A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity
The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The const...
Saved in:
Published in | Journal of Geophysical Research Vol. 117; no. B7; pp. 1 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.07.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
ISSN | 0148-0227 2156-2202 |
DOI | 10.1029/2012JB009161 |
Cover
Loading…
Abstract | The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.
Key Points
Thermo‐hydro‐mechanical equations of fractured media
The model is calibrated from the thermal outputs of two HDR reservoirs
Simulation of circulation tests at Fenton Hill HDR reservoir |
---|---|
AbstractList | The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.
Thermo‐hydro‐mechanical equations of fractured media
The model is calibrated from the thermal outputs of two HDR reservoirs
Simulation of circulation tests at Fenton Hill HDR reservoir The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mixtures applied to three-phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro-mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time. The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time. Key Points Thermo‐hydro‐mechanical equations of fractured media The model is calibrated from the thermal outputs of two HDR reservoirs Simulation of circulation tests at Fenton Hill HDR reservoir |
Author | Loret, B. Gelet, R. Khalili, N. |
Author_xml | – sequence: 1 givenname: R. surname: Gelet fullname: Gelet, R. email: rachel.gelet@gmail.com, rachel.gelet@gmail.com organization: Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France – sequence: 2 givenname: B. surname: Loret fullname: Loret, B. organization: Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France – sequence: 3 givenname: N. surname: Khalili fullname: Khalili, N. organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363656$$DView record in Pascal Francis https://hal.science/hal-00918608$$DView record in HAL |
BookMark | eNp9kV2L1DAUhoOs4LjunT8gN14IRpO0TdPL2V2dcRlUBsXLkE8aTZsxbXftvze1uoigycWBw_Oc8OY8Bmd97C0ATwl-STBtXlFM6M0lxg1h5AHYUFIxRCmmZ2CDSckRprR-BC6G4QvOp6xYickGzFs4tjZ1EbWzSRF1Vrey91oGqON0CtbALhoboO9hiEv7J55rfh7Zb5MPXiU_ddDFBF2SepxSlvbXR5jsYNNt9Ane-bGFJk4qWHiKKQ5-nJ-Ah06GwV78qufg05vXH6_26PB-9_Zqe0CyLClBRjnJeaWIq5l1nCircFMpY-uCsUq7hjeNMoS5ojGkIcZwrBSjunKYypKT4hw8X-e2MohT8p1Ms4jSi_32IJbe8mWcYX67sM9W9iSHnDXH6bUf7i3Kinwrljm6cjpnGZJ1QvtRjj72Y5I-CILFshPx506y9OIv6ffcf-DFit_5YOf_suJmd7wkNaWLhVbLD6P9fm_J9FWwuqgr8fndTvAPxZHv2UE0xQ-iLqy7 |
CitedBy_id | crossref_primary_10_1016_j_energy_2016_05_009 crossref_primary_10_1016_j_applthermaleng_2023_120755 crossref_primary_10_1016_j_renene_2022_07_107 crossref_primary_10_1002_nag_2145 crossref_primary_10_1080_01495739_2022_2077870 crossref_primary_10_1016_j_petrol_2021_108941 crossref_primary_10_1016_j_geoen_2023_211756 crossref_primary_10_1016_j_geothermics_2023_102910 crossref_primary_10_1016_j_marpetgeo_2024_106848 crossref_primary_10_3390_su15043551 crossref_primary_10_1007_s00231_015_1554_y crossref_primary_10_1002_er_3352 crossref_primary_10_1016_j_compgeo_2023_105458 crossref_primary_10_1016_j_earscirev_2020_103182 crossref_primary_10_1016_j_energy_2013_07_063 crossref_primary_10_1002_2017JB014892 crossref_primary_10_1007_s00603_017_1185_3 crossref_primary_10_1111_gfl_12156 crossref_primary_10_3390_pr9061020 crossref_primary_10_1016_j_jhydrol_2018_01_032 crossref_primary_10_1016_j_applthermaleng_2018_10_130 crossref_primary_10_1016_S1876_3804_24_60502_1 crossref_primary_10_1007_s10659_014_9505_2 crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_103 crossref_primary_10_1016_j_renene_2019_05_054 crossref_primary_10_1016_j_renene_2020_12_042 crossref_primary_10_1016_j_renene_2022_01_033 crossref_primary_10_1016_j_ijrmms_2020_104583 crossref_primary_10_3390_pr7040202 crossref_primary_10_1007_s11708_019_0612_4 crossref_primary_10_1061_IJGNAI_GMENG_7731 crossref_primary_10_2113_2021_9171191 crossref_primary_10_1016_j_applthermaleng_2017_01_013 crossref_primary_10_1016_j_energy_2013_06_025 crossref_primary_10_1016_j_geothermics_2020_101953 crossref_primary_10_1016_j_renene_2019_02_070 crossref_primary_10_1002_nag_3408 crossref_primary_10_1016_j_renene_2023_119045 crossref_primary_10_1016_j_ijsolstr_2017_06_022 crossref_primary_10_1007_s10596_019_09921_9 crossref_primary_10_1016_j_earscirev_2018_09_004 crossref_primary_10_1016_j_applthermaleng_2018_03_008 crossref_primary_10_1016_j_enganabound_2020_03_008 crossref_primary_10_1016_j_compgeo_2018_02_024 crossref_primary_10_1016_j_geothermics_2016_04_005 crossref_primary_10_1016_j_icheatmasstransfer_2012_11_003 crossref_primary_10_1016_j_cma_2024_117165 crossref_primary_10_1002_2012JB010016 crossref_primary_10_1007_s00603_015_0724_z crossref_primary_10_1016_j_jhydrol_2023_130549 crossref_primary_10_1007_s12665_022_10202_5 crossref_primary_10_1016_j_geothermics_2021_102216 crossref_primary_10_1016_j_geothermics_2020_102016 crossref_primary_10_1016_j_geothermics_2019_03_005 crossref_primary_10_1016_j_enganabound_2018_08_003 crossref_primary_10_1016_j_renene_2022_11_101 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121127 crossref_primary_10_1080_17486025_2023_2256301 crossref_primary_10_1061__ASCE_EM_1943_7889_0002156 crossref_primary_10_5194_gmd_16_7375_2023 crossref_primary_10_1016_j_compgeo_2022_104942 crossref_primary_10_1016_j_geoen_2022_211378 crossref_primary_10_1016_j_cma_2021_114182 crossref_primary_10_1016_j_energy_2014_05_038 crossref_primary_10_1016_j_renene_2024_121160 crossref_primary_10_2139_ssrn_4072504 crossref_primary_10_1016_j_jhydrol_2021_126076 crossref_primary_10_1186_s40517_014_0017_x crossref_primary_10_1016_j_applthermaleng_2023_120027 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119216 crossref_primary_10_1016_j_geothermics_2013_11_004 crossref_primary_10_1029_2022WR032137 crossref_primary_10_3390_pr9081474 crossref_primary_10_1080_01495739_2019_1571973 crossref_primary_10_1016_j_geothermics_2016_08_006 crossref_primary_10_1016_j_applthermaleng_2018_08_015 crossref_primary_10_1016_j_geothermics_2020_101816 crossref_primary_10_1016_j_cma_2019_06_037 crossref_primary_10_2298_TAM211118007K crossref_primary_10_1007_s12517_021_08098_9 crossref_primary_10_1016_j_applthermaleng_2017_01_078 crossref_primary_10_1002_jgrb_50256 crossref_primary_10_1016_j_advwatres_2016_02_011 crossref_primary_10_1016_j_compgeo_2023_106033 crossref_primary_10_1016_j_jclepro_2021_128050 crossref_primary_10_1016_j_geothermics_2022_102463 crossref_primary_10_1016_j_enganabound_2021_08_011 crossref_primary_10_1016_j_ijrmms_2016_12_007 crossref_primary_10_1080_01495739_2014_885337 crossref_primary_10_1016_j_energy_2019_04_131 crossref_primary_10_3390_su13126918 crossref_primary_10_1007_s11012_014_9876_2 crossref_primary_10_1016_j_geoen_2024_213523 |
Cites_doi | 10.1029/JB094iB01p00637 10.1016/S0020-7683(01)00081-6 10.1029/JB094iB02p01927 10.1016/0148-9062(96)00002-2 10.1016/S1365-1609(97)80071-8 10.1029/2003GL018838 10.1063/1.1712886 10.2118/426-PA 10.1016/0375-6505(95)00013-G 10.1016/0093-6413(80)90042-7 10.1016/S0375-6505(97)00021-7 10.1007/s00603-005-0052-9 10.1016/0020-7225(82)90036-2 10.1016/0009-2509(84)80028-7 10.2118/2156-A 10.1016/j.ijrmms.2011.12.003 10.1002/1096-9853(200009)24:11<893::AID-NAG105>3.0.CO;2-V 10.1016/S0375-6505(99)00028-0 10.1016/j.geothermics.2008.06.001 10.1016/j.ces.2006.08.003 10.1016/j.geothermics.2007.11.002 10.1016/0020-7225(94)90169-4 10.1002/nag.336 10.1016/S0017-9310(99)00043-5 10.1002/nag.440 10.2118/6093-PA 10.2516/ogst:2002030 10.1016/j.ijrmms.2007.07.001 10.1016/0020-7225(65)90044-3 10.1016/j.compgeo.2011.03.007 10.1016/S0375-6505(99)00026-7 10.1007/BF01177125 10.1016/j.geothermics.2006.11.008 10.1016/0020-7225(70)90015-7 10.1016/0375-6505(95)00014-H 10.1016/0148-9062(83)91609-1 10.1115/1.2826043 10.1016/S0017-9310(02)00203-X 10.1016/0021-8928(60)90107-6 10.1016/0375-6505(94)90032-9 10.2172/5984399 10.1061/(ASCE)0733-9410(1992)118:1(107) 10.1016/0020-7683(77)90031-2 10.1029/JB086iB08p07145 10.1007/BF01202949 10.1016/S0920-4105(02)00159-6 10.1002/1097-0207(20000930)49:3<421::AID-NME48>3.0.CO;2-6 |
ContentType | Journal Article |
Copyright | 2012. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW 1XC VOOES |
DOI | 10.1029/2012JB009161 |
DatabaseName | Istex CrossRef Pascal-Francis Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_00918608v1 26363656 10_1029_2012JB009161 JGRB17221 ark_67375_WNG_8P3R8H6L_9 |
Genre | article |
GeographicLocations | Sandoval County New Mexico United States New Mexico Fenton Hill |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 1XC VOOES |
ID | FETCH-LOGICAL-a4421-dbfa885b1f76ef81beb095bde73665cf9899bd16f39d191dd80bb62c5f02a4813 |
ISSN | 0148-0227 |
IngestDate | Fri May 09 12:17:55 EDT 2025 Mon Jul 21 09:14:36 EDT 2025 Tue Jul 01 01:55:53 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Wed Jan 22 16:51:00 EST 2025 Wed Oct 30 09:53:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B7 |
Keywords | stress skeletons porosity finite element analysis North America mass transfer fluid pressure geothermal reservoirs circulation displacements temperature Chemical potential equilibrium Diffusion fractures theory energy hot dry rocks constitutive modeling Hot Dry Rock geothermal energy dual-porous media local thermal non-equilibrium |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4421-dbfa885b1f76ef81beb095bde73665cf9899bd16f39d191dd80bb62c5f02a4813 |
Notes | ark:/67375/WNG-8P3R8H6L-9 Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.Tab-delimited Table 6. istex:D7C50806504E88303EBF5BE760837E71F81D928D ArticleID:2012JB009161 |
ORCID | 0000-0002-8313-0358 |
OpenAccessLink | https://hal.science/hal-00918608 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_00918608v1 pascalfrancis_primary_26363656 crossref_citationtrail_10_1029_2012JB009161 crossref_primary_10_1029_2012JB009161 wiley_primary_10_1029_2012JB009161_JGRB17221 istex_primary_ark_67375_WNG_8P3R8H6L_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: July 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Koh, J., H. Roshan, and S. S. Rahman (2011), A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs, Comput. Geotech., 38(5), 669-682. Eringen, A. C., and J. D. Ingram (1965), A continuum theory of chemically reacting media, Int. J. Eng. Sci., 3, 197-212. Khalili, N., and A. P. S. Selvadurai (2003), A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Lett., 30(24), 2268, doi:10.1029/2003GL018838. Masters, I., W. K. S. Pao, and R. W. Lewis (2000), Coupling temperature to a double-porosity model of deformable porous media, Int. J. Numer. Methods Eng., 49, 421-438. Wakao, N., and S. Kaguei (1982), Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York. Khalili, N., and B. Loret (2001), An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media formulation, Int. J. Solids Struct., 38, 8305-8330. deMarsily, G. (1981), Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic, Paris. Wilson, R. K., and E. C. Aifantis (1982), On the theory of consolidation with double porosity, Int. J. Eng. Sci., 20(9), 1009-1035. Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164. Bruel, D. (2002), Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: Example of the Soultz-Sous-Forêts European hot fractured rock geothermal project, Rhine Graben, France, Oil Gas Sci. Technol., 57, 459-470. Elsworth, D. (1989), Theory of thermal recovery from a spherically stimulated hot dry rock reservoir, J. Geophys. Res., 94, 1927-1934. Mitchell, J. K. (1993), Fundamentals of Soil Behavior, John Wiley, New York. Brown, D., R. DuTeaux, P. Kruger, D. Swenson, and T. Yamaguchi (1999), Fluid circulation and heat extraction from engineered geothermal reservoirs, Geothermics, 28, 553-572. Warren, J. B., and P. J. Root (1963), The behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255. Hsu, C. T. (1999), A closure model for transient heat conduction in porous media, J. Heat Transfer, 121, 733-739. Elsworth, D., and M. Bai (1992), Flow-deformation response of dual-porosity media, J. Geotech. Eng., 118, 107-124. Aifantis, E. C. (1980a), On the problem of diffusion in solids, Acta Mech., 37, 265-296. Pecker, C., and H. Deresiewicz (1973), Thermal effects on wave propagation in liquid-filled porous media, Acta Mech., 16, 45-64. Bejan, A. (1993), Heat Transfer, John Wiley, New York. Zhang, J., and J. C. Roegiers (2005), Double porosity finite element method for borehole modeling, Rock Mech. Rock Eng., 38, 217-242. Gelet, R., B. Loret, and N. Khalili (2011), Borehole stability analysis in a thermo-poro-elastic dual porosity medium, Int. J. Rock Mech. Min. Sci., 50, 65-76, doi:10.1016/j.ijrmms.2011.12.003. Tenma, N., T. Yamaguchi, and G. Zyvoloski (2008), The Hijiori hot dry rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir, Geothermics, 37, 19-52. Kohl, T., K. F. Evansi, R. J. Hopkirk, and L. Rybach (1995), Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs, Geothermics, 24, 345-359. Ghassemi, A., and A. Diek (2002), Porothermoelasticity for swelling shales, J. Pet. Sci. Eng., 34, 123-135. Murphy, H. D., R. G. Lawton, J. W. Tester, R. M. Potter, D. W. Brow, and R. L. Aamodt (1977), Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing, Soc. Pet. Eng. J., 17, 317-326. Nair, R., Y. Abousleiman, and M. Zaman (2004), A finite element porothermoelastic model for dual-porosity media, Int. J. Numer. Anal. Methods Geomech., 28, 875-898. Hicks, T. W., R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe, and N. E. V. Rodrigues (1996), A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation, Int. J. Rock Mech. Min. Sci., 33(5), 499-511. Nield, D. A., A. V. Kuznetsov, and M. Xiong (2002), Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, Int. J. Heat Mass Transfer, 45, 4949-4955. Heuze, F. E. (1983), High-temperature mechanical, physical and thermal properties of granitic rocks: A review, Int. J. Rock Mech. Min. Sci., 20(1), 3-10. Bowen, R. M., and P. J. Chen (1975), Waves in a binary mixture of linear elastic materials, J. Méc., 14, 237-266. Bower, K. M., and G. Zyvoloski (1997), A numerical model for thermo-hydro-mechanical coupling in fractured rock, Int. J. Rock Mech. Min. Sci., 34, 1201-1211. Ghassemi, A., S. Tarasovs, and A. H.-D. Cheng (2005), Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs, Int. J. Numer. Anal. Methods Geomech., 29, 829-844. Zanotti, F., and R. G. Carbonell (1984), Development of transport equations for multiphase systems-III: Application to heat transfer in packed beds, Chem. Eng. Sci., 39, 299-311. Barenblatt, G. I., U. P. Zheltov, and G. H. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Engl. Transl., 24, 1286-1303. Jiang, P. X., R. N. Xu, and W. Gong (2006), Particle-to-fluid heat transfer coefficients in miniporous media, Chem. Eng. Sci., 61, 7213-7222. Aifantis, E. C. (1980b), Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun., 7, 219-226. Biot, M. A. (1977), Variational-lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Struct., 13(6), 579-597. Armstead, H. C. H., and J. W. Tester (1987), Heat Mining: A New Source of Energy, E.&F.N. Spon, London. Bruel, D. (1995), Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir, Geothermics, 24, 361-374. Tenzer, H. (2001), Development of hot dry rock technology, Bull. Geo-Heat Cent., 32, 14-22. Loret, B. and N. Khalili (2000b), A three-phase model for unsaturated soils, Int. J. Numer. Anal. Methods Geomech., 24, 893-927. Bai, M., and J. C. Rogiers (1994), Fluid flow and heat flow in deformable fractured porous media, Int. J. Eng. Sci., 32, 1615-1633. Richards, H. G., R. H. Parker, A. S. P. Green, R. H. Jones, J. D. M. Nicholls, D. A. C. Nicol, M. M. Randall, S. Richards, R. C. Stewart, and J. Willis-Richards (1994), The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985-1988), Geothermics, 23(2), 73-109. Bataillé, A., P. Genthon, M. Rabinowicz, and B. Fritz (2006), Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an enhanced geothermal system, Geothermics, 35, 654-682. Bruel, D. (2007), Using the migration of the induced seismicity as a constraint for fractured hot dry rock reservoir modelling, Int. J. Rock Mech. Min. Sci., 44(8), 1106-1117. Belytschko, T., and T. J. R. Hughes (1983), Computational Methods for Transient Analysis, North-Holland, Amsterdam. Murphy, H. D., J. W. Tester, C. O. Grigsby, and R. M. Potter (1981), Energy extraction from fractured geothermal reservoirs in low-permeability crystalline rock, J. Geophys. Res., 86, 7145-7158. Kolditz, O., and C. Clauser (1998), Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.), Geothermics, 27, 1-23. De La Cruz, V., and T. J. T. Spanos (1989), Thermomechanical coupling during seismic wave propagation in a porous medium, J. Geophys. Res., 94, 637-642. Hughes, T. J. R. (1987), The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice Hall, Englewood Cliffs, N. J. Hayashi, K., J. Willis-Richards, R. J. Hopkirk, and Y. Niibori (1999), Numerical models of HDR geothermal reservoirs-A review of current thinking and progress, Geothermics, 28, 507-518. Minkowycz, W. J., A. Haji-Sheikh, and K. Vafai (1999), On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number, Int. J. Heat Mass Transfer, 42, 3373-3385. Ghassemi, A., A. Nygren, and A. Cheng (2008), Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis, Geothermics, 37, 525-539. Bowen, R. M., and D. J. Garcia (1970), On the thermodynamics of mixtures with several temperatures, Int. J. Eng. Sci., 8, 63-83. Kazemi, H. (1969), Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J., 9(4), 451-462. Khalili, N., and S. Valliappan (1996), Unified theory of flow and deformation in double porous media, Eur. J. Mech., 15(2), 321-336. 1970; 8 2000; 49 2006; 35 2004; 28 2002; 57 1973; 16 1994; 23 2008; 37 1999; 121 1975; 14 1999; 42 2005; 29 1981; 86 1996; 33 1965; 3 1969; 9 1980; 37 2006; 61 2000 1995; 24 2002; 45 1941; 12 1982; 20 1987 1983; 20 1992; 118 1983 1982 1981 2005; 38 1994; 32 1998; 27 2011 2000; 24 1999; 28 2002; 34 1996 1993 2011; 38 1966; I 2003; 30 1996; 15 1989; 94 1977; 17 1960; 24 1984; 39 1997; 34 2011; 50 1963; 3 1980; 7 2001; 38 1977; 13 2007; 44 2001; 32 e_1_2_14_31_1 e_1_2_14_52_1 e_1_2_14_50_1 e_1_2_14_10_1 e_1_2_14_35_1 Khalili N. (e_1_2_14_40_1) 1996; 15 e_1_2_14_33_1 e_1_2_14_54_1 e_1_2_14_14_1 e_1_2_14_39_1 Bejan A. (e_1_2_14_8_1) 1993 e_1_2_14_16_1 e_1_2_14_37_1 e_1_2_14_58_1 Wakao N. (e_1_2_14_57_1) 1982 e_1_2_14_6_1 e_1_2_14_60_1 e_1_2_14_2_1 e_1_2_14_41_1 e_1_2_14_62_1 e_1_2_14_45_1 e_1_2_14_24_1 e_1_2_14_43_1 Tenzer H. (e_1_2_14_56_1) 2001; 32 e_1_2_14_22_1 e_1_2_14_28_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_47_1 e_1_2_14_19_1 Bowen R. M. (e_1_2_14_12_1) 1975; 14 Armstead H. C. H. (e_1_2_14_4_1) 1987 Marsily G. (e_1_2_14_20_1) 1981 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_51_1 e_1_2_14_11_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 Loret B. (e_1_2_14_44_1) 2000 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_17_1 e_1_2_14_36_1 Mitchell J. K. (e_1_2_14_48_1) 1993 e_1_2_14_59_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_7_1 e_1_2_14_42_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 Belytschko T. (e_1_2_14_9_1) 1983 e_1_2_14_21_1 e_1_2_14_27_1 e_1_2_14_25_1 e_1_2_14_18_1 Hughes T. J. R. (e_1_2_14_34_1) 1987 |
References_xml | – reference: Masters, I., W. K. S. Pao, and R. W. Lewis (2000), Coupling temperature to a double-porosity model of deformable porous media, Int. J. Numer. Methods Eng., 49, 421-438. – reference: Armstead, H. C. H., and J. W. Tester (1987), Heat Mining: A New Source of Energy, E.&F.N. Spon, London. – reference: Tenzer, H. (2001), Development of hot dry rock technology, Bull. Geo-Heat Cent., 32, 14-22. – reference: Bowen, R. M., and D. J. Garcia (1970), On the thermodynamics of mixtures with several temperatures, Int. J. Eng. Sci., 8, 63-83. – reference: De La Cruz, V., and T. J. T. Spanos (1989), Thermomechanical coupling during seismic wave propagation in a porous medium, J. Geophys. Res., 94, 637-642. – reference: Kolditz, O., and C. Clauser (1998), Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.), Geothermics, 27, 1-23. – reference: Mitchell, J. K. (1993), Fundamentals of Soil Behavior, John Wiley, New York. – reference: Elsworth, D. (1989), Theory of thermal recovery from a spherically stimulated hot dry rock reservoir, J. Geophys. Res., 94, 1927-1934. – reference: Hsu, C. T. (1999), A closure model for transient heat conduction in porous media, J. Heat Transfer, 121, 733-739. – reference: Wilson, R. K., and E. C. Aifantis (1982), On the theory of consolidation with double porosity, Int. J. Eng. Sci., 20(9), 1009-1035. – reference: Brown, D., R. DuTeaux, P. Kruger, D. Swenson, and T. Yamaguchi (1999), Fluid circulation and heat extraction from engineered geothermal reservoirs, Geothermics, 28, 553-572. – reference: Gelet, R., B. Loret, and N. Khalili (2011), Borehole stability analysis in a thermo-poro-elastic dual porosity medium, Int. J. Rock Mech. Min. Sci., 50, 65-76, doi:10.1016/j.ijrmms.2011.12.003. – reference: Warren, J. B., and P. J. Root (1963), The behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255. – reference: Ghassemi, A., S. Tarasovs, and A. H.-D. Cheng (2005), Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs, Int. J. Numer. Anal. Methods Geomech., 29, 829-844. – reference: Zhang, J., and J. C. Roegiers (2005), Double porosity finite element method for borehole modeling, Rock Mech. Rock Eng., 38, 217-242. – reference: Zanotti, F., and R. G. Carbonell (1984), Development of transport equations for multiphase systems-III: Application to heat transfer in packed beds, Chem. Eng. Sci., 39, 299-311. – reference: Loret, B. and N. Khalili (2000b), A three-phase model for unsaturated soils, Int. J. Numer. Anal. Methods Geomech., 24, 893-927. – reference: Kazemi, H. (1969), Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J., 9(4), 451-462. – reference: Tenma, N., T. Yamaguchi, and G. Zyvoloski (2008), The Hijiori hot dry rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir, Geothermics, 37, 19-52. – reference: Bataillé, A., P. Genthon, M. Rabinowicz, and B. Fritz (2006), Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an enhanced geothermal system, Geothermics, 35, 654-682. – reference: Eringen, A. C., and J. D. Ingram (1965), A continuum theory of chemically reacting media, Int. J. Eng. Sci., 3, 197-212. – reference: Hicks, T. W., R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe, and N. E. V. Rodrigues (1996), A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation, Int. J. Rock Mech. Min. Sci., 33(5), 499-511. – reference: Ghassemi, A., A. Nygren, and A. Cheng (2008), Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis, Geothermics, 37, 525-539. – reference: Bai, M., and J. C. Rogiers (1994), Fluid flow and heat flow in deformable fractured porous media, Int. J. Eng. Sci., 32, 1615-1633. – reference: deMarsily, G. (1981), Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic, Paris. – reference: Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164. – reference: Wakao, N., and S. Kaguei (1982), Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York. – reference: Elsworth, D., and M. Bai (1992), Flow-deformation response of dual-porosity media, J. Geotech. Eng., 118, 107-124. – reference: Richards, H. G., R. H. Parker, A. S. P. Green, R. H. Jones, J. D. M. Nicholls, D. A. C. Nicol, M. M. Randall, S. Richards, R. C. Stewart, and J. Willis-Richards (1994), The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985-1988), Geothermics, 23(2), 73-109. – reference: Heuze, F. E. (1983), High-temperature mechanical, physical and thermal properties of granitic rocks: A review, Int. J. Rock Mech. Min. Sci., 20(1), 3-10. – reference: Khalili, N., and B. Loret (2001), An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media formulation, Int. J. Solids Struct., 38, 8305-8330. – reference: Khalili, N., and A. P. S. Selvadurai (2003), A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Lett., 30(24), 2268, doi:10.1029/2003GL018838. – reference: Hayashi, K., J. Willis-Richards, R. J. Hopkirk, and Y. Niibori (1999), Numerical models of HDR geothermal reservoirs-A review of current thinking and progress, Geothermics, 28, 507-518. – reference: Pecker, C., and H. Deresiewicz (1973), Thermal effects on wave propagation in liquid-filled porous media, Acta Mech., 16, 45-64. – reference: Aifantis, E. C. (1980a), On the problem of diffusion in solids, Acta Mech., 37, 265-296. – reference: Bower, K. M., and G. Zyvoloski (1997), A numerical model for thermo-hydro-mechanical coupling in fractured rock, Int. J. Rock Mech. Min. Sci., 34, 1201-1211. – reference: Bruel, D. (1995), Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir, Geothermics, 24, 361-374. – reference: Aifantis, E. C. (1980b), Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun., 7, 219-226. – reference: Kohl, T., K. F. Evansi, R. J. Hopkirk, and L. Rybach (1995), Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs, Geothermics, 24, 345-359. – reference: Barenblatt, G. I., U. P. Zheltov, and G. H. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Engl. Transl., 24, 1286-1303. – reference: Nield, D. A., A. V. Kuznetsov, and M. Xiong (2002), Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, Int. J. Heat Mass Transfer, 45, 4949-4955. – reference: Murphy, H. D., R. G. Lawton, J. W. Tester, R. M. Potter, D. W. Brow, and R. L. Aamodt (1977), Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing, Soc. Pet. Eng. J., 17, 317-326. – reference: Hughes, T. J. R. (1987), The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice Hall, Englewood Cliffs, N. J. – reference: Bowen, R. M., and P. J. Chen (1975), Waves in a binary mixture of linear elastic materials, J. Méc., 14, 237-266. – reference: Jiang, P. X., R. N. Xu, and W. Gong (2006), Particle-to-fluid heat transfer coefficients in miniporous media, Chem. Eng. Sci., 61, 7213-7222. – reference: Minkowycz, W. J., A. Haji-Sheikh, and K. Vafai (1999), On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number, Int. J. Heat Mass Transfer, 42, 3373-3385. – reference: Bejan, A. (1993), Heat Transfer, John Wiley, New York. – reference: Ghassemi, A., and A. Diek (2002), Porothermoelasticity for swelling shales, J. Pet. Sci. Eng., 34, 123-135. – reference: Khalili, N., and S. Valliappan (1996), Unified theory of flow and deformation in double porous media, Eur. J. Mech., 15(2), 321-336. – reference: Koh, J., H. Roshan, and S. S. Rahman (2011), A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs, Comput. Geotech., 38(5), 669-682. – reference: Biot, M. A. (1977), Variational-lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Struct., 13(6), 579-597. – reference: Bruel, D. (2007), Using the migration of the induced seismicity as a constraint for fractured hot dry rock reservoir modelling, Int. J. Rock Mech. Min. Sci., 44(8), 1106-1117. – reference: Belytschko, T., and T. J. R. Hughes (1983), Computational Methods for Transient Analysis, North-Holland, Amsterdam. – reference: Murphy, H. D., J. W. Tester, C. O. Grigsby, and R. M. Potter (1981), Energy extraction from fractured geothermal reservoirs in low-permeability crystalline rock, J. Geophys. Res., 86, 7145-7158. – reference: Nair, R., Y. Abousleiman, and M. Zaman (2004), A finite element porothermoelastic model for dual-porosity media, Int. J. Numer. Anal. Methods Geomech., 28, 875-898. – reference: Bruel, D. (2002), Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: Example of the Soultz-Sous-Forêts European hot fractured rock geothermal project, Rhine Graben, France, Oil Gas Sci. Technol., 57, 459-470. – volume: 24 start-page: 1286 year: 1960 end-page: 1303 article-title: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks publication-title: J. Appl. Math. Mech. – year: 2011 – year: 1981 – volume: 30 issue: 24 year: 2003 article-title: A fully coupled constitutive model for thermo‐hydro‐mechanical analysis in elastic media with double porosity publication-title: Geophys. Res. Lett. – volume: 118 start-page: 107 year: 1992 end-page: 124 article-title: Flow‐deformation response of dual‐porosity media publication-title: J. Geotech. Eng. – volume: 34 start-page: 1201 year: 1997 end-page: 1211 article-title: A numerical model for thermo‐hydro‐mechanical coupling in fractured rock publication-title: Int. J. Rock Mech. Min. Sci. – volume: 20 start-page: 1009 issue: 9 year: 1982 end-page: 1035 article-title: On the theory of consolidation with double porosity publication-title: Int. J. Eng. Sci. – volume: 3 start-page: 197 year: 1965 end-page: 212 article-title: A continuum theory of chemically reacting media publication-title: Int. J. Eng. Sci. – volume: 39 start-page: 299 year: 1984 end-page: 311 article-title: Development of transport equations for multiphase systems—III: Application to heat transfer in packed beds publication-title: Chem. Eng. Sci. – volume: 13 start-page: 579 issue: 6 year: 1977 end-page: 597 article-title: Variational‐lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion publication-title: Int. J. Solids Struct. – volume: 12 start-page: 155 year: 1941 end-page: 164 article-title: General theory of three‐dimensional consolidation publication-title: J. Appl. Phys. – volume: 61 start-page: 7213 year: 2006 end-page: 7222 article-title: Particle‐to‐fluid heat transfer coefficients in miniporous media publication-title: Chem. Eng. Sci. – volume: 20 start-page: 3 issue: 1 year: 1983 end-page: 10 article-title: High‐temperature mechanical, physical and thermal properties of granitic rocks: A review publication-title: Int. J. Rock Mech. Min. Sci. – year: 1982 – volume: 24 start-page: 361 year: 1995 end-page: 374 article-title: Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir publication-title: Geothermics – volume: 29 start-page: 829 year: 2005 end-page: 844 article-title: Integral equation solution of heat extraction‐induced thermal stress in enhanced geothermal reservoirs publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 27 start-page: 1 year: 1998 end-page: 23 article-title: Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.) publication-title: Geothermics – volume: 42 start-page: 3373 year: 1999 end-page: 3385 article-title: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number publication-title: Int. J. Heat Mass Transfer – year: 1993 – volume: 37 start-page: 525 year: 2008 end-page: 539 article-title: Effects of heat extraction on fracture aperture: A poro‐thermoelastic analysis publication-title: Geothermics – volume: 23 start-page: 73 issue: 2 year: 1994 end-page: 109 article-title: The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988) publication-title: Geothermics – volume: 94 start-page: 637 year: 1989 end-page: 642 article-title: Thermomechanical coupling during seismic wave propagation in a porous medium publication-title: J. Geophys. Res. – volume: 37 start-page: 19 year: 2008 end-page: 52 article-title: The Hijiori hot dry rock test site, Japan: Evaluation and optimization of heat extraction from a two‐layered reservoir publication-title: Geothermics – year: 1983 – volume: 50 start-page: 65 year: 2011 end-page: 76 article-title: Borehole stability analysis in a thermo‐poro‐elastic dual porosity medium publication-title: Int. J. Rock Mech. Min. Sci. – volume: 57 start-page: 459 year: 2002 end-page: 470 article-title: Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: Example of the Soultz‐Sous‐Forêts European hot fractured rock geothermal project, Rhine Graben, France publication-title: Oil Gas Sci. Technol. – volume: 37 start-page: 265 year: 1980 end-page: 296 article-title: On the problem of diffusion in solids publication-title: Acta Mech. – volume: 7 start-page: 219 year: 1980 end-page: 226 article-title: Further comments on the problem of heat extraction from hot dry rocks publication-title: Mech. Res. Commun. – year: 1987 – volume: 24 start-page: 893 year: 2000 end-page: 927 article-title: A three‐phase model for unsaturated soils publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 44 start-page: 1106 issue: 8 year: 2007 end-page: 1117 article-title: Using the migration of the induced seismicity as a constraint for fractured hot dry rock reservoir modelling publication-title: Int. J. Rock Mech. Min. Sci. – volume: 28 start-page: 507 year: 1999 end-page: 518 article-title: Numerical models of HDR geothermal reservoirs—A review of current thinking and progress publication-title: Geothermics – year: 1996 – volume: 34 start-page: 123 year: 2002 end-page: 135 article-title: Porothermoelasticity for swelling shales publication-title: J. Pet. Sci. Eng. – volume: 49 start-page: 421 year: 2000 end-page: 438 article-title: Coupling temperature to a double‐porosity model of deformable porous media publication-title: Int. J. Numer. Methods Eng. – volume: 32 start-page: 14 year: 2001 end-page: 22 article-title: Development of hot dry rock technology publication-title: Bull. Geo‐Heat Cent. – volume: 28 start-page: 553 year: 1999 end-page: 572 article-title: Fluid circulation and heat extraction from engineered geothermal reservoirs publication-title: Geothermics – volume: 86 start-page: 7145 year: 1981 end-page: 7158 article-title: Energy extraction from fractured geothermal reservoirs in low‐permeability crystalline rock publication-title: J. Geophys. Res. – volume: 28 start-page: 875 year: 2004 end-page: 898 article-title: A finite element porothermoelastic model for dual‐porosity media publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 9 start-page: 451 issue: 4 year: 1969 end-page: 462 article-title: Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution publication-title: Soc. Pet. Eng. J. – volume: 35 start-page: 654 year: 2006 end-page: 682 article-title: Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an enhanced geothermal system publication-title: Geothermics – volume: 45 start-page: 4949 year: 2002 end-page: 4955 article-title: Effect of local thermal non‐equilibrium on thermally developing forced convection in a porous medium publication-title: Int. J. Heat Mass Transfer – volume: I year: 1966 – volume: 8 start-page: 63 year: 1970 end-page: 83 article-title: On the thermodynamics of mixtures with several temperatures publication-title: Int. J. Eng. Sci. – volume: 24 start-page: 345 year: 1995 end-page: 359 article-title: Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs publication-title: Geothermics – volume: 38 start-page: 217 year: 2005 end-page: 242 article-title: Double porosity finite element method for borehole modeling publication-title: Rock Mech. Rock Eng. – volume: 38 start-page: 8305 year: 2001 end-page: 8330 article-title: An elasto‐plastic model for non‐isothermal analysis of flow and deformation in unsaturated porous media formulation publication-title: Int. J. Solids Struct. – volume: 17 start-page: 317 year: 1977 end-page: 326 article-title: Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing publication-title: Soc. Pet. Eng. J. – volume: 15 start-page: 321 issue: 2 year: 1996 end-page: 336 article-title: Unified theory of flow and deformation in double porous media publication-title: Eur. J. Mech. – start-page: 253 year: 2000 end-page: 276 – volume: 38 start-page: 669 issue: 5 year: 2011 end-page: 682 article-title: A numerical study on the long term thermo‐poroelastic effects of cold water injection into naturally fractured geothermal reservoirs publication-title: Comput. Geotech. – volume: 121 start-page: 733 year: 1999 end-page: 739 article-title: A closure model for transient heat conduction in porous media publication-title: J. Heat Transfer – volume: 16 start-page: 45 year: 1973 end-page: 64 article-title: Thermal effects on wave propagation in liquid‐filled porous media publication-title: Acta Mech. – volume: 3 start-page: 245 year: 1963 end-page: 255 article-title: The behaviour of naturally fractured reservoirs publication-title: Soc. Pet. Eng. J. – volume: 14 start-page: 237 year: 1975 end-page: 266 article-title: Waves in a binary mixture of linear elastic materials publication-title: J. Méc. – volume: 33 start-page: 499 issue: 5 year: 1996 end-page: 511 article-title: A hydro‐thermo‐mechanical numerical model for HDR geothermal reservoir evaluation publication-title: Int. J. Rock Mech. Min. Sci. – volume: 32 start-page: 1615 year: 1994 end-page: 1633 article-title: Fluid flow and heat flow in deformable fractured porous media publication-title: Int. J. Eng. Sci. – volume: 94 start-page: 1927 year: 1989 end-page: 1934 article-title: Theory of thermal recovery from a spherically stimulated hot dry rock reservoir publication-title: J. Geophys. Res. – ident: e_1_2_14_19_1 doi: 10.1029/JB094iB01p00637 – ident: e_1_2_14_21_1 – volume: 15 start-page: 321 issue: 2 year: 1996 ident: e_1_2_14_40_1 article-title: Unified theory of flow and deformation in double porous media publication-title: Eur. J. Mech. – ident: e_1_2_14_38_1 doi: 10.1016/S0020-7683(01)00081-6 – ident: e_1_2_14_22_1 doi: 10.1029/JB094iB02p01927 – ident: e_1_2_14_32_1 doi: 10.1016/0148-9062(96)00002-2 – ident: e_1_2_14_14_1 doi: 10.1016/S1365-1609(97)80071-8 – ident: e_1_2_14_39_1 doi: 10.1029/2003GL018838 – volume: 14 start-page: 237 year: 1975 ident: e_1_2_14_12_1 article-title: Waves in a binary mixture of linear elastic materials publication-title: J. Méc. – ident: e_1_2_14_10_1 doi: 10.1063/1.1712886 – ident: e_1_2_14_58_1 doi: 10.2118/426-PA – ident: e_1_2_14_41_1 doi: 10.1016/0375-6505(95)00013-G – ident: e_1_2_14_3_1 doi: 10.1016/0093-6413(80)90042-7 – ident: e_1_2_14_43_1 doi: 10.1016/S0375-6505(97)00021-7 – volume: 32 start-page: 14 year: 2001 ident: e_1_2_14_56_1 article-title: Development of hot dry rock technology publication-title: Bull. Geo‐Heat Cent. – volume-title: Quantitative Hydrogeology: Groundwater Hydrology for Engineers year: 1981 ident: e_1_2_14_20_1 – ident: e_1_2_14_61_1 doi: 10.1007/s00603-005-0052-9 – ident: e_1_2_14_59_1 doi: 10.1016/0020-7225(82)90036-2 – ident: e_1_2_14_60_1 doi: 10.1016/0009-2509(84)80028-7 – volume-title: Heat Transfer year: 1993 ident: e_1_2_14_8_1 – ident: e_1_2_14_36_1 doi: 10.2118/2156-A – ident: e_1_2_14_26_1 doi: 10.1016/j.ijrmms.2011.12.003 – ident: e_1_2_14_45_1 doi: 10.1002/1096-9853(200009)24:11<893::AID-NAG105>3.0.CO;2-V – ident: e_1_2_14_15_1 doi: 10.1016/S0375-6505(99)00028-0 – volume-title: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis year: 1987 ident: e_1_2_14_34_1 – ident: e_1_2_14_29_1 doi: 10.1016/j.geothermics.2008.06.001 – start-page: 253 volume-title: CISM Courses and Lectures 426 “Advanced Numerical Applications and Plasticity in Geomechanics”, Udine, Italy year: 2000 ident: e_1_2_14_44_1 – ident: e_1_2_14_35_1 doi: 10.1016/j.ces.2006.08.003 – ident: e_1_2_14_55_1 doi: 10.1016/j.geothermics.2007.11.002 – ident: e_1_2_14_5_1 doi: 10.1016/0020-7225(94)90169-4 – ident: e_1_2_14_51_1 doi: 10.1002/nag.336 – ident: e_1_2_14_47_1 doi: 10.1016/S0017-9310(99)00043-5 – ident: e_1_2_14_28_1 doi: 10.1002/nag.440 – volume-title: Heat and Mass Transfer in Packed Beds year: 1982 ident: e_1_2_14_57_1 – ident: e_1_2_14_49_1 doi: 10.2118/6093-PA – ident: e_1_2_14_17_1 doi: 10.2516/ogst:2002030 – ident: e_1_2_14_18_1 doi: 10.1016/j.ijrmms.2007.07.001 – volume-title: Heat Mining: A New Source of Energy year: 1987 ident: e_1_2_14_4_1 – ident: e_1_2_14_24_1 doi: 10.1016/0020-7225(65)90044-3 – ident: e_1_2_14_37_1 – ident: e_1_2_14_42_1 doi: 10.1016/j.compgeo.2011.03.007 – ident: e_1_2_14_30_1 doi: 10.1016/S0375-6505(99)00026-7 – ident: e_1_2_14_53_1 doi: 10.1007/BF01177125 – ident: e_1_2_14_7_1 doi: 10.1016/j.geothermics.2006.11.008 – ident: e_1_2_14_13_1 doi: 10.1016/0020-7225(70)90015-7 – ident: e_1_2_14_16_1 doi: 10.1016/0375-6505(95)00014-H – ident: e_1_2_14_31_1 doi: 10.1016/0148-9062(83)91609-1 – ident: e_1_2_14_33_1 doi: 10.1115/1.2826043 – volume-title: Fundamentals of Soil Behavior year: 1993 ident: e_1_2_14_48_1 – ident: e_1_2_14_52_1 doi: 10.1016/S0017-9310(02)00203-X – ident: e_1_2_14_25_1 – ident: e_1_2_14_6_1 doi: 10.1016/0021-8928(60)90107-6 – volume-title: Computational Methods for Transient Analysis year: 1983 ident: e_1_2_14_9_1 – ident: e_1_2_14_54_1 doi: 10.1016/0375-6505(94)90032-9 – ident: e_1_2_14_62_1 doi: 10.2172/5984399 – ident: e_1_2_14_23_1 doi: 10.1061/(ASCE)0733-9410(1992)118:1(107) – ident: e_1_2_14_11_1 doi: 10.1016/0020-7683(77)90031-2 – ident: e_1_2_14_50_1 doi: 10.1029/JB086iB08p07145 – ident: e_1_2_14_2_1 doi: 10.1007/BF01202949 – ident: e_1_2_14_27_1 doi: 10.1016/S0920-4105(02)00159-6 – ident: e_1_2_14_46_1 doi: 10.1002/1097-0207(20000930)49:3<421::AID-NME48>3.0.CO;2-6 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.44501 |
Snippet | The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The... The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mixtures applied to three-phase poroelastic media. The... |
SourceID | hal pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Civil Engineering dual porosity Earth sciences Earth, ocean, space Engineering Sciences enhanced geothermal system Exact sciences and technology fluid loss heat exchange mass exchange thermo-hydro-mechanical couplings |
Title | A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity |
URI | https://api.istex.fr/ark:/67375/WNG-8P3R8H6L-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JB009161 https://hal.science/hal-00918608 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdYKySEhGCAVh6ThWBfRiBPN_nYjtKulK6qOrFvkZ04rKJtSttMlL-e86N5TBsvVUp9jvO8-zl39t0ZoddBDIY0A-vETSxquBT6QeoRHxQ5r-mShMNHW3r5Dknv3O1feBeFS5CMLtmwd9HPG-NK_oerUAd8FVGy_8DZ_KRQAWXgL2yBw7D9Kx5Ll4zVPDUut_EqNeZchPHqlB_Zcga6pFzoRoxpyG-Wag7_YPMb_Hs2lQ7_2Vz6GiYiXioT7ui9D-NjEZW0ukqnKzVSG6eZCLECZV04eVWmgksq7VeeLnd811mE8tHmbmfQmVQ8FAdnY1WTz_p86rUGp4PTYoZID0dYhevqphQBAF1Tt3RFUJ-1jBWDmCJ1YaUXViGcWtzazRu7d9MW2VHFZfttUA4tlce9mkX72tct9zm0iQM_j-yhug0mhVlD9XZnOBrnI3Iys07hIGS5MuRXEdAr-hXCLhNOmXDLhFcmyI5woVdXC2XqF6EjMuDx3pcfrqIr7V0KT926AP8P4cFL1_BqE7X6StWykqrR5CF6oAUAt5SAPkJ3-GIfHbTWYpYlnW_xEZZlxaj1PrqrFkDdQqnLdanxGaw3kC5BwQEnsymYUnrf_bOI04XOrQ4HjdSJHqNtC98CAKwBgCUA8HSBJQCwBgC-BgAMAMA5ADAAAOcAwAIAWAEA7wDwBJ1_7ExOeoZeS8SgrmtbRswS6vses5Im4QnYapyBccFi3nQI8aIk8IOAxRZJnCC2AiuOfZMxYkdeYtrU9S3nKarBrfEDhD3KmRMx0DBsUDNck0bCRkmoLbRz0-MNdLzjWhjpRPtivZdZKB0-7CAs87iB3uStlyrBzC3tXoEA5E1EVnjAZCjqRAOfmP4VNDqS8pE3o6tvwnOz6YVfht3QHzljv0cGYdBAhxUByg_YoaSB3kqJ-u09hf3uuA0WkG09-9P5nqN7RW_xAtU2q4y_BHV-ww41Dn8B5OrmkA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thermo-hydro-mechanical+coupled+model+in+local+thermal+non-equilibrium+for+fractured+HDR+reservoir+with+double+porosity&rft.jtitle=Journal+of+geophysical+research&rft.au=GELET%2C+R&rft.au=LORET%2C+B&rft.au=KHALILI%2C+N&rft.date=2012-07-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=117&rft.issue=B7&rft_id=info:doi/10.1029%2F2012JB009161&rft.externalDBID=n%2Fa&rft.externalDocID=26363656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |