Beyond the Gold–Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing
Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and bio...
Saved in:
Published in | ACS sensors Vol. 9; no. 5; pp. 2228 - 2236 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-3694 2379-3694 |
DOI | 10.1021/acssensors.4c00331 |
Cover
Abstract | Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs. |
---|---|
AbstractList | Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs. Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs. Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs. |
Author | Arroyo-Currás, Netzahualcóyotl |
AuthorAffiliation | Department of Pharmacology and Molecular Sciences |
AuthorAffiliation_xml | – name: Department of Pharmacology and Molecular Sciences |
Author_xml | – sequence: 1 givenname: Netzahualcóyotl surname: Arroyo-Currás fullname: Arroyo-Currás, Netzahualcóyotl email: netzarroyo@jhmi.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38661283$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1UREvoC7BAXrKZYHs8P2aD0iqUShUgUdbWHc-dxJVjp_ZM1e54B96QJ8FVUigsuvKV7j3fsc55SQ588EjIa87mnAn-DkxK6FOIaS4NY2XJn5EjUTaqKGslDx7Nh-Q4pSvGGK9qUbXsBTks27rmoi2PyPUJ3gXf03GN9Cy4_tePn5drGxz9ChF6u9q8p8vbrQvR-hVduBGjh9HeID33eR7AYKJDiHTp0IwxmDVurAFHP0_GoTV0YWxfnEDCnn7L382UV-T5AC7h8f6dke8fl5enn4qLL2fnp4uLAqQUYyGRg0LeyEqpoa2BdYq1Hasa1ohaSNVJaOQAXAKCKVUtK8H7GoRsGmi6oS9n5MOOu526DfYG_RjB6W20G4h3OoDV_268XetVuNGcc6Fq1WbC2z0hhusJ06g3Nhl0DjyGKemSybriFc_pz8ibx2Z_XB6Czgft7sDEkFLEQRs75iTDvbd1mjN9X6v-W6ve15ql4j_pA_1J0Xwnyjt9FaZcm0tPCX4DQF27zg |
CitedBy_id | crossref_primary_10_1002_anie_202424351 crossref_primary_10_1021_acssensors_4c01084 crossref_primary_10_1039_D4MA00648H crossref_primary_10_1002_ange_202424351 crossref_primary_10_1071_CH24096 |
Cites_doi | 10.1016/j.colsurfa.2013.09.002 10.1021/acscatal.5b01160 10.3389/fnins.2021.771980 10.1021/acsapm.0c01120 10.1002/cssc.201701523 10.1021/acs.analchem.2c05158 10.1021/ja8050553 10.1039/D2CC05183D 10.1071/CH17262 10.1007/s00216-022-04015-5 10.1021/acsnano.5b01580 10.1016/S0257-8972(01)01183-5 10.1002/cssc.202000086 10.1101/2023.10.18.562080 10.1039/C7CS00730B 10.1016/j.jce.2023.06.003 10.1002/anie.201602702 10.1021/cm401512c 10.1021/la500533f 10.1039/c3dt53579g 10.1038/s43856-023-00284-y 10.1038/nchem.1891 10.1021/acsmaterialslett.3c01225 10.1016/j.jmmm.2016.05.007 10.1039/c0cs00149j 10.1038/s41557-018-0159-8 10.1016/j.elecom.2008.05.017 10.1149/2754-2726/ac5b2e 10.1089/nat.2019.0830 10.1021/acs.chemmater.1c02899 10.1021/ja410467e 10.1021/acs.chemmater.0c03918 10.1002/chem.200701559 10.1021/acsami.3c06148 10.1016/j.ijoes.2023.100395 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y 10.1186/s12905-019-0844-9 10.1021/ja401965d 10.1021/acsomega.1c06168 10.1016/j.synthmet.2022.117219 10.1039/9781849732161-00317 10.1149/2754-2726/acc4d9 10.1002/anie.200500989 10.1021/acssensors.0c01510 10.1007/s00246-021-02715-w 10.1021/acsami.3c01224 10.1021/acsapm.3c02206 10.1016/j.bios.2016.10.048 10.1039/C4DT02160F 10.1002/chem.202303681 10.1038/s41557-021-00644-y 10.1002/anie.201306709 10.1021/jp0219810 10.1021/jacs.5b02452 10.1021/acs.langmuir.9b01397 10.1038/nprot.2007.413 10.1021/jacs.7b08516 10.1021/acs.analchem.7b04732 10.1038/s41598-017-04079-9 10.1021/ja00351a063 10.1161/CIRCEP.121.010063 10.1021/la501774b 10.1089/dia.2019.0449 10.1021/ja963354s 10.1021/acssensors.6b00191 10.1021/ja0682430 10.1016/j.carbon.2012.01.070 |
ContentType | Journal Article |
Copyright | 2024 The Author. Published by American Chemical Society 2024 The Author. Published by American Chemical Society 2024 The Author |
Copyright_xml | – notice: 2024 The Author. Published by American Chemical Society – notice: 2024 The Author. Published by American Chemical Society 2024 The Author |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acssensors.4c00331 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2379-3694 |
EndPage | 2236 |
ExternalDocumentID | PMC11129698 38661283 10_1021_acssensors_4c00331 d281627177 |
Genre | Journal Article Review |
GroupedDBID | 53G ABJNI ABQRX ABUCX ACGFS ACS ADHLV AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a442t-4e1a9e174599f86a0b908b0570726249b4a74fa14aeac3964521d6a2477a7bfd3 |
IEDL.DBID | ACS |
ISSN | 2379-3694 |
IngestDate | Thu Aug 21 18:26:46 EDT 2025 Fri Jul 11 07:40:10 EDT 2025 Mon Jul 21 05:50:17 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Wed Aug 20 07:40:57 EDT 2025 Mon Apr 28 03:10:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | biosensors biosensor interface nucleic acids aptamers self-assembled monolayers stability |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a442t-4e1a9e174599f86a0b908b0570726249b4a74fa14aeac3964521d6a2477a7bfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11129698 |
PMID | 38661283 |
PQID | 3046515100 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11129698 proquest_miscellaneous_3046515100 pubmed_primary_38661283 crossref_citationtrail_10_1021_acssensors_4c00331 crossref_primary_10_1021_acssensors_4c00331 acs_journals_10_1021_acssensors_4c00331 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-24 |
PublicationDateYYYYMMDD | 2024-05-24 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS sensors |
PublicationTitleAlternate | ACS Sens |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref56/cit56 doi: 10.1016/j.colsurfa.2013.09.002 – ident: ref25/cit25 doi: 10.1021/acscatal.5b01160 – ident: ref38/cit38 doi: 10.3389/fnins.2021.771980 – ident: ref11/cit11 doi: 10.1021/acsapm.0c01120 – ident: ref65/cit65 doi: 10.1002/cssc.201701523 – ident: ref15/cit15 doi: 10.1021/acs.analchem.2c05158 – ident: ref18/cit18 doi: 10.1021/ja8050553 – ident: ref35/cit35 doi: 10.1039/D2CC05183D – ident: ref47/cit47 doi: 10.1071/CH17262 – ident: ref57/cit57 doi: 10.1007/s00216-022-04015-5 – ident: ref52/cit52 doi: 10.1021/acsnano.5b01580 – ident: ref60/cit60 doi: 10.1016/S0257-8972(01)01183-5 – ident: ref19/cit19 doi: 10.1002/cssc.202000086 – ident: ref44/cit44 doi: 10.1101/2023.10.18.562080 – ident: ref7/cit7 doi: 10.1039/C7CS00730B – ident: ref1/cit1 doi: 10.1016/j.jce.2023.06.003 – ident: ref37/cit37 doi: 10.1002/anie.201602702 – ident: ref53/cit53 doi: 10.1021/cm401512c – ident: ref58/cit58 doi: 10.1021/la500533f – ident: ref26/cit26 doi: 10.1039/c3dt53579g – ident: ref2/cit2 doi: 10.1038/s43856-023-00284-y – ident: ref28/cit28 doi: 10.1038/nchem.1891 – ident: ref41/cit41 doi: 10.1021/acsmaterialslett.3c01225 – ident: ref61/cit61 doi: 10.1016/j.jmmm.2016.05.007 – ident: ref46/cit46 doi: 10.1039/c0cs00149j – ident: ref32/cit32 doi: 10.1038/s41557-018-0159-8 – ident: ref55/cit55 doi: 10.1016/j.elecom.2008.05.017 – ident: ref9/cit9 doi: 10.1149/2754-2726/ac5b2e – ident: ref40/cit40 doi: 10.1089/nat.2019.0830 – ident: ref30/cit30 doi: 10.1021/acs.chemmater.1c02899 – ident: ref49/cit49 doi: 10.1021/ja410467e – ident: ref29/cit29 doi: 10.1021/acs.chemmater.0c03918 – ident: ref51/cit51 doi: 10.1002/chem.200701559 – ident: ref21/cit21 doi: 10.1021/acsami.3c06148 – ident: ref10/cit10 doi: 10.1016/j.ijoes.2023.100395 – ident: ref22/cit22 doi: 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y – ident: ref6/cit6 doi: 10.1186/s12905-019-0844-9 – ident: ref24/cit24 doi: 10.1021/ja401965d – ident: ref34/cit34 doi: 10.1021/acsomega.1c06168 – ident: ref42/cit42 doi: 10.1016/j.synthmet.2022.117219 – ident: ref23/cit23 doi: 10.1039/9781849732161-00317 – ident: ref64/cit64 doi: 10.1149/2754-2726/acc4d9 – ident: ref12/cit12 doi: 10.1002/anie.200500989 – ident: ref8/cit8 doi: 10.1021/acssensors.0c01510 – ident: ref3/cit3 doi: 10.1007/s00246-021-02715-w – ident: ref17/cit17 doi: 10.1021/acsami.3c01224 – ident: ref67/cit67 doi: 10.1021/acsapm.3c02206 – ident: ref62/cit62 doi: 10.1016/j.bios.2016.10.048 – ident: ref27/cit27 doi: 10.1039/C4DT02160F – ident: ref36/cit36 doi: 10.1002/chem.202303681 – ident: ref14/cit14 doi: 10.1038/s41557-021-00644-y – ident: ref59/cit59 doi: 10.1002/anie.201306709 – ident: ref16/cit16 doi: 10.1021/jp0219810 – ident: ref31/cit31 doi: 10.1021/jacs.5b02452 – ident: ref54/cit54 doi: 10.1021/acs.langmuir.9b01397 – ident: ref13/cit13 doi: 10.1038/nprot.2007.413 – ident: ref33/cit33 doi: 10.1021/jacs.7b08516 – ident: ref39/cit39 doi: 10.1021/acs.analchem.7b04732 – ident: ref66/cit66 doi: 10.1038/s41598-017-04079-9 – ident: ref20/cit20 doi: 10.1021/ja00351a063 – ident: ref4/cit4 doi: 10.1161/CIRCEP.121.010063 – ident: ref63/cit63 doi: 10.1021/la501774b – ident: ref5/cit5 doi: 10.1089/dia.2019.0449 – ident: ref48/cit48 doi: 10.1021/ja963354s – ident: ref43/cit43 doi: 10.1021/acssensors.6b00191 – ident: ref50/cit50 doi: 10.1021/ja0682430 – ident: ref45/cit45 doi: 10.1016/j.carbon.2012.01.070 |
SSID | ssj0001562580 |
Score | 2.3410532 |
SecondaryResourceType | review_article |
Snippet | Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from... Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2228 |
SubjectTerms | Biosensing Techniques - methods Electrochemical Techniques - methods Electrodes Gold - chemistry Humans Nucleic Acids - analysis Nucleic Acids - chemistry Sulfhydryl Compounds - chemistry |
Title | Beyond the Gold–Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing |
URI | http://dx.doi.org/10.1021/acssensors.4c00331 https://www.ncbi.nlm.nih.gov/pubmed/38661283 https://www.proquest.com/docview/3046515100 https://pubmed.ncbi.nlm.nih.gov/PMC11129698 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEIBHiF7aA_QJ25eMVKmHNtvYcRynt-1qKaoEqgRI3CK_skQsCWx2e-ip_6H_sL-k4yS7sKUgzrEtZTLOfOMZzwC8Y6FTofTJrbGJAvS_8kAqaQOtRcSodQj53lHcPxB7x_zbSXyyBh9vieAz-kmZukaPrprWfW586zH0dR4wgXrmQWh4eHWi4lm-aZXGoiQNIpHy7pbM_5fx9sjUq_boBmT-myt5zfjsbsL-4gpPm3Ny1p_PdN_8vFnR8V7v9Rg2Ogolg1ZtnsCaK5_Co2u1CZ_BZXu3hSAgkq_VxP759fvotKgm5LuaKluMzz-TZf4eGUy6c8UfjjRnjLnP9CIIxGTU9tkxXWECcuALKBeGDExhgy9oQy059En05fg5HO-OjoZ7QdefIVCcs1nAHVWpQ5cmTtNcChXqNJQaATBMmEC3TnOV8FxRrvDvHqU-hEqtUIwniUp0bqMXsF5WpdsGkovYGJk75AWLDirTiY6pjS3iJ2cqVz14j_LKuv1VZ03onNHsSohZJ8Qe0MX3zExX5tx325jcOefDcs5FW-TjztE7CzXJcC_6AIsqXTWvMx9lRj6kYdiDrVZtlutFEkkIWa4HckWhlgN8ne_VJ2Vx2tT7pp6JRSpf3lsIr-AhQ_jyWQ6Mv4b12XTu3iA8zfTbZs_8BTYpGbo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAH3o_laSQkDijb2HESh9tStSzQrpC6lXqL_EobsU3KZpcDJ_4D_5BfwkziZrsFVXBNYsuZjDPfeGa-IeQVD50KJSa3xiYKwP8qAqmkDbROIs6sA5CPjuLeJBkfiI-H8aGv48ZaGFhEAzM1bRB_xS7ANuFaA45dPW-GwmAHMnB5rgIa4divYbS1vzpYQUjfdkzjUZoFUZIJXyzz92nQLJlm3Sz9gTUvpkyes0E7t8i0X32bevJluFzoofl-gdjxP1_vNrnpMSkddUp0h1xx1V1y4xxT4T3ytat0oQAX6ft6Zn_9-Dk9LusZ_azmypZHJ29pn81HRzN_yvjN0fbEscC8LwrwmG53XXeMpymgE6RTLg0dmdIG78CiWrqPKfXV0X1ysLM93RoHvltDoITgi0A4pjIHDk6cZYVMVKizUGqAg2HKE3DytFCpKBQTCv71UYYBVWYTxUWaqlQXNnpANqq6co8ILZLYGFk4QA8W3FWuUx0zG1sAo4KrQg3Ia5BX7ndbk7eBdM7ylRBzL8QBYWefNTee9Bx7b8wuHfOmH3PaUX5c-vTLM23JYWdiuEVVrl42OcacAS2yMByQh5329PNFEnARILsBkWt61T-ArN_rd6ryuGX_ZoiQk0w-_mchvCDXxtO93Xz3w-TTE3KdAyzD_AcunpKNxXzpngGsWujn7Tb6DaqfIhs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAcypsuTyMhcUBZYsd59baULuW1qtRW2lvkZxuxJGWzy4ET_6H_kF_CTOKm3YIqxDWxrWQyE3_z8DeEvOChlWGGxa2xjgLwv1yQycwESiURZ8YCyEdH8fMk2TkQH6bx1Icu8CwMPEQDKzVtEh-t-tg4zzDAXsP1Bpy7et4MhcYuZOD2XMW8HfZsGG3tnQVXENa3XdN4lOZBlOTCH5j5-zK4NelmdWv6A29eLJs8tw-Nb5Jp_wZt-cmX4XKhhvrHBXLH_3jFW2TdY1M66pTpNrliqzvkxjnGwrvkW3fihQJspO_qmfn182T_qKxndFfOpSkPv27SvqqPjmY-2vjd0jby6LD-iwJMpttd9x3t6QroBGmVS01HujTBG9hZDd3D0vrq8B45GG_vb-0EvmtDIIXgi0BYJnMLjk6c5y5LZKjyMFMAC8OUJ-DsKSFT4SQTEv75UY6JVWYSyUWaylQ5E90na1Vd2Q1CXRJrnTkLKMKA28pVqmJmYgOgVHDp5IC8BHkV3uqaok2oc1acCbHwQhwQdvppC-3Jz7EHx-zSOa_6Occd9celo5-fakwBFoppF1nZetkUmHsG1MjCcEAedBrUrxdlgI8A4Q1ItqJb_QBk_169U5VHLQs4Q6Sc5NnDfxbCM3Jt9-24-PR-8vERuc4BnWEZBBePydpivrRPAF0t1NPWkn4Dy7okng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Gold%E2%80%93Thiol+Paradigm%3A+Exploring+Alternative+Interfaces+for+Electrochemical+Nucleic+Acid-Based+Sensing&rft.jtitle=ACS+sensors&rft.au=Arroyo-Curr%C3%A1s%2C+Netzahualc%C3%B3yotl&rft.date=2024-05-24&rft.pub=American+Chemical+Society&rft.eissn=2379-3694&rft.volume=9&rft.issue=5&rft.spage=2228&rft.epage=2236&rft_id=info:doi/10.1021%2Facssensors.4c00331&rft_id=info%3Apmid%2F38661283&rft.externalDocID=PMC11129698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon |