An Accessible Protocol for Solid-Phase Extraction of N‑Linked Glycopeptides through Reductive Amination by Amine-Functionalized Magnetic Nanoparticles

In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employ...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 85; no. 11; pp. 5535 - 5541
Main Authors Zhang, Ying, Kuang, Min, Zhang, Lijuan, Yang, Pengyuan, Lu, Haojie
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.06.2013
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/ac400733y

Cover

Loading…
Abstract In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What’s more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.
AbstractList In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.
In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.
In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 ...L. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling. (ProQuest: ... denotes formulae/symbols omitted.)
Author Zhang, Ying
Zhang, Lijuan
Lu, Haojie
Kuang, Min
Yang, Pengyuan
AuthorAffiliation Department of Chemistry
Fudan University
AuthorAffiliation_xml – name: Fudan University
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 2
  givenname: Min
  surname: Kuang
  fullname: Kuang, Min
– sequence: 3
  givenname: Lijuan
  surname: Zhang
  fullname: Zhang, Lijuan
– sequence: 4
  givenname: Pengyuan
  surname: Yang
  fullname: Yang, Pengyuan
– sequence: 5
  givenname: Haojie
  surname: Lu
  fullname: Lu, Haojie
  email: luhaojie@fudan.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23659689$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxi1URLeFAy-ALCEkOISO48ROjquqLUhLqfhzjhx70nXx2oudIJYTr8CN5-NJMLstQgWJ03ik3_dp_M0ckD0fPBLykMFzBiU7UroCkJxv7pAZq0soRNOUe2QGALwoJcA-OUjpCoAxYOIe2S-5qFvRtDPyfe7pXGtMyfYO6UUMY9DB0SFE-jY4a4qLpUpITz6PUenRBk_DQM9_fP22sP4DGnrmNjqscT1ag4mOyximyyV9g2bK9Cek85X1aqvrN9sGi9PJb52Us1-ywyt16XG0mp4rH9Yq5qfDdJ_cHZRL-OC6HpL3pyfvjl8Ui9dnL4_ni0JVVTkWLZelEaxRQmochGmk4b2Ug2qYbPXAe8h51I0wkuVGYZtz0pwzrFg9GFD8kDzd-a5j-DhhGruVTRqdUx7DlLoyh1i2shbwX5TlVKEGCXVGH99Cr8IU8493lKhlVbeZenRNTf0KTbeOdqXiprtZTwaOdoCOIaWIQ6ftuE0zb8O6jkH36wC63weQFc9uKW5M_8U-2bFKpz_m-4v7Cfdivac
CODEN ANCHAM
CitedBy_id crossref_primary_10_1016_j_watres_2016_06_007
crossref_primary_10_1002_jssc_201600854
crossref_primary_10_1002_admi_201500135
crossref_primary_10_1021_acs_analchem_9b02068
crossref_primary_10_1080_14789450_2016_1213132
crossref_primary_10_1021_acssuschemeng_9b01382
crossref_primary_10_1021_acsami_5b06445
crossref_primary_10_1186_1559_0275_11_21
crossref_primary_10_3390_nano4020242
crossref_primary_10_1002_jssc_201800275
crossref_primary_10_1016_j_talanta_2022_123956
crossref_primary_10_1021_acs_analchem_5b04040
crossref_primary_10_1021_am501110e
crossref_primary_10_1021_acs_analchem_6b04054
crossref_primary_10_1039_C4CS00529E
crossref_primary_10_1039_C7NR04206J
crossref_primary_10_1039_C8RA07192F
crossref_primary_10_4028_www_scientific_net_AMM_675_677_181
crossref_primary_10_1007_s00216_023_04575_0
crossref_primary_10_1039_C6AN00285D
crossref_primary_10_1007_s00604_019_3938_z
crossref_primary_10_1002_jssc_201400010
crossref_primary_10_1016_j_carbpol_2018_01_035
crossref_primary_10_1021_acs_analchem_9b04651
crossref_primary_10_1021_acs_chemrev_7b00732
crossref_primary_10_1038_srep29776
crossref_primary_10_1039_C6RA05848E
crossref_primary_10_1007_s11427_014_4714_2
crossref_primary_10_1016_j_cclet_2022_05_012
crossref_primary_10_1039_C4CC10285A
crossref_primary_10_1021_acsami_6b06343
crossref_primary_10_1021_acs_analchem_9b04938
crossref_primary_10_1016_j_chroma_2014_04_092
crossref_primary_10_1021_ac5018666
crossref_primary_10_1039_C5AN00599J
crossref_primary_10_1016_j_foodchem_2020_126969
crossref_primary_10_1039_C6AN00113K
crossref_primary_10_1002_rcm_7744
crossref_primary_10_1016_j_cclet_2022_06_042
crossref_primary_10_1016_j_foodchem_2019_125999
crossref_primary_10_5702_massspectrometry_S0063
crossref_primary_10_1039_C4AN01659A
crossref_primary_10_1016_j_cej_2019_122627
crossref_primary_10_1016_j_microc_2021_106018
crossref_primary_10_1002_jssc_201600112
crossref_primary_10_1080_00032719_2020_1789161
crossref_primary_10_1016_j_chroma_2019_01_027
crossref_primary_10_1021_cr400559g
crossref_primary_10_1016_j_talanta_2015_08_037
crossref_primary_10_1002_cjoc_202000515
crossref_primary_10_1039_C5TB01684C
crossref_primary_10_1021_ac402332z
crossref_primary_10_1021_acsami_0c22221
crossref_primary_10_1021_acs_analchem_2c01002
crossref_primary_10_1007_s11426_015_5370_5
crossref_primary_10_1016_j_aca_2021_338412
crossref_primary_10_1021_acs_jproteome_4c00545
crossref_primary_10_1016_j_talanta_2014_03_012
crossref_primary_10_1039_C5AN00572H
crossref_primary_10_1002_med_21420
crossref_primary_10_1021_acs_jproteome_5b00306
crossref_primary_10_1016_j_cclet_2021_01_037
crossref_primary_10_1093_nsr_nww019
crossref_primary_10_1021_acsami_5b05241
crossref_primary_10_1021_acssuschemeng_7b01368
crossref_primary_10_1134_S1995078017050135
crossref_primary_10_1016_j_aca_2022_339988
crossref_primary_10_1016_j_jprot_2018_04_017
crossref_primary_10_1021_acs_analchem_7b01283
crossref_primary_10_1016_j_aca_2019_12_001
crossref_primary_10_1007_s00604_018_3092_z
crossref_primary_10_1002_smll_201900099
crossref_primary_10_1186_1559_0275_11_18
crossref_primary_10_1007_s10337_019_03742_9
crossref_primary_10_1021_ac403236q
crossref_primary_10_1080_10934529_2019_1579535
crossref_primary_10_1021_acsami_6b14733
crossref_primary_10_1039_C7RA12054K
crossref_primary_10_1016_j_aca_2016_11_062
crossref_primary_10_1016_j_jmrt_2021_05_072
crossref_primary_10_1016_j_aca_2020_04_056
crossref_primary_10_1016_j_talanta_2018_05_053
Cites_doi 10.1021/ac103312e
10.1016/j.talanta.2011.03.029
10.1039/c2jm35196j
10.1016/j.cell.2010.04.012
10.1038/nbt827
10.1093/glycob/8.11.1045
10.1016/j.cell.2006.08.019
10.1021/ac801912t
10.1021/la7025285
10.1515/hsz-2011-0245
10.1016/j.chroma.2010.03.050
10.1021/jo960057x
10.1021/pr300346c
10.1074/mcp.M110.000893
10.1038/nmeth.1392
10.1021/pr034112b
10.1021/ac3000732
10.1002/ange.200462551
10.1039/c2cc33600f
10.1038/nprot.2007.42
10.1021/pr8008012
10.1039/c000094a
10.1016/j.jprot.2011.06.010
10.1021/pr070112q
10.1021/ac050222l
10.1021/pr900845m
10.1021/jp807081b
10.1021/ac1001965
10.1038/nprot.2012.062
10.1021/ac1001096
10.1038/nm1760
10.1021/ac102262m
10.1038/nbt829
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright American Chemical Society Jun 4, 2013
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: Copyright American Chemical Society Jun 4, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/ac400733y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 5541
ExternalDocumentID 2990126761
23659689
10_1021_ac400733y
a230980574
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
02
1AW
23M
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a442t-9372d618a67cef6d87d3b77fa8179cf3b0520586d71f3bae9073c331e415fd0a3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 03:56:35 EDT 2025
Thu Jul 10 18:01:40 EDT 2025
Mon Jun 30 10:35:15 EDT 2025
Mon Jul 21 05:43:13 EDT 2025
Tue Jul 01 02:48:51 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
Thu Aug 27 13:42:23 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-9372d618a67cef6d87d3b77fa8179cf3b0520586d71f3bae9073c331e415fd0a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23659689
PQID 1365657459
PQPubID 45400
PageCount 7
ParticipantIDs proquest_miscellaneous_2000297560
proquest_miscellaneous_1365050705
proquest_journals_1365657459
pubmed_primary_23659689
crossref_citationtrail_10_1021_ac400733y
crossref_primary_10_1021_ac400733y
acs_journals_10_1021_ac400733y
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-04
PublicationDateYYYYMMDD 2013-06-04
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Nilsson J. (ref4/cit4) 2009; 6
Deng H. (ref30/cit30) 2005; 117
Berven F. S. (ref23/cit23) 2010; 9
Zhang Q. (ref14/cit14) 2007; 6
Xiong Z. (ref1/cit1) 2012; 83
Ma W. F. (ref28/cit28) 2012; 22
Madera M. (ref19/cit19) 2005; 77
Kaji H. (ref11/cit11) 2003; 21
Chen Y. (ref21/cit21) 2011; 85
Yan J. (ref3/cit3) 2010; 46
Abdel-Magid A. F. (ref26/cit26) 1996; 61
Xu Y. (ref13/cit13) 2009; 81
Chen R. (ref16/cit16) 2009; 8
Pasing Y. (ref7/cit7) 2012; 393
Zhu J. (ref2/cit2) 2012; 84
Rohmer M. (ref25/cit25) 2010; 82
Hägglund P. (ref18/cit18) 2004; 3
Duan J. (ref31/cit31) 2010; 82
Chen F. T. A. (ref24/cit24) 1998; 8
Ohtsubo K. (ref5/cit5) 2006; 126
Zielinska D. F. (ref10/cit10) 2010; 141
Di Palma S. (ref17/cit17) 2011; 83
Kaji H. (ref20/cit20) 2012; 11
Suksrichavalit T. (ref8/cit8) 2010; 1217
Hartlen K. D. (ref27/cit27) 2008; 24
Zhang H. (ref15/cit15) 2003; 21
Kolarich D. (ref9/cit9) 2012; 7
Ahn Y. H. (ref12/cit12) 2010; 82
Ishihara T. (ref32/cit32) 2011; 74
Kang K. (ref29/cit29) 2009; 113
Ueda K. (ref33/cit33) 2010; 9
Grewal P. K. (ref6/cit6) 2008; 14
Tian Y. (ref22/cit22) 2007; 2
References_xml – volume: 83
  start-page: 3440
  year: 2011
  ident: ref17/cit17
  publication-title: Anal. Chem.
  doi: 10.1021/ac103312e
– volume: 85
  start-page: 70
  year: 2011
  ident: ref21/cit21
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.03.029
– volume: 22
  start-page: 23981
  year: 2012
  ident: ref28/cit28
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35196j
– volume: 141
  start-page: 897
  year: 2010
  ident: ref10/cit10
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.012
– volume: 21
  start-page: 660
  year: 2003
  ident: ref15/cit15
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt827
– volume: 8
  start-page: 1045
  year: 1998
  ident: ref24/cit24
  publication-title: Glycobiology
  doi: 10.1093/glycob/8.11.1045
– volume: 126
  start-page: 855
  year: 2006
  ident: ref5/cit5
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.019
– volume: 81
  start-page: 503
  year: 2009
  ident: ref13/cit13
  publication-title: Anal. Chem.
  doi: 10.1021/ac801912t
– volume: 24
  start-page: 1714
  year: 2008
  ident: ref27/cit27
  publication-title: Langmuir
  doi: 10.1021/la7025285
– volume: 393
  start-page: 249
  year: 2012
  ident: ref7/cit7
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2011-0245
– volume: 1217
  start-page: 3635
  year: 2010
  ident: ref8/cit8
  publication-title: J. Chromatogr., A.
  doi: 10.1016/j.chroma.2010.03.050
– volume: 61
  start-page: 3849
  year: 1996
  ident: ref26/cit26
  publication-title: J. Org. Chem.
  doi: 10.1021/jo960057x
– volume: 11
  start-page: 4553
  year: 2012
  ident: ref20/cit20
  publication-title: J. Proteome Res.
  doi: 10.1021/pr300346c
– volume: 9
  start-page: 1819
  year: 2010
  ident: ref33/cit33
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M110.000893
– volume: 6
  start-page: 809
  year: 2009
  ident: ref4/cit4
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1392
– volume: 3
  start-page: 556
  year: 2004
  ident: ref18/cit18
  publication-title: J. Proteome Res.
  doi: 10.1021/pr034112b
– volume: 84
  start-page: 5146
  year: 2012
  ident: ref2/cit2
  publication-title: Anal. Chem.
  doi: 10.1021/ac3000732
– volume: 117
  start-page: 2842
  year: 2005
  ident: ref30/cit30
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200462551
– volume: 83
  start-page: 8138
  year: 2012
  ident: ref1/cit1
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c2cc33600f
– volume: 2
  start-page: 334
  year: 2007
  ident: ref22/cit22
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.42
– volume: 8
  start-page: 651
  year: 2009
  ident: ref16/cit16
  publication-title: J. Proteome. Res.
  doi: 10.1021/pr8008012
– volume: 46
  start-page: 5488
  year: 2010
  ident: ref3/cit3
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c000094a
– volume: 74
  start-page: 2159
  year: 2011
  ident: ref32/cit32
  publication-title: J. Proteome Res.
  doi: 10.1016/j.jprot.2011.06.010
– volume: 6
  start-page: 2323
  year: 2007
  ident: ref14/cit14
  publication-title: J. Proteome Res.
  doi: 10.1021/pr070112q
– volume: 77
  start-page: 4081
  year: 2005
  ident: ref19/cit19
  publication-title: Anal. Chem.
  doi: 10.1021/ac050222l
– volume: 9
  start-page: 1706
  year: 2010
  ident: ref23/cit23
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900845m
– volume: 113
  start-page: 536
  year: 2009
  ident: ref29/cit29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp807081b
– volume: 82
  start-page: 4441
  year: 2010
  ident: ref12/cit12
  publication-title: Anal. Chem.
  doi: 10.1021/ac1001965
– volume: 7
  start-page: 1285
  year: 2012
  ident: ref9/cit9
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.062
– volume: 82
  start-page: 3719
  year: 2010
  ident: ref25/cit25
  publication-title: Anal. Chem.
  doi: 10.1021/ac1001096
– volume: 14
  start-page: 648
  year: 2008
  ident: ref6/cit6
  publication-title: Nat. Med.
  doi: 10.1038/nm1760
– volume: 82
  start-page: 9211
  year: 2010
  ident: ref31/cit31
  publication-title: Anal. Chem.
  doi: 10.1021/ac102262m
– volume: 21
  start-page: 667
  year: 2003
  ident: ref11/cit11
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt829
SSID ssj0011016
Score 2.4030538
Snippet In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5535
SubjectTerms Aldehydes
Amination
Amines - chemistry
Analytical chemistry
Biological samples
blood serum
bovine serum albumin
Chemical reactions
Colorectal carcinoma
colorectal neoplasms
Colorectal Neoplasms - blood
detection limit
Extraction processes
Ferric Compounds - chemistry
glycopeptides
Glycopeptides - chemistry
Glycopeptides - isolation & purification
Glycoproteins
Glycoproteins - analysis
Glycoproteins - metabolism
Glycosylation
Humans
Magnetics
Mass Spectrometry
Nanoparticles
Nanoparticles - chemistry
Peptides
Propylamines
Proteomics
ribonucleases
Silanes - chemistry
Silicon Dioxide - chemistry
Solid Phase Extraction
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
Title An Accessible Protocol for Solid-Phase Extraction of N‑Linked Glycopeptides through Reductive Amination by Amine-Functionalized Magnetic Nanoparticles
URI http://dx.doi.org/10.1021/ac400733y
https://www.ncbi.nlm.nih.gov/pubmed/23659689
https://www.proquest.com/docview/1365657459
https://www.proquest.com/docview/1365050705
https://www.proquest.com/docview/2000297560
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcgAOPAqUQKmWx4GLi-1dr73HKDRUSK0qSqXeon0ZokY2ShyJ9MRf4Mbv45cw45eCaOC48qy99s7szHgeH8BrrYwROaey30QFQmYyMJqTuFsvTZ7mKqJC4eMTeXQuPlwkF1vwakMEP47eaitqZMHVDbgZSxResn9GZ32ogNzPDhaPoqhd-6D1qaR67OJP1bPBnqz1yvgevOuqc5p0ksuDZWUO7NXfzRr_teT7cLe1K9mwYYQHsOWLHbg16uDcduDOWufBh_BzWLBhjZU4NTPPTudlVSJLMDRh2Vk5m7rg9AvqN3b4rZo3pQ-szNnJr-8_yHn1jr2fraieBQ8c5xesRfthH6kRLB2gbEgpNvU8s6oHPhijCm3-PE6v8A7H-nNBFZQMD3j03NsEvUdwPj78NDoKWpCGQAsRVwGaN7GTUaZlan0uXZY6btI01xmKus25oUSbJJMujXCgPTrj3HIeebQcchdq_hi2i7LwT4AJIxp8K-UTYZVTJrVGJFHqjeLC6AHs4y5OWiFbTOr4eRxN-s89gDfdBk9s2-KckDZm15G-7Em_Nn09riPa67hk7alcUqhYJGoAL_rLuJkUadGFL5cNTYiWdphspqEaKSprluEAdhsO7FcS43wlM_X0f2_8DG7HDT5HEIo92K7mS_8craTK7NdS8hshjQ3x
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHHuW1UIpBHLikTWLHiY_RqssC3VVFW6m3le04sGKVoE1WYnviL3Dj9_FLmHEeLKgVHK2MnYk94xlnPPMR8kpJrXnOMO03kh4XifC0Yqjuxgqdx7kMMFF4MhXjM_7uPDpvy-RgLgwwUcFIlQvi_64uEBwowx3A4Po6uQFOSIjSnA5P-ogBnkI7dDwMpnZVhDa7ogUy1Z8W6Aq30pmX0Z0Gp8gx5m6VfN5f1XrfXPxVs_H_OL9LbrdeJk0bsbhHrtlih2wPO3C3HXJrow7hffIjLWjqkBPnemHp8bKsSxAQCg4tPSkX88w7_gTWjh5-rZdNIgQtczr9-e07HmVtRt8s1pjdAttPZivaYv_QD1gWFrdTmuKFG9dPr13DeiMwqM1_yPkFjDBRHwvMp6Sw3cM5vr2u94CcjQ5Ph2OvhWzwFOdh7YGzE2YiSJSIjc1FlsQZ03GcqwQU3-RM47WbKBFZHEBDWTiaM8NYYMGPyDNfsYdkqygL-5hQrnmDdiVtxI3MpI6N5lEQWy0Z12pA9mC2Z63KVTMXTQ-DWT_dA_K6W-eZaQueI-7G4jLSlz3pl6bKx2VEu52wbLyVCQwc80gOyIv-MSwmxl1UYctVQ-OD3-1HV9NgxhQmOQt_QB41gthzEkJ_KRL55F9f_Jxsj08nR7Ojt9P3T8nNsEHu8Hy-S7bq5co-A_-p1ntOcX4Bly4WUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFAOPEqBhVIM4sAlJYkdJz5GS5fy6LKiVOot8itlxSqpNlmJ7Ym_wI3fxy9hJslGC2oFRytjx7HHnpnM4yPkhZJa85xh2m8kPS4S4WnF8LgbJ3Qe5zLAROHDsTg45u9OopPOUMRcGJhEBSNVjRMfT_WZzbsKA8ErZXgDMri8Sq6huw45Oh0e9V4DtERXCHnoUF1VElrvilLIVH9KoUtUy0bEjG6Tj_3kmsiSr3uLWu-Z87_qNv7_7O-QW522SdOWPe6SK67YIjeGK5C3LXJzrR7hPfIzLWjaIChO9czRybysS2AUCootPSpnU-tNvoDUo_vf6nmbEEHLnI5_ff-BJq2z9M1siVkucA1ZV9EOA4h-wvKweK3SFANvmn562TScNwLB2v6PnJ7DCIfqtMC8SgrXPtjzXdjeNjke7X8eHngddIOnOA9rD5Se0IogUSI2Lhc2iS3TcZyrBC4AkzON4TdRImwcQEM5MNGZYSxwoE_k1lfsPtkoysI9JJRr3qJeSRdxI63UsdE8CmKnJeNaDcgurHjWHb0qa7zqYZD1yz0gL1d7nZmu8Dnib8wuIn3ek5611T4uItpZMczaW5lAjuSRHJBn_WPYTPS_qMKVi5bGB_3bjy6nwcwpTHYW_oA8aJmxn0kI_aVI5KN_ffFTcn3yepR9eDt-_5hshi2Ah-fzHbJRzxfuCahRtd5tzs5vhAwY1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accessible+Protocol+for+Solid-Phase+Extraction+of+N-Linked+Glycopeptides+through+Reductive+Amination+by+Amine-Functionalized+Magnetic+Nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Zhang%2C+Ying&rft.au=Kuang%2C+Min&rft.au=Zhang%2C+Lijuan&rft.au=Yang%2C+Pengyuan&rft.date=2013-06-04&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=85&rft.issue=11&rft.spage=5535&rft.epage=5541&rft_id=info:doi/10.1021%2Fac400733y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ac400733y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon