.1039/c2cc33600f – volume: 2 start-page: 334 year: 2007 ident: ref22/cit22 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.42 – volume: 8 start-page: 651 year: 2009 ident: ref16/cit16 publication-title: J. Proteome. Res. doi: 10.1021/pr8008012 – volume: 46 start-page: 5488 year: 2010 ident: ref3/cit3 publication-title: Chem. Commun. (Cambridge, U.K.) doi: 10.1039/c000094a – volume: 74 start-page: 2159 year: 2011 ident: ref32/cit32 publication-title: J. Proteome Res. doi: 10.1016/j.jprot.2011.06.010 – volume: 6 start-page: 2323 year: 2007 ident: ref14/cit14 publication-title: J. Proteome Res. doi: 10.1021/pr070112q – volume: 77 start-page: 4081 year: 2005 ident: ref19/cit19 publication-title: Anal. Chem. doi: 10.1021/ac050222l – volume: 9 start-page: 1706 year: 2010 ident: ref23/cit23 publication-title: J. Proteome Res. doi: 10.1021/pr900845m – volume: 113 start-page: 536 year: 2009 ident: ref29/cit29 publication-title: J. Phys. Chem. B doi: 10.1021/jp807081b – volume: 82 start-page: 4441 year: 2010 ident: ref12/cit12 publication-title: Anal. Chem. doi: 10.1021/ac1001965 – volume: 7 start-page: 1285 year: 2012 ident: ref9/cit9 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.062 – volume: 82 start-page: 3719 year: 2010 ident: ref25/cit25 publication-title: Anal. Chem. doi: 10.1021/ac1001096 – volume: 14 start-page: 648 year: 2008 ident: ref6/cit6 publication-title: Nat. Med. doi: 10.1038/nm1760 – volume: 82 start-page: 9211 year: 2010 ident: ref31/cit31 publication-title: Anal. Chem. doi: 10.1021/ac102262m – volume: 21 start-page: 667 year: 2003 ident: ref11/cit11 publication-title: Nat. Biotechnol. doi: 10.1038/nbt829 |
SSID | ssj0011016 |
Score | 2.4030538 |
Snippet | In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5535 |
SubjectTerms | Aldehydes Amination Amines - chemistry Analytical chemistry Biological samples blood serum bovine serum albumin Chemical reactions Colorectal carcinoma colorectal neoplasms Colorectal Neoplasms - blood detection limit Extraction processes Ferric Compounds - chemistry glycopeptides Glycopeptides - chemistry Glycopeptides - isolation & purification Glycoproteins Glycoproteins - analysis Glycoproteins - metabolism Glycosylation Humans Magnetics Mass Spectrometry Nanoparticles Nanoparticles - chemistry Peptides Propylamines Proteomics ribonucleases Silanes - chemistry Silicon Dioxide - chemistry Solid Phase Extraction Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods |
Title | An Accessible Protocol for Solid-Phase Extraction of N‑Linked Glycopeptides through Reductive Amination by Amine-Functionalized Magnetic Nanoparticles |
URI | http://dx.doi.org/10.1021/ac400733y https://www.ncbi.nlm.nih.gov/pubmed/23659689 https://www.proquest.com/docview/1365657459 https://www.proquest.com/docview/1365050705 https://www.proquest.com/docview/2000297560 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcgAOPAqUQKmWx4GLi-1dr73HKDRUSK0qSqXeon0ZokY2ShyJ9MRf4Mbv45cw45eCaOC48qy99s7szHgeH8BrrYwROaey30QFQmYyMJqTuFsvTZ7mKqJC4eMTeXQuPlwkF1vwakMEP47eaitqZMHVDbgZSxResn9GZ32ogNzPDhaPoqhd-6D1qaR67OJP1bPBnqz1yvgevOuqc5p0ksuDZWUO7NXfzRr_teT7cLe1K9mwYYQHsOWLHbg16uDcduDOWufBh_BzWLBhjZU4NTPPTudlVSJLMDRh2Vk5m7rg9AvqN3b4rZo3pQ-szNnJr-8_yHn1jr2fraieBQ8c5xesRfthH6kRLB2gbEgpNvU8s6oHPhijCm3-PE6v8A7H-nNBFZQMD3j03NsEvUdwPj78NDoKWpCGQAsRVwGaN7GTUaZlan0uXZY6btI01xmKus25oUSbJJMujXCgPTrj3HIeebQcchdq_hi2i7LwT4AJIxp8K-UTYZVTJrVGJFHqjeLC6AHs4y5OWiFbTOr4eRxN-s89gDfdBk9s2-KckDZm15G-7Em_Nn09riPa67hk7alcUqhYJGoAL_rLuJkUadGFL5cNTYiWdphspqEaKSprluEAdhsO7FcS43wlM_X0f2_8DG7HDT5HEIo92K7mS_8craTK7NdS8hshjQ3x |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHHuW1UIpBHLikTWLHiY_RqssC3VVFW6m3le04sGKVoE1WYnviL3Dj9_FLmHEeLKgVHK2MnYk94xlnPPMR8kpJrXnOMO03kh4XifC0Yqjuxgqdx7kMMFF4MhXjM_7uPDpvy-RgLgwwUcFIlQvi_64uEBwowx3A4Po6uQFOSIjSnA5P-ogBnkI7dDwMpnZVhDa7ogUy1Z8W6Aq30pmX0Z0Gp8gx5m6VfN5f1XrfXPxVs_H_OL9LbrdeJk0bsbhHrtlih2wPO3C3HXJrow7hffIjLWjqkBPnemHp8bKsSxAQCg4tPSkX88w7_gTWjh5-rZdNIgQtczr9-e07HmVtRt8s1pjdAttPZivaYv_QD1gWFrdTmuKFG9dPr13DeiMwqM1_yPkFjDBRHwvMp6Sw3cM5vr2u94CcjQ5Ph2OvhWzwFOdh7YGzE2YiSJSIjc1FlsQZ03GcqwQU3-RM47WbKBFZHEBDWTiaM8NYYMGPyDNfsYdkqygL-5hQrnmDdiVtxI3MpI6N5lEQWy0Z12pA9mC2Z63KVTMXTQ-DWT_dA_K6W-eZaQueI-7G4jLSlz3pl6bKx2VEu52wbLyVCQwc80gOyIv-MSwmxl1UYctVQ-OD3-1HV9NgxhQmOQt_QB41gthzEkJ_KRL55F9f_Jxsj08nR7Ojt9P3T8nNsEHu8Hy-S7bq5co-A_-p1ntOcX4Bly4WUg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFAOPEqBhVIM4sAlJYkdJz5GS5fy6LKiVOot8itlxSqpNlmJ7Ym_wI3fxy9hJslGC2oFRytjx7HHnpnM4yPkhZJa85xh2m8kPS4S4WnF8LgbJ3Qe5zLAROHDsTg45u9OopPOUMRcGJhEBSNVjRMfT_WZzbsKA8ErZXgDMri8Sq6huw45Oh0e9V4DtERXCHnoUF1VElrvilLIVH9KoUtUy0bEjG6Tj_3kmsiSr3uLWu-Z87_qNv7_7O-QW522SdOWPe6SK67YIjeGK5C3LXJzrR7hPfIzLWjaIChO9czRybysS2AUCootPSpnU-tNvoDUo_vf6nmbEEHLnI5_ff-BJq2z9M1siVkucA1ZV9EOA4h-wvKweK3SFANvmn562TScNwLB2v6PnJ7DCIfqtMC8SgrXPtjzXdjeNjke7X8eHngddIOnOA9rD5Se0IogUSI2Lhc2iS3TcZyrBC4AkzON4TdRImwcQEM5MNGZYSxwoE_k1lfsPtkoysI9JJRr3qJeSRdxI63UsdE8CmKnJeNaDcgurHjWHb0qa7zqYZD1yz0gL1d7nZmu8Dnib8wuIn3ek5611T4uItpZMczaW5lAjuSRHJBn_WPYTPS_qMKVi5bGB_3bjy6nwcwpTHYW_oA8aJmxn0kI_aVI5KN_ffFTcn3yepR9eDt-_5hshi2Ah-fzHbJRzxfuCahRtd5tzs5vhAwY1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accessible+Protocol+for+Solid-Phase+Extraction+of+N-Linked+Glycopeptides+through+Reductive+Amination+by+Amine-Functionalized+Magnetic+Nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Zhang%2C+Ying&rft.au=Kuang%2C+Min&rft.au=Zhang%2C+Lijuan&rft.au=Yang%2C+Pengyuan&rft.date=2013-06-04&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=85&rft.issue=11&rft.spage=5535&rft.epage=5541&rft_id=info:doi/10.1021%2Fac400733y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ac400733y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |