Beyond the Gold–Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing

Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and bio...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 9; no. 5; pp. 2228 - 2236
Main Author Arroyo-Currás, Netzahualcóyotl
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.05.2024
Subjects
Online AccessGet full text
ISSN2379-3694
2379-3694
DOI10.1021/acssensors.4c00331

Cover

Abstract Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.
AbstractList Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.
Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.
Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from small-molecule therapeutics to whole viruses. Because of their versatility in molecular sensing, NBEs are being developed broadly for diagnostic and biomedical research applications. Benchmark NBEs are fabricated via self-assembly of thiol-based monolayers on gold. Although robust for rapid prototyping, thiol monolayers suffer from limitations in terms of stability under voltage modulation and in the face of competitive ligands such as thiolated molecules naturally occurring in biofluids. Additionally, gold cannot be deployed as an NBE substrate for all biomedical applications, such as in cases where molecular measurements coupled to real-time, under-the-sensor tissue imaging is needed. Seeking to overcome these limitations, the field of NBEs is pursuing alternative ligands and electrode surfaces. In this perspective, I discuss new interface fabrication strategies that have successfully achieved NBE sensing, or that have the potential to allow NBE sensing on conductive surfaces other than gold. I hope this perspective will provide the reader with a fresh view of how future NBE interfaces could be constructed and will serve as inspiration for the pursuit of collaborative developments in the field of NBEs.
Author Arroyo-Currás, Netzahualcóyotl
AuthorAffiliation Department of Pharmacology and Molecular Sciences
AuthorAffiliation_xml – name: Department of Pharmacology and Molecular Sciences
Author_xml – sequence: 1
  givenname: Netzahualcóyotl
  surname: Arroyo-Currás
  fullname: Arroyo-Currás, Netzahualcóyotl
  email: netzarroyo@jhmi.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38661283$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1UREvoC7BAXrKZYHs8P2aD0iqUShUgUdbWHc-dxJVjp_ZM1e54B96QJ8FVUigsuvKV7j3fsc55SQ588EjIa87mnAn-DkxK6FOIaS4NY2XJn5EjUTaqKGslDx7Nh-Q4pSvGGK9qUbXsBTks27rmoi2PyPUJ3gXf03GN9Cy4_tePn5drGxz9ChF6u9q8p8vbrQvR-hVduBGjh9HeID33eR7AYKJDiHTp0IwxmDVurAFHP0_GoTV0YWxfnEDCnn7L382UV-T5AC7h8f6dke8fl5enn4qLL2fnp4uLAqQUYyGRg0LeyEqpoa2BdYq1Hasa1ohaSNVJaOQAXAKCKVUtK8H7GoRsGmi6oS9n5MOOu526DfYG_RjB6W20G4h3OoDV_268XetVuNGcc6Fq1WbC2z0hhusJ06g3Nhl0DjyGKemSybriFc_pz8ibx2Z_XB6Czgft7sDEkFLEQRs75iTDvbd1mjN9X6v-W6ve15ql4j_pA_1J0Xwnyjt9FaZcm0tPCX4DQF27zg
CitedBy_id crossref_primary_10_1002_anie_202424351
crossref_primary_10_1021_acssensors_4c01084
crossref_primary_10_1039_D4MA00648H
crossref_primary_10_1002_ange_202424351
crossref_primary_10_1071_CH24096
Cites_doi 10.1016/j.colsurfa.2013.09.002
10.1021/acscatal.5b01160
10.3389/fnins.2021.771980
10.1021/acsapm.0c01120
10.1002/cssc.201701523
10.1021/acs.analchem.2c05158
10.1021/ja8050553
10.1039/D2CC05183D
10.1071/CH17262
10.1007/s00216-022-04015-5
10.1021/acsnano.5b01580
10.1016/S0257-8972(01)01183-5
10.1002/cssc.202000086
10.1101/2023.10.18.562080
10.1039/C7CS00730B
10.1016/j.jce.2023.06.003
10.1002/anie.201602702
10.1021/cm401512c
10.1021/la500533f
10.1039/c3dt53579g
10.1038/s43856-023-00284-y
10.1038/nchem.1891
10.1021/acsmaterialslett.3c01225
10.1016/j.jmmm.2016.05.007
10.1039/c0cs00149j
10.1038/s41557-018-0159-8
10.1016/j.elecom.2008.05.017
10.1149/2754-2726/ac5b2e
10.1089/nat.2019.0830
10.1021/acs.chemmater.1c02899
10.1021/ja410467e
10.1021/acs.chemmater.0c03918
10.1002/chem.200701559
10.1021/acsami.3c06148
10.1016/j.ijoes.2023.100395
10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y
10.1186/s12905-019-0844-9
10.1021/ja401965d
10.1021/acsomega.1c06168
10.1016/j.synthmet.2022.117219
10.1039/9781849732161-00317
10.1149/2754-2726/acc4d9
10.1002/anie.200500989
10.1021/acssensors.0c01510
10.1007/s00246-021-02715-w
10.1021/acsami.3c01224
10.1021/acsapm.3c02206
10.1016/j.bios.2016.10.048
10.1039/C4DT02160F
10.1002/chem.202303681
10.1038/s41557-021-00644-y
10.1002/anie.201306709
10.1021/jp0219810
10.1021/jacs.5b02452
10.1021/acs.langmuir.9b01397
10.1038/nprot.2007.413
10.1021/jacs.7b08516
10.1021/acs.analchem.7b04732
10.1038/s41598-017-04079-9
10.1021/ja00351a063
10.1161/CIRCEP.121.010063
10.1021/la501774b
10.1089/dia.2019.0449
10.1021/ja963354s
10.1021/acssensors.6b00191
10.1021/ja0682430
10.1016/j.carbon.2012.01.070
ContentType Journal Article
Copyright 2024 The Author. Published by American Chemical Society
2024 The Author. Published by American Chemical Society 2024 The Author
Copyright_xml – notice: 2024 The Author. Published by American Chemical Society
– notice: 2024 The Author. Published by American Chemical Society 2024 The Author
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acssensors.4c00331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-3694
EndPage 2236
ExternalDocumentID PMC11129698
38661283
10_1021_acssensors_4c00331
d281627177
Genre Journal Article
Review
GroupedDBID 53G
ABJNI
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a442t-4e1a9e174599f86a0b908b0570726249b4a74fa14aeac3964521d6a2477a7bfd3
IEDL.DBID ACS
ISSN 2379-3694
IngestDate Thu Aug 21 18:26:46 EDT 2025
Fri Jul 11 07:40:10 EDT 2025
Mon Jul 21 05:50:17 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Wed Aug 20 07:40:57 EDT 2025
Mon Apr 28 03:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords biosensors
biosensor interface
nucleic acids
aptamers
self-assembled monolayers
stability
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-4e1a9e174599f86a0b908b0570726249b4a74fa14aeac3964521d6a2477a7bfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11129698
PMID 38661283
PQID 3046515100
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11129698
proquest_miscellaneous_3046515100
pubmed_primary_38661283
crossref_citationtrail_10_1021_acssensors_4c00331
crossref_primary_10_1021_acssensors_4c00331
acs_journals_10_1021_acssensors_4c00331
PublicationCentury 2000
PublicationDate 2024-05-24
PublicationDateYYYYMMDD 2024-05-24
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sensors
PublicationTitleAlternate ACS Sens
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref56/cit56
  doi: 10.1016/j.colsurfa.2013.09.002
– ident: ref25/cit25
  doi: 10.1021/acscatal.5b01160
– ident: ref38/cit38
  doi: 10.3389/fnins.2021.771980
– ident: ref11/cit11
  doi: 10.1021/acsapm.0c01120
– ident: ref65/cit65
  doi: 10.1002/cssc.201701523
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.2c05158
– ident: ref18/cit18
  doi: 10.1021/ja8050553
– ident: ref35/cit35
  doi: 10.1039/D2CC05183D
– ident: ref47/cit47
  doi: 10.1071/CH17262
– ident: ref57/cit57
  doi: 10.1007/s00216-022-04015-5
– ident: ref52/cit52
  doi: 10.1021/acsnano.5b01580
– ident: ref60/cit60
  doi: 10.1016/S0257-8972(01)01183-5
– ident: ref19/cit19
  doi: 10.1002/cssc.202000086
– ident: ref44/cit44
  doi: 10.1101/2023.10.18.562080
– ident: ref7/cit7
  doi: 10.1039/C7CS00730B
– ident: ref1/cit1
  doi: 10.1016/j.jce.2023.06.003
– ident: ref37/cit37
  doi: 10.1002/anie.201602702
– ident: ref53/cit53
  doi: 10.1021/cm401512c
– ident: ref58/cit58
  doi: 10.1021/la500533f
– ident: ref26/cit26
  doi: 10.1039/c3dt53579g
– ident: ref2/cit2
  doi: 10.1038/s43856-023-00284-y
– ident: ref28/cit28
  doi: 10.1038/nchem.1891
– ident: ref41/cit41
  doi: 10.1021/acsmaterialslett.3c01225
– ident: ref61/cit61
  doi: 10.1016/j.jmmm.2016.05.007
– ident: ref46/cit46
  doi: 10.1039/c0cs00149j
– ident: ref32/cit32
  doi: 10.1038/s41557-018-0159-8
– ident: ref55/cit55
  doi: 10.1016/j.elecom.2008.05.017
– ident: ref9/cit9
  doi: 10.1149/2754-2726/ac5b2e
– ident: ref40/cit40
  doi: 10.1089/nat.2019.0830
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.1c02899
– ident: ref49/cit49
  doi: 10.1021/ja410467e
– ident: ref29/cit29
  doi: 10.1021/acs.chemmater.0c03918
– ident: ref51/cit51
  doi: 10.1002/chem.200701559
– ident: ref21/cit21
  doi: 10.1021/acsami.3c06148
– ident: ref10/cit10
  doi: 10.1016/j.ijoes.2023.100395
– ident: ref22/cit22
  doi: 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y
– ident: ref6/cit6
  doi: 10.1186/s12905-019-0844-9
– ident: ref24/cit24
  doi: 10.1021/ja401965d
– ident: ref34/cit34
  doi: 10.1021/acsomega.1c06168
– ident: ref42/cit42
  doi: 10.1016/j.synthmet.2022.117219
– ident: ref23/cit23
  doi: 10.1039/9781849732161-00317
– ident: ref64/cit64
  doi: 10.1149/2754-2726/acc4d9
– ident: ref12/cit12
  doi: 10.1002/anie.200500989
– ident: ref8/cit8
  doi: 10.1021/acssensors.0c01510
– ident: ref3/cit3
  doi: 10.1007/s00246-021-02715-w
– ident: ref17/cit17
  doi: 10.1021/acsami.3c01224
– ident: ref67/cit67
  doi: 10.1021/acsapm.3c02206
– ident: ref62/cit62
  doi: 10.1016/j.bios.2016.10.048
– ident: ref27/cit27
  doi: 10.1039/C4DT02160F
– ident: ref36/cit36
  doi: 10.1002/chem.202303681
– ident: ref14/cit14
  doi: 10.1038/s41557-021-00644-y
– ident: ref59/cit59
  doi: 10.1002/anie.201306709
– ident: ref16/cit16
  doi: 10.1021/jp0219810
– ident: ref31/cit31
  doi: 10.1021/jacs.5b02452
– ident: ref54/cit54
  doi: 10.1021/acs.langmuir.9b01397
– ident: ref13/cit13
  doi: 10.1038/nprot.2007.413
– ident: ref33/cit33
  doi: 10.1021/jacs.7b08516
– ident: ref39/cit39
  doi: 10.1021/acs.analchem.7b04732
– ident: ref66/cit66
  doi: 10.1038/s41598-017-04079-9
– ident: ref20/cit20
  doi: 10.1021/ja00351a063
– ident: ref4/cit4
  doi: 10.1161/CIRCEP.121.010063
– ident: ref63/cit63
  doi: 10.1021/la501774b
– ident: ref5/cit5
  doi: 10.1089/dia.2019.0449
– ident: ref48/cit48
  doi: 10.1021/ja963354s
– ident: ref43/cit43
  doi: 10.1021/acssensors.6b00191
– ident: ref50/cit50
  doi: 10.1021/ja0682430
– ident: ref45/cit45
  doi: 10.1016/j.carbon.2012.01.070
SSID ssj0001562580
Score 2.3410532
SecondaryResourceType review_article
Snippet Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from...
Nucleic acid-based electrochemical sensors (NBEs) use oligonucleotides as affinity reagents for the detection of a variety of targets, ranging from...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2228
SubjectTerms Biosensing Techniques - methods
Electrochemical Techniques - methods
Electrodes
Gold - chemistry
Humans
Nucleic Acids - analysis
Nucleic Acids - chemistry
Sulfhydryl Compounds - chemistry
Title Beyond the Gold–Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing
URI http://dx.doi.org/10.1021/acssensors.4c00331
https://www.ncbi.nlm.nih.gov/pubmed/38661283
https://www.proquest.com/docview/3046515100
https://pubmed.ncbi.nlm.nih.gov/PMC11129698
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEIBHiF7aA_QJ25eMVKmHNtvYcRynt-1qKaoEqgRI3CK_skQsCWx2e-ip_6H_sL-k4yS7sKUgzrEtZTLOfOMZzwC8Y6FTofTJrbGJAvS_8kAqaQOtRcSodQj53lHcPxB7x_zbSXyyBh9vieAz-kmZukaPrprWfW586zH0dR4wgXrmQWh4eHWi4lm-aZXGoiQNIpHy7pbM_5fx9sjUq_boBmT-myt5zfjsbsL-4gpPm3Ny1p_PdN_8vFnR8V7v9Rg2Ogolg1ZtnsCaK5_Co2u1CZ_BZXu3hSAgkq_VxP759fvotKgm5LuaKluMzz-TZf4eGUy6c8UfjjRnjLnP9CIIxGTU9tkxXWECcuALKBeGDExhgy9oQy059En05fg5HO-OjoZ7QdefIVCcs1nAHVWpQ5cmTtNcChXqNJQaATBMmEC3TnOV8FxRrvDvHqU-hEqtUIwniUp0bqMXsF5WpdsGkovYGJk75AWLDirTiY6pjS3iJ2cqVz14j_LKuv1VZ03onNHsSohZJ8Qe0MX3zExX5tx325jcOefDcs5FW-TjztE7CzXJcC_6AIsqXTWvMx9lRj6kYdiDrVZtlutFEkkIWa4HckWhlgN8ne_VJ2Vx2tT7pp6JRSpf3lsIr-AhQ_jyWQ6Mv4b12XTu3iA8zfTbZs_8BTYpGbo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAH3o_laSQkDijb2HESh9tStSzQrpC6lXqL_EobsU3KZpcDJ_4D_5BfwkziZrsFVXBNYsuZjDPfeGa-IeQVD50KJSa3xiYKwP8qAqmkDbROIs6sA5CPjuLeJBkfiI-H8aGv48ZaGFhEAzM1bRB_xS7ANuFaA45dPW-GwmAHMnB5rgIa4divYbS1vzpYQUjfdkzjUZoFUZIJXyzz92nQLJlm3Sz9gTUvpkyes0E7t8i0X32bevJluFzoofl-gdjxP1_vNrnpMSkddUp0h1xx1V1y4xxT4T3ytat0oQAX6ft6Zn_9-Dk9LusZ_azmypZHJ29pn81HRzN_yvjN0fbEscC8LwrwmG53XXeMpymgE6RTLg0dmdIG78CiWrqPKfXV0X1ysLM93RoHvltDoITgi0A4pjIHDk6cZYVMVKizUGqAg2HKE3DytFCpKBQTCv71UYYBVWYTxUWaqlQXNnpANqq6co8ILZLYGFk4QA8W3FWuUx0zG1sAo4KrQg3Ia5BX7ndbk7eBdM7ylRBzL8QBYWefNTee9Bx7b8wuHfOmH3PaUX5c-vTLM23JYWdiuEVVrl42OcacAS2yMByQh5329PNFEnARILsBkWt61T-ArN_rd6ryuGX_ZoiQk0w-_mchvCDXxtO93Xz3w-TTE3KdAyzD_AcunpKNxXzpngGsWujn7Tb6DaqfIhs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAcypsuTyMhcUBZYsd59baULuW1qtRW2lvkZxuxJGWzy4ET_6H_kF_CTOKm3YIqxDWxrWQyE3_z8DeEvOChlWGGxa2xjgLwv1yQycwESiURZ8YCyEdH8fMk2TkQH6bx1Icu8CwMPEQDKzVtEh-t-tg4zzDAXsP1Bpy7et4MhcYuZOD2XMW8HfZsGG3tnQVXENa3XdN4lOZBlOTCH5j5-zK4NelmdWv6A29eLJs8tw-Nb5Jp_wZt-cmX4XKhhvrHBXLH_3jFW2TdY1M66pTpNrliqzvkxjnGwrvkW3fihQJspO_qmfn182T_qKxndFfOpSkPv27SvqqPjmY-2vjd0jby6LD-iwJMpttd9x3t6QroBGmVS01HujTBG9hZDd3D0vrq8B45GG_vb-0EvmtDIIXgi0BYJnMLjk6c5y5LZKjyMFMAC8OUJ-DsKSFT4SQTEv75UY6JVWYSyUWaylQ5E90na1Vd2Q1CXRJrnTkLKMKA28pVqmJmYgOgVHDp5IC8BHkV3uqaok2oc1acCbHwQhwQdvppC-3Jz7EHx-zSOa_6Occd9celo5-fakwBFoppF1nZetkUmHsG1MjCcEAedBrUrxdlgI8A4Q1ItqJb_QBk_169U5VHLQs4Q6Sc5NnDfxbCM3Jt9-24-PR-8vERuc4BnWEZBBePydpivrRPAF0t1NPWkn4Dy7okng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Gold%E2%80%93Thiol+Paradigm%3A+Exploring+Alternative+Interfaces+for+Electrochemical+Nucleic+Acid-Based+Sensing&rft.jtitle=ACS+sensors&rft.au=Arroyo-Curr%C3%A1s%2C+Netzahualc%C3%B3yotl&rft.date=2024-05-24&rft.pub=American+Chemical+Society&rft.eissn=2379-3694&rft.volume=9&rft.issue=5&rft.spage=2228&rft.epage=2236&rft_id=info:doi/10.1021%2Facssensors.4c00331&rft_id=info%3Apmid%2F38661283&rft.externalDocID=PMC11129698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon