Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging

This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gr...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 90; no. 20; pp. 11949 - 11954
Main Authors de Freitas, Soraia V, de Souza, Fabrício R, Rodrigues Neto, Jorge C, Vasconcelos, Géssica A, Abdelnur, Patrícia V, Vaz, Boniek G, Henry, Charles S, Coltro, Wendell K. T
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI­(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(−) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3 –) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface.
AbstractList This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(-) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I ) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface.
This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(−) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3–) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface.
This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI­(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(−) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3 –) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface.
This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(-) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3-) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface.
Author Henry, Charles S
Vaz, Boniek G
Vasconcelos, Géssica A
Coltro, Wendell K. T
de Souza, Fabrício R
Rodrigues Neto, Jorge C
Abdelnur, Patrícia V
de Freitas, Soraia V
AuthorAffiliation Instituto de Química
Instituto Nacional de Ciência e Tecnologia de Bioanalítica
Universidade Federal de Goiás
Empresa Brasileira de Pesquisa Agropecuária
AuthorAffiliation_xml – name: Empresa Brasileira de Pesquisa Agropecuária
– name: Instituto de Química
– name: Instituto Nacional de Ciência e Tecnologia de Bioanalítica
– name: Universidade Federal de Goiás
Author_xml – sequence: 1
  givenname: Soraia V
  surname: de Freitas
  fullname: de Freitas, Soraia V
  organization: Universidade Federal de Goiás
– sequence: 2
  givenname: Fabrício R
  surname: de Souza
  fullname: de Souza, Fabrício R
  organization: Universidade Federal de Goiás
– sequence: 3
  givenname: Jorge C
  surname: Rodrigues Neto
  fullname: Rodrigues Neto, Jorge C
  organization: Empresa Brasileira de Pesquisa Agropecuária
– sequence: 4
  givenname: Géssica A
  surname: Vasconcelos
  fullname: Vasconcelos, Géssica A
  organization: Universidade Federal de Goiás
– sequence: 5
  givenname: Patrícia V
  surname: Abdelnur
  fullname: Abdelnur, Patrícia V
  organization: Empresa Brasileira de Pesquisa Agropecuária
– sequence: 6
  givenname: Boniek G
  surname: Vaz
  fullname: Vaz, Boniek G
  organization: Universidade Federal de Goiás
– sequence: 7
  givenname: Charles S
  orcidid: 0000-0002-8671-7728
  surname: Henry
  fullname: Henry, Charles S
– sequence: 8
  givenname: Wendell K. T
  orcidid: 0000-0002-4009-2291
  surname: Coltro
  fullname: Coltro, Wendell K. T
  email: wendell@ufg.br
  organization: Instituto Nacional de Ciência e Tecnologia de Bioanalítica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30188682$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u3CAQxlGVKtn8eYOqQuqlF28HMDY-bjdNGilRKzU5WxgPCZFttmBH8pP0dYu1mxx66AkN_L5vhvlOydHgByTkA4M1A86-aBPXetCdecJ-rRrgQuXvyIpJDlmhFD8iKwAQGS8BTshpjM8AjAErjsmJAKZUofiK_HkYjH_B4IZHOj4hvfKh16PzA_WWbn3nA70OunU4jJHapeom4yPu31yPY3CGbmLUc6RJdedM8LabXJuuf-odhuyrjtjSTRp1Hp3RHb3EF2cw0mamdzpG-muHZgx-8ZrpTa8f0zDn5L3VXcSLw3lGHq6-3W-_Z7c_rm-2m9tM5zkfM6mBGW0RjGBCgCxNW0hrG9WWVVM0qpLSlLyplC1yaHKsWpSqygspU13qQpyRz3vfXfC_J4xj3btosOv0gH6KNU8b42Up1IJ--gd99lNI31ooLksJgqlE5Xsq7SHGgLbepTXpMNcM6iW4OgVXvwZXH4JLso8H86npsX0TvSaVANgDi_yt8X89_wI4UKr3
CitedBy_id crossref_primary_10_3390_bios13070743
crossref_primary_10_1016_j_rsurfi_2021_100034
crossref_primary_10_1016_j_foodchem_2022_134844
crossref_primary_10_1016_j_talanta_2021_122301
crossref_primary_10_3390_applbiosci1010001
crossref_primary_10_1016_j_microc_2022_107562
crossref_primary_10_1039_C9AN00481E
crossref_primary_10_1039_D1CB00112D
crossref_primary_10_1002_smll_201903822
crossref_primary_10_1016_j_microc_2021_106093
crossref_primary_10_3390_bios11120474
crossref_primary_10_1021_acs_analchem_3c03009
crossref_primary_10_1038_s41598_019_52202_9
crossref_primary_10_3390_mi14112059
crossref_primary_10_1007_s00216_019_01788_0
crossref_primary_10_1007_s00216_021_03213_x
crossref_primary_10_1016_j_bios_2021_113026
crossref_primary_10_1039_C9AY00893D
crossref_primary_10_1016_j_aca_2021_338275
crossref_primary_10_1016_j_snb_2023_133324
crossref_primary_10_1039_D3LC00511A
crossref_primary_10_1016_j_aca_2021_339141
crossref_primary_10_1016_j_aca_2020_10_010
crossref_primary_10_1021_acs_analchem_9b01288
crossref_primary_10_1016_j_aca_2020_12_003
crossref_primary_10_1039_D2SD00032F
crossref_primary_10_1002_elps_201900409
crossref_primary_10_1016_j_bios_2020_112406
crossref_primary_10_2116_analsci_20R006
crossref_primary_10_1021_acssensors_0c02367
crossref_primary_10_1039_C9RA04278D
crossref_primary_10_1016_j_aca_2020_03_013
crossref_primary_10_1021_acs_analchem_2c04442
crossref_primary_10_1021_acs_analchem_3c04603
crossref_primary_10_1002_adsr_202300141
crossref_primary_10_3390_bios11120482
crossref_primary_10_1007_s10404_020_02344_4
crossref_primary_10_1007_s10404_020_02382_y
crossref_primary_10_1016_j_snb_2022_132345
crossref_primary_10_1016_j_trac_2020_115862
crossref_primary_10_1016_j_aca_2019_02_046
crossref_primary_10_1016_j_talanta_2024_126361
Cites_doi 10.1021/ac9013989
10.1021/ac5019205
10.1039/C7AN00849J
10.1021/acsami.5b10027
10.1021/acs.analchem.7b03790
10.1021/ac5000224
10.1039/C4AN01147C
10.1021/acs.analchem.6b04581
10.1021/ac203466y
10.1016/j.bios.2014.12.042
10.1021/ac503968p
10.1021/acs.analchem.8b00559
10.1016/j.bios.2013.10.075
10.1016/j.aca.2017.03.037
10.1016/j.aca.2017.01.002
10.1021/acs.analchem.6b00072
10.1039/C4RA07112C
10.1039/C4AN00230J
10.1039/C6AN00430J
10.1039/C5AN02572A
10.1039/c3lc50976a
10.1016/j.aca.2017.10.018
10.1039/C4AY01677G
10.1126/scitranslmed.3003981
10.1007/s00216-010-3718-4
10.1021/acs.analchem.6b04953
10.1021/ac203434x
10.1039/c3lc50169h
10.1016/j.talanta.2017.08.082
10.1021/ac800112r
10.1016/j.foodchem.2018.01.004
ContentType Journal Article
Copyright Copyright American Chemical Society Oct 16, 2018
Copyright_xml – notice: Copyright American Chemical Society Oct 16, 2018
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1021/acs.analchem.8b02384
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 11954
ExternalDocumentID 10_1021_acs_analchem_8b02384
30188682
c177691275
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
ABHFT
ABHMW
ABJNI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
KZ1
LMP
NPM
XSW
ZCA
~02
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-a442t-5a01cafe0c3133057cd65ffb8d79b6b8955c72b98f640b4e9de58946556407a63
IEDL.DBID ACS
ISSN 0003-2700
IngestDate Fri Aug 16 07:28:41 EDT 2024
Thu Oct 10 16:42:21 EDT 2024
Fri Aug 23 03:01:09 EDT 2024
Wed Oct 16 00:50:30 EDT 2024
Thu Aug 27 13:42:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-5a01cafe0c3133057cd65ffb8d79b6b8955c72b98f640b4e9de58946556407a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8671-7728
0000-0002-4009-2291
PMID 30188682
PQID 2125750318
PQPubID 45400
PageCount 6
ParticipantIDs proquest_miscellaneous_2101277386
proquest_journals_2125750318
crossref_primary_10_1021_acs_analchem_8b02384
pubmed_primary_30188682
acs_journals_10_1021_acs_analchem_8b02384
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-10-16
PublicationDateYYYYMMDD 2018-10-16
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1021/ac9013989
– ident: ref20/cit20
  doi: 10.1021/ac5019205
– ident: ref29/cit29
  doi: 10.1039/C7AN00849J
– ident: ref25/cit25
  doi: 10.1021/acsami.5b10027
– ident: ref30/cit30
  doi: 10.1021/acs.analchem.7b03790
– ident: ref8/cit8
  doi: 10.1021/ac5000224
– ident: ref27/cit27
  doi: 10.1039/C4AN01147C
– ident: ref9/cit9
  doi: 10.1021/acs.analchem.6b04581
– ident: ref13/cit13
  doi: 10.1021/ac203466y
– ident: ref12/cit12
  doi: 10.1016/j.bios.2014.12.042
– ident: ref17/cit17
  doi: 10.1021/ac503968p
– ident: ref31/cit31
  doi: 10.1021/acs.analchem.8b00559
– ident: ref22/cit22
  doi: 10.1016/j.bios.2013.10.075
– ident: ref21/cit21
  doi: 10.1016/j.aca.2017.03.037
– ident: ref2/cit2
  doi: 10.1016/j.aca.2017.01.002
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.6b00072
– ident: ref23/cit23
  doi: 10.1039/C4RA07112C
– ident: ref24/cit24
  doi: 10.1039/C4AN00230J
– ident: ref26/cit26
  doi: 10.1039/C6AN00430J
– ident: ref10/cit10
  doi: 10.1039/C5AN02572A
– ident: ref18/cit18
  doi: 10.1039/c3lc50976a
– ident: ref3/cit3
  doi: 10.1016/j.aca.2017.10.018
– ident: ref16/cit16
  doi: 10.1039/C4AY01677G
– ident: ref4/cit4
  doi: 10.1126/scitranslmed.3003981
– ident: ref1/cit1
  doi: 10.1007/s00216-010-3718-4
– ident: ref28/cit28
  doi: 10.1021/acs.analchem.6b04953
– ident: ref7/cit7
  doi: 10.1021/ac203434x
– ident: ref6/cit6
  doi: 10.1039/c3lc50169h
– ident: ref14/cit14
  doi: 10.1016/j.talanta.2017.08.082
– ident: ref19/cit19
  doi: 10.1021/ac800112r
– ident: ref11/cit11
  doi: 10.1016/j.foodchem.2018.01.004
SSID ssj0011016
Score 2.516996
Snippet This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 11949
SubjectTerms Analytical chemistry
Assaying
Chemistry
Color
Colorimetry
Desorption
Glucose
Glucose oxidase
Horseradish peroxidase
Imaging
Iodides
Ionization
Lasers
Mass spectrometry
Mass spectroscopy
Mathematical analysis
Microfluidics
Peroxidase
Potassium
Potassium iodide
Potassium iodides
Reliability analysis
Reproducibility
Spatial distribution
Spectroscopy
Title Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging
URI http://dx.doi.org/10.1021/acs.analchem.8b02384
https://www.ncbi.nlm.nih.gov/pubmed/30188682
https://www.proquest.com/docview/2125750318
https://search.proquest.com/docview/2101277386
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BewAOUMorpSBX4sJhQ3Zje73HkjYUpBSkEqm3lZ9SBdlE2c0h_BH-LjPebMpDFXD0Y-31cz77G88AvHIGdzzBTeIl3VblxicII7LE2aHIubWuiBZvJufybMo_XIrL64Pi7wx-lr7Rtu5r7FRsw6yvDMkYfht2sxzXB0Gh0cWWNaCTaOchjwjV7qncDaWQQLL1rwLpBpQZpc34AXzs3uy0SiZf-qvG9O23P004_mND9uD-Bniy43amPIRbvtqHO6PO39s-3PvJNOEj-D6tLGl3YoAhRmTj7pEjmwc2wh1zyd4to7pYU7NAoVb3vU27mpGjLstw8PW6ZvjVhBT_wtfVlcPoT3rhl8lbFKCORaso8UKdnfi4bTGzZhPE9OxiEV30UFlr9n4W_Sk9hun49PPoLNk4cUg051mTCD1IrQ5-YId4HEZ0aJ0UIRjl8sJIowohbJ6ZQgXJB4b7wnmhCrLqRhSjlsMnsFPNK_8MmA258Ig4EMMaonN1kJoX-RBBnHVahR68xj4uN4uwLiO_nqUlRXYdX246vgdJN-rlorXr8Zf8h93UuK4Axb4gHjhVPTjaJuOwEemiKz9fUR4i98m1ag-etlNqWyFurkpJlR38x48_h7uI2aJJ3lQewk6zXPkXiIsa8zIuhh8-tApE
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8a4zB2YDBgFAYYiQuHlCa1E-fICqWDdULainaL_ClNW9OqSQ_lH-Hf5T2n6QBpQjvacfxtv5_9e34P4J3VuOMJriOX0m1Vpl2EMCKJrOmLjBtj82DxZnyajib864W42ALRvoXBSlSYUxVI_BvrAvEHilPYt9iUaVdqEjX8HtwXGcpMQkSDsw15QAfS1lEe8arti7lbciG5ZKq_5dItYDMIneEe_NhUN-iaXHWXte6an_9Ycrxzex7BwzUMZR-befMYtly5DzuD1vvbPuz-YajwCfyalIZ0PTHAEDGyYfvkkc08G-D-uWBfFkF5rK6Yp1CjCd98u5yS2y7DcCqoVcXwrzGpAfrr5aXF6O9q7hbREYpTy4KNlHC9zj65sIkxvWJjRPjsbB4c9lBeK3Y8Dd6VnsJk-Pl8MIrWLh0ixXlSR0L1YqO865k-Ho4RKxqbCu-1tFmuUy1zIUyW6Fz6lPc0d7l1QuZk440IR5X2n8F2OSvdc2DGZ8Ih_kBEq4ncVT5VPM_6COmMVdJ34D32cbFeklUR2PYkLiiy7fhi3fEdiNrBL-aNlY__pD9sZ8hNAQgCBLHCsezA281nHDaiYFTpZktKQ1Q_OVrtwEEzszYF4lYrZSqTF3eo-BvYGZ2PT4qT49NvL-EBorlgrDdOD2G7XizdK0RMtX4d1sdvQjESqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkGA88DEYFAYYiRceUpo0dpzH0VE2oNOkUWniJfKnNEHTqkkfyj_Cv8udk3Qb0oTgMY7j2Jez72f_LncAb6zGFY-nOnKCTqsy7SKEEUlkzZBnqTE2DxFvJsficJp-OuNnl1J9YScqbKkKJD7N6oX1bYSB-B2VK5QvDmfWl5rMTXoTbvEsDgzt_uh0QyDQprRLlkfcavfX3DWtkG0y1VXbdA3gDIZnfB--bboc_E2-91e17puff0Rz_K8xPYB7LRxl-43-PIQbrtyBO6MuC9wO3L0UsPAR_JqWhnw-8YIhcmTj7tdHNvdshOvokn1cBieyumKerhqP-Obe-YzSdxmGKqHWFcOnJuQO6H-szi0Wn6iFW0bv0axaFmKlhGN2duDCYsb0mk0Q6bPTRUjcQ22t2dEsZFl6DNPxh6-jw6hN7RCpNE3qiKtBbJR3AzPETTJiRmMF915Lm-VaaJlzbrJE59KLdKBTl1vHZU6x3oh4VGK4C1vlvHRPgRmfcYc4BJGtJpJXeaHSPBsitDNWSd-Dtyjjop2aVRFY9yQuqLATfNEKvgdRpwDFoon28Zf6e52WXLwAwQAndjiWPXi9uY2fjagYVbr5iuoQ5U8JV3vwpNGuzQtxyZVSyOTZP3T8Fdw-ORgXX46OPz-HbQR1IWZvLPZgq16u3AsETrV-GabIb-1bFSM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+Formation+of+Color+Gradients+for+Glucose+Colorimetric+Assays+on+Microfluidic+Paper-Based+Analytical+Devices+by+Mass+Spectrometry+Imaging&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=de+Freitas%2C+Soraia+V.&rft.au=de+Souza%2C+Fabr%C3%ADcio+R.&rft.au=Rodrigues+Neto%2C+Jorge+C.&rft.au=Vasconcelos%2C+G%C3%A9ssica+A.&rft.date=2018-10-16&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=90&rft.issue=20&rft.spage=11949&rft.epage=11954&rft_id=info:doi/10.1021%2Facs.analchem.8b02384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_8b02384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon