Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging
This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gr...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 90; no. 20; pp. 11949 - 11954 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(−) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3 –) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface. |
---|---|
AbstractList | This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(-) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I
) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface. This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(−) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3–) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface. This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(−) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3 –) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface. This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (μPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with μPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(-) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3-) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on μPAD surface. |
Author | Henry, Charles S Vaz, Boniek G Vasconcelos, Géssica A Coltro, Wendell K. T de Souza, Fabrício R Rodrigues Neto, Jorge C Abdelnur, Patrícia V de Freitas, Soraia V |
AuthorAffiliation | Instituto de Química Instituto Nacional de Ciência e Tecnologia de Bioanalítica Universidade Federal de Goiás Empresa Brasileira de Pesquisa Agropecuária |
AuthorAffiliation_xml | – name: Empresa Brasileira de Pesquisa Agropecuária – name: Instituto de Química – name: Instituto Nacional de Ciência e Tecnologia de Bioanalítica – name: Universidade Federal de Goiás |
Author_xml | – sequence: 1 givenname: Soraia V surname: de Freitas fullname: de Freitas, Soraia V organization: Universidade Federal de Goiás – sequence: 2 givenname: Fabrício R surname: de Souza fullname: de Souza, Fabrício R organization: Universidade Federal de Goiás – sequence: 3 givenname: Jorge C surname: Rodrigues Neto fullname: Rodrigues Neto, Jorge C organization: Empresa Brasileira de Pesquisa Agropecuária – sequence: 4 givenname: Géssica A surname: Vasconcelos fullname: Vasconcelos, Géssica A organization: Universidade Federal de Goiás – sequence: 5 givenname: Patrícia V surname: Abdelnur fullname: Abdelnur, Patrícia V organization: Empresa Brasileira de Pesquisa Agropecuária – sequence: 6 givenname: Boniek G surname: Vaz fullname: Vaz, Boniek G organization: Universidade Federal de Goiás – sequence: 7 givenname: Charles S orcidid: 0000-0002-8671-7728 surname: Henry fullname: Henry, Charles S – sequence: 8 givenname: Wendell K. T orcidid: 0000-0002-4009-2291 surname: Coltro fullname: Coltro, Wendell K. T email: wendell@ufg.br organization: Instituto Nacional de Ciência e Tecnologia de Bioanalítica |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30188682$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9u3CAQxlGVKtn8eYOqQuqlF28HMDY-bjdNGilRKzU5WxgPCZFttmBH8pP0dYu1mxx66AkN_L5vhvlOydHgByTkA4M1A86-aBPXetCdecJ-rRrgQuXvyIpJDlmhFD8iKwAQGS8BTshpjM8AjAErjsmJAKZUofiK_HkYjH_B4IZHOj4hvfKh16PzA_WWbn3nA70OunU4jJHapeom4yPu31yPY3CGbmLUc6RJdedM8LabXJuuf-odhuyrjtjSTRp1Hp3RHb3EF2cw0mamdzpG-muHZgx-8ZrpTa8f0zDn5L3VXcSLw3lGHq6-3W-_Z7c_rm-2m9tM5zkfM6mBGW0RjGBCgCxNW0hrG9WWVVM0qpLSlLyplC1yaHKsWpSqygspU13qQpyRz3vfXfC_J4xj3btosOv0gH6KNU8b42Up1IJ--gd99lNI31ooLksJgqlE5Xsq7SHGgLbepTXpMNcM6iW4OgVXvwZXH4JLso8H86npsX0TvSaVANgDi_yt8X89_wI4UKr3 |
CitedBy_id | crossref_primary_10_3390_bios13070743 crossref_primary_10_1016_j_rsurfi_2021_100034 crossref_primary_10_1016_j_foodchem_2022_134844 crossref_primary_10_1016_j_talanta_2021_122301 crossref_primary_10_3390_applbiosci1010001 crossref_primary_10_1016_j_microc_2022_107562 crossref_primary_10_1039_C9AN00481E crossref_primary_10_1039_D1CB00112D crossref_primary_10_1002_smll_201903822 crossref_primary_10_1016_j_microc_2021_106093 crossref_primary_10_3390_bios11120474 crossref_primary_10_1021_acs_analchem_3c03009 crossref_primary_10_1038_s41598_019_52202_9 crossref_primary_10_3390_mi14112059 crossref_primary_10_1007_s00216_019_01788_0 crossref_primary_10_1007_s00216_021_03213_x crossref_primary_10_1016_j_bios_2021_113026 crossref_primary_10_1039_C9AY00893D crossref_primary_10_1016_j_aca_2021_338275 crossref_primary_10_1016_j_snb_2023_133324 crossref_primary_10_1039_D3LC00511A crossref_primary_10_1016_j_aca_2021_339141 crossref_primary_10_1016_j_aca_2020_10_010 crossref_primary_10_1021_acs_analchem_9b01288 crossref_primary_10_1016_j_aca_2020_12_003 crossref_primary_10_1039_D2SD00032F crossref_primary_10_1002_elps_201900409 crossref_primary_10_1016_j_bios_2020_112406 crossref_primary_10_2116_analsci_20R006 crossref_primary_10_1021_acssensors_0c02367 crossref_primary_10_1039_C9RA04278D crossref_primary_10_1016_j_aca_2020_03_013 crossref_primary_10_1021_acs_analchem_2c04442 crossref_primary_10_1021_acs_analchem_3c04603 crossref_primary_10_1002_adsr_202300141 crossref_primary_10_3390_bios11120482 crossref_primary_10_1007_s10404_020_02344_4 crossref_primary_10_1007_s10404_020_02382_y crossref_primary_10_1016_j_snb_2022_132345 crossref_primary_10_1016_j_trac_2020_115862 crossref_primary_10_1016_j_aca_2019_02_046 crossref_primary_10_1016_j_talanta_2024_126361 |
Cites_doi | 10.1021/ac9013989 10.1021/ac5019205 10.1039/C7AN00849J 10.1021/acsami.5b10027 10.1021/acs.analchem.7b03790 10.1021/ac5000224 10.1039/C4AN01147C 10.1021/acs.analchem.6b04581 10.1021/ac203466y 10.1016/j.bios.2014.12.042 10.1021/ac503968p 10.1021/acs.analchem.8b00559 10.1016/j.bios.2013.10.075 10.1016/j.aca.2017.03.037 10.1016/j.aca.2017.01.002 10.1021/acs.analchem.6b00072 10.1039/C4RA07112C 10.1039/C4AN00230J 10.1039/C6AN00430J 10.1039/C5AN02572A 10.1039/c3lc50976a 10.1016/j.aca.2017.10.018 10.1039/C4AY01677G 10.1126/scitranslmed.3003981 10.1007/s00216-010-3718-4 10.1021/acs.analchem.6b04953 10.1021/ac203434x 10.1039/c3lc50169h 10.1016/j.talanta.2017.08.082 10.1021/ac800112r 10.1016/j.foodchem.2018.01.004 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Oct 16, 2018 |
Copyright_xml | – notice: Copyright American Chemical Society Oct 16, 2018 |
DBID | NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1021/acs.analchem.8b02384 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 11954 |
ExternalDocumentID | 10_1021_acs_analchem_8b02384 30188682 c177691275 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 6J9 AAHBH ABHFT ABHMW ABJNI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CUPRZ GGK KZ1 LMP NPM XSW ZCA ~02 AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-a442t-5a01cafe0c3133057cd65ffb8d79b6b8955c72b98f640b4e9de58946556407a63 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Fri Aug 16 07:28:41 EDT 2024 Thu Oct 10 16:42:21 EDT 2024 Fri Aug 23 03:01:09 EDT 2024 Wed Oct 16 00:50:30 EDT 2024 Thu Aug 27 13:42:28 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a442t-5a01cafe0c3133057cd65ffb8d79b6b8955c72b98f640b4e9de58946556407a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8671-7728 0000-0002-4009-2291 |
PMID | 30188682 |
PQID | 2125750318 |
PQPubID | 45400 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2101277386 proquest_journals_2125750318 crossref_primary_10_1021_acs_analchem_8b02384 pubmed_primary_30188682 acs_journals_10_1021_acs_analchem_8b02384 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-16 |
PublicationDateYYYYMMDD | 2018-10-16 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1021/ac9013989 – ident: ref20/cit20 doi: 10.1021/ac5019205 – ident: ref29/cit29 doi: 10.1039/C7AN00849J – ident: ref25/cit25 doi: 10.1021/acsami.5b10027 – ident: ref30/cit30 doi: 10.1021/acs.analchem.7b03790 – ident: ref8/cit8 doi: 10.1021/ac5000224 – ident: ref27/cit27 doi: 10.1039/C4AN01147C – ident: ref9/cit9 doi: 10.1021/acs.analchem.6b04581 – ident: ref13/cit13 doi: 10.1021/ac203466y – ident: ref12/cit12 doi: 10.1016/j.bios.2014.12.042 – ident: ref17/cit17 doi: 10.1021/ac503968p – ident: ref31/cit31 doi: 10.1021/acs.analchem.8b00559 – ident: ref22/cit22 doi: 10.1016/j.bios.2013.10.075 – ident: ref21/cit21 doi: 10.1016/j.aca.2017.03.037 – ident: ref2/cit2 doi: 10.1016/j.aca.2017.01.002 – ident: ref15/cit15 doi: 10.1021/acs.analchem.6b00072 – ident: ref23/cit23 doi: 10.1039/C4RA07112C – ident: ref24/cit24 doi: 10.1039/C4AN00230J – ident: ref26/cit26 doi: 10.1039/C6AN00430J – ident: ref10/cit10 doi: 10.1039/C5AN02572A – ident: ref18/cit18 doi: 10.1039/c3lc50976a – ident: ref3/cit3 doi: 10.1016/j.aca.2017.10.018 – ident: ref16/cit16 doi: 10.1039/C4AY01677G – ident: ref4/cit4 doi: 10.1126/scitranslmed.3003981 – ident: ref1/cit1 doi: 10.1007/s00216-010-3718-4 – ident: ref28/cit28 doi: 10.1021/acs.analchem.6b04953 – ident: ref7/cit7 doi: 10.1021/ac203434x – ident: ref6/cit6 doi: 10.1039/c3lc50169h – ident: ref14/cit14 doi: 10.1016/j.talanta.2017.08.082 – ident: ref19/cit19 doi: 10.1021/ac800112r – ident: ref11/cit11 doi: 10.1016/j.foodchem.2018.01.004 |
SSID | ssj0011016 |
Score | 2.516996 |
Snippet | This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 11949 |
SubjectTerms | Analytical chemistry Assaying Chemistry Color Colorimetry Desorption Glucose Glucose oxidase Horseradish peroxidase Imaging Iodides Ionization Lasers Mass spectrometry Mass spectroscopy Mathematical analysis Microfluidics Peroxidase Potassium Potassium iodide Potassium iodides Reliability analysis Reproducibility Spatial distribution Spectroscopy |
Title | Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging |
URI | http://dx.doi.org/10.1021/acs.analchem.8b02384 https://www.ncbi.nlm.nih.gov/pubmed/30188682 https://www.proquest.com/docview/2125750318 https://search.proquest.com/docview/2101277386 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BewAOUMorpSBX4sJhQ3Zje73HkjYUpBSkEqm3lZ9SBdlE2c0h_BH-LjPebMpDFXD0Y-31cz77G88AvHIGdzzBTeIl3VblxicII7LE2aHIubWuiBZvJufybMo_XIrL64Pi7wx-lr7Rtu5r7FRsw6yvDMkYfht2sxzXB0Gh0cWWNaCTaOchjwjV7qncDaWQQLL1rwLpBpQZpc34AXzs3uy0SiZf-qvG9O23P004_mND9uD-Bniy43amPIRbvtqHO6PO39s-3PvJNOEj-D6tLGl3YoAhRmTj7pEjmwc2wh1zyd4to7pYU7NAoVb3vU27mpGjLstw8PW6ZvjVhBT_wtfVlcPoT3rhl8lbFKCORaso8UKdnfi4bTGzZhPE9OxiEV30UFlr9n4W_Sk9hun49PPoLNk4cUg051mTCD1IrQ5-YId4HEZ0aJ0UIRjl8sJIowohbJ6ZQgXJB4b7wnmhCrLqRhSjlsMnsFPNK_8MmA258Ig4EMMaonN1kJoX-RBBnHVahR68xj4uN4uwLiO_nqUlRXYdX246vgdJN-rlorXr8Zf8h93UuK4Axb4gHjhVPTjaJuOwEemiKz9fUR4i98m1ag-etlNqWyFurkpJlR38x48_h7uI2aJJ3lQewk6zXPkXiIsa8zIuhh8-tApE |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8a4zB2YDBgFAYYiQuHlCa1E-fICqWDdULainaL_ClNW9OqSQ_lH-Hf5T2n6QBpQjvacfxtv5_9e34P4J3VuOMJriOX0m1Vpl2EMCKJrOmLjBtj82DxZnyajib864W42ALRvoXBSlSYUxVI_BvrAvEHilPYt9iUaVdqEjX8HtwXGcpMQkSDsw15QAfS1lEe8arti7lbciG5ZKq_5dItYDMIneEe_NhUN-iaXHWXte6an_9Ycrxzex7BwzUMZR-befMYtly5DzuD1vvbPuz-YajwCfyalIZ0PTHAEDGyYfvkkc08G-D-uWBfFkF5rK6Yp1CjCd98u5yS2y7DcCqoVcXwrzGpAfrr5aXF6O9q7hbREYpTy4KNlHC9zj65sIkxvWJjRPjsbB4c9lBeK3Y8Dd6VnsJk-Pl8MIrWLh0ixXlSR0L1YqO865k-Ho4RKxqbCu-1tFmuUy1zIUyW6Fz6lPc0d7l1QuZk440IR5X2n8F2OSvdc2DGZ8Ih_kBEq4ncVT5VPM_6COmMVdJ34D32cbFeklUR2PYkLiiy7fhi3fEdiNrBL-aNlY__pD9sZ8hNAQgCBLHCsezA281nHDaiYFTpZktKQ1Q_OVrtwEEzszYF4lYrZSqTF3eo-BvYGZ2PT4qT49NvL-EBorlgrDdOD2G7XizdK0RMtX4d1sdvQjESqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkGA88DEYFAYYiRceUpo0dpzH0VE2oNOkUWniJfKnNEHTqkkfyj_Cv8udk3Qb0oTgMY7j2Jez72f_LncAb6zGFY-nOnKCTqsy7SKEEUlkzZBnqTE2DxFvJsficJp-OuNnl1J9YScqbKkKJD7N6oX1bYSB-B2VK5QvDmfWl5rMTXoTbvEsDgzt_uh0QyDQprRLlkfcavfX3DWtkG0y1VXbdA3gDIZnfB--bboc_E2-91e17puff0Rz_K8xPYB7LRxl-43-PIQbrtyBO6MuC9wO3L0UsPAR_JqWhnw-8YIhcmTj7tdHNvdshOvokn1cBieyumKerhqP-Obe-YzSdxmGKqHWFcOnJuQO6H-szi0Wn6iFW0bv0axaFmKlhGN2duDCYsb0mk0Q6bPTRUjcQ22t2dEsZFl6DNPxh6-jw6hN7RCpNE3qiKtBbJR3AzPETTJiRmMF915Lm-VaaJlzbrJE59KLdKBTl1vHZU6x3oh4VGK4C1vlvHRPgRmfcYc4BJGtJpJXeaHSPBsitDNWSd-Dtyjjop2aVRFY9yQuqLATfNEKvgdRpwDFoon28Zf6e52WXLwAwQAndjiWPXi9uY2fjagYVbr5iuoQ5U8JV3vwpNGuzQtxyZVSyOTZP3T8Fdw-ORgXX46OPz-HbQR1IWZvLPZgq16u3AsETrV-GabIb-1bFSM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+Formation+of+Color+Gradients+for+Glucose+Colorimetric+Assays+on+Microfluidic+Paper-Based+Analytical+Devices+by+Mass+Spectrometry+Imaging&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=de+Freitas%2C+Soraia+V.&rft.au=de+Souza%2C+Fabr%C3%ADcio+R.&rft.au=Rodrigues+Neto%2C+Jorge+C.&rft.au=Vasconcelos%2C+G%C3%A9ssica+A.&rft.date=2018-10-16&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=90&rft.issue=20&rft.spage=11949&rft.epage=11954&rft_id=info:doi/10.1021%2Facs.analchem.8b02384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_8b02384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |