Contact with the CsrA Core Is Required for Allosteric Inhibition by FliW in Bacillus subtilis

The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute encodes a protein inhibitor of CsrA...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 203; no. 2; pp. 1 - 15
Main Authors Oshiro, Reid T, Dunn, Caroline M, Kearns, Daniel B
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 18.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity. CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.
AbstractList CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding. The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute Bacillus subtilis encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity. IMPORTANCE CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.
The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute Bacillus subtilis encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity. IMPORTANCE CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.
The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity. CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.
Author Dunn, Caroline M
Kearns, Daniel B
Oshiro, Reid T
Author_xml – sequence: 1
  givenname: Reid T
  orcidid: 0000-0002-8419-1048
  surname: Oshiro
  fullname: Oshiro, Reid T
  organization: Department of Biology, Indiana University, Bloomington, Indiana, USA
– sequence: 2
  givenname: Caroline M
  surname: Dunn
  fullname: Dunn, Caroline M
  organization: Department of Biology, Indiana University, Bloomington, Indiana, USA
– sequence: 3
  givenname: Daniel B
  orcidid: 0000-0002-3460-8378
  surname: Kearns
  fullname: Kearns, Daniel B
  email: dbkearns@indiana.edu
  organization: Department of Biology, Indiana University, Bloomington, Indiana, USA dbkearns@indiana.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33106347$$D View this record in MEDLINE/PubMed
BookMark eNptkc9rFDEUx4NU7LZ68i4BL4JMffk1mbkIu4PVLQVBCp4kZLIZNyWbtEnG0v--0dbWSk_v8D583vfxPUB7IQaL0GsCR4TQ7sPJ6ghASN5QeIYWBPquEYLBHloAUNL0pGf76CDncwDCuaAv0D5jBFrG5QL9GGIo2hR85coWl63FQ05LPMRk8Trjb_Zydslu8BQTXnofc7HJGbwOWze64mLA4zU-9u47dgGvtHHezxnneSzOu_wSPZ-0z_bV3TxEZ8efzoYvzenXz-thedpozmlpZA_ajJ3hTDDGrOQtFVMnez3Jsa6oHPVYI1OjTcVa2Ru7EXIDkgOBqWWH6OOt9mIed3ZjbChJe3WR3E6naxW1U483wW3Vz_hLyV4Ah64K3t0JUrycbS5q57Kx3utg45wV5YK3gvGeVvTtf-h5nFOo31Wqq9FBdFCp97eUSTHnZKf7MATU79bUyUr9aU1ReDiv844--J5G3_z76r32b6PsBh3gn4o
CitedBy_id crossref_primary_10_1128_msystems_01043_22
Cites_doi 10.1128/jb.179.14.4639-4642.1997
10.1038/nsmb1285
10.1073/pnas.1602455113
10.1128/JB.00696-13
10.1038/ncomms11667
10.1074/jbc.M606057200
10.1111/j.1365-2958.2011.07822.x
10.1371/journal.pone.0145035
10.1128/jb.184.18.5130-5140.2002
10.1099/mic.0.000704
10.1111/mmi.13455
10.1046/j.1365-2958.2003.03459.x
10.15252/embj.201593360
10.1128/mBio.00533-19
10.1111/j.1365-2958.2007.05765.x
10.1261/rna.2990205
10.1128/JB.00820-06
10.1128/MMBR.00052-14
10.1073/pnas.1602425113
10.1111/j.1365-2958.2011.07853.x
10.1038/nmeth.1318
10.1074/jbc.272.28.17502
10.1093/nar/gkl439
10.1038/emboj.2008.264
10.1038/srep25057
10.1128/JVI.14.6.1343-1348.1974
10.1016/j.jmb.2009.07.034
10.1038/s41467-017-01613-1
10.1038/s41598-018-23713-8
10.1038/nmicrobiol.2015.7
ContentType Journal Article
Copyright Copyright © 2020 American Society for Microbiology.
Copyright American Society for Microbiology Jan 2021
Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology
Copyright_xml – notice: Copyright © 2020 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Jan 2021
– notice: Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.00574-20
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Residues of FliW Required for CsrA Antagonism, Oshiro et al
Residues of FliW Required for CsrA Antagonism
EISSN 1098-5530
Editor Mullineaux, Conrad W
Editor_xml – sequence: 1
  givenname: Conrad W
  surname: Mullineaux
  fullname: Mullineaux, Conrad W
– sequence: 1
  givenname: Conrad W.
  surname: Mullineaux
  fullname: Mullineaux, Conrad W.
ExternalDocumentID 10_1128_JB_00574_20
00574-20
33106347
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM131783
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM131783
  funderid: https://doi.org/10.13039/100000057
– fundername: ;
  grantid: GM131783
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
NPM
O9-
OK1
P-S
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UCJ
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
~02
~KM
-
02
0R
55
ABFLS
ABPTK
ADACO
ADBIT
BXI
DZ
HZ
KM
PQEST
X
ZA5
AAYXX
CITATION
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-a442t-790acb8c435333e74625f879af7b90a27bab3312caccb8679ced57d074010f63
IEDL.DBID RPM
ISSN 0021-9193
IngestDate Tue Sep 17 21:18:19 EDT 2024
Fri Oct 25 23:37:31 EDT 2024
Thu Oct 10 17:34:50 EDT 2024
Fri Dec 06 04:33:14 EST 2024
Tue Dec 28 13:59:11 EST 2021
Sat Sep 28 08:37:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords flagella
motility
RsmA
FliW
CsrA
Language English
License Copyright © 2020 American Society for Microbiology.
All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-790acb8c435333e74625f879af7b90a27bab3312caccb8679ced57d074010f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Oshiro RT, Dunn CM, Kearns DB. 2021. Contact with the CsrA core is required for allosteric inhibition by FliW in Bacillus subtilis. J Bacteriol 203:e00574-20. https://doi.org/10.1128/JB.00574-20.
ORCID 0000-0002-8419-1048
0000-0002-3460-8378
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950408
PMID 33106347
PQID 2487460580
PQPubID 40724
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7950408
proquest_miscellaneous_2454653492
proquest_journals_2487460580
crossref_primary_10_1128_JB_00574_20
asm2_journals_10_1128_JB_00574_20
pubmed_primary_33106347
PublicationCentury 2000
PublicationDate 20201218
PublicationDateYYYYMMDD 2020-12-18
PublicationDate_xml – month: 12
  year: 2020
  text: 20201218
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Journal of bacteriology
PublicationTitleAbbrev J Bacteriol
PublicationTitleAlternate J Bacteriol
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Zere, TR, Vakulskas, CA, Leng, Y, Pannuri, A, Potts, AH, Dias, R, Tang, D, Kolaczkowski, B, Georgellis, D, Ahmer, BMM, Romeo, T (B15) 2015; 10
Potts, AH, Vakulskas, CA, Pannuri, A, Yakhnin, H, Babitzke, P, Romeo, T (B9) 2017; 8
Weilbacher, T, Suzuki, K, Dubey, AK, Wang, X, Gudapaty, S, Morozov, I, Baker, CS, Georgellis, D, Babitzke, P, Romeo, T (B13) 2003; 48
Esquerré, T, Bouvier, M, Turlan, C, Carpousis, AJ, Girbal, L, Cocaign-Bousquet, M (B7) 2016; 6
Titz, B, Rajagopala, SV, Ester, C, Häuser, R, Uetz, P (B22) 2006; 188
Radomska, KA, Ordoñez, SR, Wösten, MMSM, Wagenaar, JA, van Putten, JPM (B25) 2016; 102
Mercante, J, Suzuki, K, Cheng, X, Babitzke, P, Romeo, T (B3) 2006; 281
Mukherjee, S, Yakhnin, H, Kysela, D, Sokoloski, J, Babitzke, P, Kearns, DB (B17) 2011; 82
Liu, MY, Gui, G, Wei, B, Preston, JF, Oakford, L, Yüksel, Ü, Giedroc, DP, Romeo, T (B11) 1997; 272
Mondal, S, Yakhnin, AV, Sebastian, A, Albert, I, Babitzke, P (B19) 2016; 1
Potts, AH, Leng, Y, Babitzke, P, Romeo, T (B10) 2018; 8
Konkol, MA, Blair, KM, Kearns, DB (B27) 2013; 195
Li, J, Gulbronson, CJ, Bogacz, M, Hendrixson, DR, Thompson, SA (B26) 2018; 164
Bendezù, FO, Hale, CA, Bernhardt, TG, de Boer, PA (B30) 2009; 28
Vakulskas, CA, Potts, AH, Babitzke, P, Ahmer, BMM, Romeo, T (B6) 2015; 79
Oshiro, RT, Rajendren, S, Hundley, HA, Kearns, DB (B18) 2019; 10
Schubert, M, Lapouge, K, Duss, O, Oberstrass, FC, Jelesarov, I, Haas, D, Allain, FH-T (B4) 2007; 14
Mercante, J, Edwards, AN, Dubey, AK, Babitzke, P, Romeo, T (B5) 2009; 392
Holmqvist, E, Wright, PR, Li, L, Bischler, T, Barquist, L, Reinhardt, R, Backofen, R, Vogel, J (B8) 2016; 35
Kulkarni, PR, Cui, X, Williams, JW, Stevens, AM, Kulkarni, RV (B14) 2006; 34
Suzuki, K, Wang, X, Weilbacher, T, Pernestig, A-K, Melefors, Ö, Georgellis, D, Babitzke, P, Romeo, T (B12) 2002; 184
Gibson, DG, Young, L, Chuang, R-Y, Venter, JC, Hutchison, CA, Smith, HO (B29) 2009; 6
Yakhnin, H, Pandit, P, Petty, TJ, Baker, CS, Romeo, T, Babitzke, P (B16) 2007; 64
Mukherjee, S, Oshiro, RT, Yakhnin, H, Babitzke, P, Kearns, DB (B20) 2016; 113
Yasbin, RE, Young, FE (B28) 1974; 14
Liu, MY, Romeo, T (B1) 1997; 179
Altegoer, F, Rensing, SA, Bange, G (B21) 2016; 113
Sze, CW, Morado, DR, Liu, J, Charon, NW, Xu, H, Li, C (B23) 2011; 82
Dugar, G, Svensson, SL, Bischler, T, Wäldchen, S, Reinhardt, R, Sauer, M, Sharma, CM (B24) 2016; 7
Dubey, AK, Baker, CS, Romeo, T, Babitzke, P (B2) 2005; 11
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – volume: 179
  start-page: 4639
  year: 1997
  end-page: 4642
  ident: B1
  article-title: The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.14.4639-4642.1997
  contributor:
    fullname: Romeo, T
– volume: 14
  start-page: 807
  year: 2007
  end-page: 813
  ident: B4
  article-title: Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1285
  contributor:
    fullname: Allain, FH-T
– volume: 113
  start-page: 9870
  year: 2016
  end-page: 9875
  ident: B20
  article-title: FliW antagonizes CsrA RNA binding by a noncompetitive allosteric mechanism
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1602455113
  contributor:
    fullname: Kearns, DB
– volume: 195
  start-page: 4085
  year: 2013
  end-page: 4093
  ident: B27
  article-title: Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis
  publication-title: J Bacteriol
  doi: 10.1128/JB.00696-13
  contributor:
    fullname: Kearns, DB
– volume: 7
  start-page: 11667
  year: 2016
  ident: B24
  article-title: The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni
  publication-title: Nat Commun
  doi: 10.1038/ncomms11667
  contributor:
    fullname: Sharma, CM
– volume: 281
  start-page: 31832
  year: 2006
  end-page: 31842
  ident: B3
  article-title: Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M606057200
  contributor:
    fullname: Romeo, T
– volume: 82
  start-page: 447
  year: 2011
  end-page: 461
  ident: B17
  article-title: CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2011.07822.x
  contributor:
    fullname: Kearns, DB
– volume: 10
  year: 2015
  ident: B15
  article-title: Genomic targets and features of BarA-UvrY (-SirA) signal transduction systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145035
  contributor:
    fullname: Romeo, T
– volume: 184
  start-page: 5130
  year: 2002
  end-page: 5140
  ident: B12
  article-title: Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/jb.184.18.5130-5140.2002
  contributor:
    fullname: Romeo, T
– volume: 164
  start-page: 1308
  year: 2018
  end-page: 1319
  ident: B26
  article-title: FliW controls growth-phase expression of Campylobacter jejuni flagellar and non-flagellar proteins via the post-transcriptional regulator CsrA
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.000704
  contributor:
    fullname: Thompson, SA
– volume: 102
  start-page: 207
  year: 2016
  end-page: 220
  ident: B25
  article-title: Feedback control of Campylobacter jejuni flagellin levels through reciprocal binding of FliW to flagellin and the global regulator CsrA
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13455
  contributor:
    fullname: van Putten, JPM
– volume: 48
  start-page: 657
  year: 2003
  end-page: 670
  ident: B13
  article-title: A novel sRNA component of the carbon storage regulatory system of Escherichia coli
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03459.x
  contributor:
    fullname: Romeo, T
– volume: 35
  start-page: 991
  year: 2016
  end-page: 1011
  ident: B8
  article-title: Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo
  publication-title: EMBO J
  doi: 10.15252/embj.201593360
  contributor:
    fullname: Vogel, J
– volume: 10
  year: 2019
  ident: B18
  article-title: Robust stoichiometry of FliW-CsrA governs flagellin homeostasis and cytoplasmic organization in Bacillus subtilis
  publication-title: mBio
  doi: 10.1128/mBio.00533-19
  contributor:
    fullname: Kearns, DB
– volume: 64
  start-page: 1605
  year: 2007
  end-page: 1620
  ident: B16
  article-title: CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.05765.x
  contributor:
    fullname: Babitzke, P
– volume: 11
  start-page: 1579
  year: 2005
  end-page: 1587
  ident: B2
  article-title: RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction
  publication-title: RNA
  doi: 10.1261/rna.2990205
  contributor:
    fullname: Babitzke, P
– volume: 188
  start-page: 7700
  year: 2006
  end-page: 7706
  ident: B22
  article-title: Novel conserved assembly factor of the bacterial flagellum
  publication-title: J Bacteriol
  doi: 10.1128/JB.00820-06
  contributor:
    fullname: Uetz, P
– volume: 79
  start-page: 193
  year: 2015
  end-page: 223
  ident: B6
  article-title: Regulation of bacterial virulence by CsrA (Rsm) systems
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00052-14
  contributor:
    fullname: Romeo, T
– volume: 113
  start-page: 10168
  year: 2016
  end-page: 10173
  ident: B21
  article-title: Structural basis for the CsrA-dependent modulation of translation inhibition by an ancient regulatory protein
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1602425113
  contributor:
    fullname: Bange, G
– volume: 82
  start-page: 851
  year: 2011
  end-page: 864
  ident: B23
  article-title: Carbon storage regulator A (CsrABb) is a repressor of Borrelia burgdorferi flagellin protein FlaB
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2011.07853.x
  contributor:
    fullname: Li, C
– volume: 6
  start-page: 343
  year: 2009
  end-page: 345
  ident: B29
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1318
  contributor:
    fullname: Smith, HO
– volume: 272
  start-page: 17502
  year: 1997
  end-page: 17510
  ident: B11
  article-title: The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.28.17502
  contributor:
    fullname: Romeo, T
– volume: 34
  start-page: 3361
  year: 2006
  end-page: 3369
  ident: B14
  article-title: Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl439
  contributor:
    fullname: Kulkarni, RV
– volume: 28
  start-page: 193
  year: 2009
  end-page: 204
  ident: B30
  article-title: RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.264
  contributor:
    fullname: de Boer, PA
– volume: 6
  start-page: 25057
  year: 2016
  ident: B7
  article-title: The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli
  publication-title: Sci Rep
  doi: 10.1038/srep25057
  contributor:
    fullname: Cocaign-Bousquet, M
– volume: 14
  start-page: 1343
  year: 1974
  end-page: 1348
  ident: B28
  article-title: Transduction in Bacillus subtilis by bacteriophage SPP1
  publication-title: J Virol
  doi: 10.1128/JVI.14.6.1343-1348.1974
  contributor:
    fullname: Young, FE
– volume: 392
  start-page: 511
  year: 2009
  end-page: 528
  ident: B5
  article-title: Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.07.034
  contributor:
    fullname: Romeo, T
– volume: 8
  start-page: 1596
  year: 2017
  ident: B9
  article-title: Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01613-1
  contributor:
    fullname: Romeo, T
– volume: 8
  start-page: 5373
  year: 2018
  ident: B10
  article-title: Examination of Csr regulatory circuitry using epistasis analysis with RNA-seq (Epi-seq) confirms that CsrD affects gene expression via CsrA, CsrB, and CsrC
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-23713-8
  contributor:
    fullname: Romeo, T
– volume: 1
  start-page: 15007
  year: 2016
  ident: B19
  article-title: NusA-dependent transcription termination prevents misregulation of global gene expression
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2015.7
  contributor:
    fullname: Babitzke, P
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1365-2958.2007.05765.x
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1365-2958.2011.07853.x
– ident: e_1_3_3_28_2
  doi: 10.1128/JB.00696-13
– ident: e_1_3_3_20_2
  doi: 10.1038/nmicrobiol.2015.7
– ident: e_1_3_3_11_2
  doi: 10.1038/s41598-018-23713-8
– ident: e_1_3_3_3_2
  doi: 10.1261/rna.2990205
– ident: e_1_3_3_13_2
  doi: 10.1128/jb.184.18.5130-5140.2002
– ident: e_1_3_3_10_2
  doi: 10.1038/s41467-017-01613-1
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1602455113
– ident: e_1_3_3_8_2
  doi: 10.1038/srep25057
– ident: e_1_3_3_5_2
  doi: 10.1038/nsmb1285
– ident: e_1_3_3_4_2
  doi: 10.1074/jbc.M606057200
– ident: e_1_3_3_31_2
  doi: 10.1038/emboj.2008.264
– ident: e_1_3_3_23_2
  doi: 10.1128/JB.00820-06
– ident: e_1_3_3_30_2
  doi: 10.1038/nmeth.1318
– ident: e_1_3_3_27_2
  doi: 10.1099/mic.0.000704
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1365-2958.2011.07822.x
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.1602425113
– ident: e_1_3_3_15_2
  doi: 10.1093/nar/gkl439
– ident: e_1_3_3_9_2
  doi: 10.15252/embj.201593360
– ident: e_1_3_3_16_2
  doi: 10.1371/journal.pone.0145035
– ident: e_1_3_3_25_2
  doi: 10.1038/ncomms11667
– ident: e_1_3_3_19_2
  doi: 10.1128/mBio.00533-19
– ident: e_1_3_3_2_2
  doi: 10.1128/jb.179.14.4639-4642.1997
– ident: e_1_3_3_6_2
  doi: 10.1016/j.jmb.2009.07.034
– ident: e_1_3_3_14_2
  doi: 10.1046/j.1365-2958.2003.03459.x
– ident: e_1_3_3_26_2
  doi: 10.1111/mmi.13455
– ident: e_1_3_3_29_2
  doi: 10.1128/JVI.14.6.1343-1348.1974
– ident: e_1_3_3_7_2
  doi: 10.1128/MMBR.00052-14
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.272.28.17502
SSID ssj0014452
Score 2.3980222
Snippet The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity...
CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A...
SourceID pubmedcentral
proquest
crossref
asm2
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms Alleles
Allosteric properties
Amino Acid Sequence
Antagonism
Bacillus subtilis
Bacillus subtilis - drug effects
Bacillus subtilis - genetics
Bacillus subtilis - physiology
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - pharmacology
Bacteriology
Charge reversal
Dimerization
Dimers
Domains
Flagella
Flagellin
Genomes
Homeostasis
Loss of Function Mutation - genetics
Phylogeny
Post-transcription
Protein Conformation
Proteins
Regulators
Repressor Proteins - antagonists & inhibitors
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Research Article
Residues
Ribonucleic acid
RNA
RNA, Bacterial - metabolism
RNA-binding protein
RNA-Binding Proteins - antagonists & inhibitors
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Salts
Spotlight
Title Contact with the CsrA Core Is Required for Allosteric Inhibition by FliW in Bacillus subtilis
URI https://www.ncbi.nlm.nih.gov/pubmed/33106347
https://journals.asm.org/doi/10.1128/JB.00574-20
https://www.proquest.com/docview/2487460580
https://search.proquest.com/docview/2454653492
https://pubmed.ncbi.nlm.nih.gov/PMC7950408
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SQEsuJX27ScsWcpUt7UMrHW1TkxhSSklpLkXsS0Qgy8GSD_n3nV1Lbt321POOdpfZ2Z1vNC-AS2viWOXMRtQmPOKp0FGmXRkpVK7CJtaIkLd28zm9-saXd-LuCMSQCxOC9o2uxk29GjfVfYitfFiZyRAnNvlyM5e5QNnLJsdwjOp3MNF71wHnoi8RnuBNzlmflIfv8GQ5G_vkS46icQpPGSKblIW-Kqpd0UPF9Bfa_DNo8jcttDiDZz18JNPdNp_DkWtewJNdQ8nHl_DDF5tSpiP-9ypBbEfm7WZK5uuNI9ct-ep83K-zBJEqmda1T_DAd5BcN_eVDrFbRD-SRV19J1VDZspUdb1tSbvVXVVX7Su4XXy6nV9FfQOFSHFOu0jmsTI6MwiJGGNOcjR2ykzmqpQah6jUSiMXqFEGyVKZG2eFtLHv0heXKXsNJ826cW-BMG1FnmRSo8L3HuBMlDqxeWlpijOqeAQfPQ-L_gK0RbAtaFYsZ0VgeUGR5nJgcPGwK6Xxb7KLgfm_pqNoVwUPrl9pP4w3wbs3VOPWW0_jG7v7aosjeLM7q_06w1mPQB6c4p7AV9k-HEHhC9W2e2F7999fnsMp9UZ6QqMku4CTbrN17xHJdPpDkNyfoOHvMA
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGELAL4pvCACPtmjbxR5wc22pVW9YJoSJ2QZG_okVK06lJD_vveXaTso6dOPvFtp6f_X4v7wuhM6PDUKbUBMRELGAxV0GibB5IUK7cREZzn7e2uIynP9n8il8dId7lwvigfa2KflWu-lVx7WMrb1Z60MWJDb4vxiLlIHvJ4BF6zKlIo85Ib50HjPG2SHgEdzmlbVoevMSD-ajv0i8ZCMcJekoB28TUd1aR9YocqqZ_8Ob9sMk7emjyAj1vASQe7jb6Eh3Z6hV6smspefsa_XblpqRusPvBigHd4XG9GeLxemPxrMY_rIv8tQYDVsXDsnQpHvAS4ll1XSgfvYXVLZ6UxS9cVHgkdVGW2xrXW9UUZVG_QcvJ-XI8DdoWCoFkjDSBSEOpVaIBFFFKrWBg7uSJSGUuFAwRoaQCLhAtNZDFItXWcGFC16cvzGP6Fh1X68q-R5gqw9MoEQpUvvMBJzxXkUlzQ2KYUYY99NXxMGuvQJ1564Ik2XyUeZZnBGjOOgZnN7tiGg-TnXbM_zsdAcvK-3DdSvthuAvOwSEru946Gtfa3dVb7KF3u7Par9OddQ-Jg1PcE7g624cjIH6-3nYrbh_--8sv6Nl0ubjILmaX3z6iE-JM9ogEUXKKjpvN1n4CXNOoz16K_wBihfKF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgiGkvE5-jMMBIe02T-CNOHttCtRY2TWiIvaDIX9EipWnVpA_773d2k7ICTzz7Ylvns-8u97s7hM6MjiKZURMQE7OAJVwFqbJFIEG5chMbzX3e2sVlcv6DzW_4zYNWXx60r1U5rKvFsC5vPbZytdBhjxMLry4mIuMge2m4MkX4GD3hFISsd9S7AAJjvCsUHsN9zmiXmgevcTgfD10KJgMBOUKHFOybhPruKrJZkH319JfN-Sd08oEumj5Dx50RiUfbzT5Hj2z9Aj3dtpW8e4l-uZJTUrfY_WTFYOHhSbMe4clybfGswd-tQ_9ag8FexaOqcmke8BriWX1bKo_gwuoOT6vyJy5rPJa6rKpNg5uNasuqbF6h6-mX68l50LVRCCRjpA1EFkmtUg2GEaXUCgYuT5GKTBZCwRARSirgAtFSA1kiMm0NFyZyvfqiIqGv0UG9rO0bhKkyPItToUDtuzhwygsVm6wwJIEZZTRAnxwP8-4aNLn3MEiaz8e5Z3lOgOasZ3C-2hbU-DfZac_839MR8K58HNettBuG--CCHLK2y42jce3dXc3FATrZntVunf6sB0jsneKOwNXa3h8BEfQ1tzuRe_vfX35Eh1efp_m32eXXd-iIOK_dg2JO0UG73tj3YNq06oMX4nv2VvOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contact+with+the+CsrA+Core+Is+Required+for+Allosteric+Inhibition+by+FliW+in+Bacillus+subtilis&rft.jtitle=Journal+of+bacteriology&rft.au=Oshiro%2C+Reid+T&rft.au=Dunn%2C+Caroline+M&rft.au=Kearns%2C+Daniel+B&rft.date=2020-12-18&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=203&rft.issue=2&rft_id=info:doi/10.1128%2FJB.00574-20&rft.externalDocID=00574-20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon