A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity

The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The const...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Vol. 117; no. B7; pp. 1 - n/a
Main Authors Gelet, R., Loret, B., Khalili, N.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.07.2012
American Geophysical Union
Subjects
Online AccessGet full text
ISSN0148-0227
2156-2202
DOI10.1029/2012JB009161

Cover

Loading…
Abstract The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time. Key Points Thermo‐hydro‐mechanical equations of fractured media The model is calibrated from the thermal outputs of two HDR reservoirs Simulation of circulation tests at Fenton Hill HDR reservoir
AbstractList The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time. Thermo‐hydro‐mechanical equations of fractured media The model is calibrated from the thermal outputs of two HDR reservoirs Simulation of circulation tests at Fenton Hill HDR reservoir
The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mixtures applied to three-phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro-mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.
The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time. Key Points Thermo‐hydro‐mechanical equations of fractured media The model is calibrated from the thermal outputs of two HDR reservoirs Simulation of circulation tests at Fenton Hill HDR reservoir
Author Loret, B.
Gelet, R.
Khalili, N.
Author_xml – sequence: 1
  givenname: R.
  surname: Gelet
  fullname: Gelet, R.
  email: rachel.gelet@gmail.com, rachel.gelet@gmail.com
  organization: Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France
– sequence: 2
  givenname: B.
  surname: Loret
  fullname: Loret, B.
  organization: Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France
– sequence: 3
  givenname: N.
  surname: Khalili
  fullname: Khalili, N.
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363656$$DView record in Pascal Francis
https://hal.science/hal-00918608$$DView record in HAL
BookMark eNp9kV2L1DAUhoOs4LjunT8gN14IRpO0TdPL2V2dcRlUBsXLkE8aTZsxbXftvze1uoigycWBw_Oc8OY8Bmd97C0ATwl-STBtXlFM6M0lxg1h5AHYUFIxRCmmZ2CDSckRprR-BC6G4QvOp6xYickGzFs4tjZ1EbWzSRF1Vrey91oGqON0CtbALhoboO9hiEv7J55rfh7Zb5MPXiU_ddDFBF2SepxSlvbXR5jsYNNt9Ane-bGFJk4qWHiKKQ5-nJ-Ah06GwV78qufg05vXH6_26PB-9_Zqe0CyLClBRjnJeaWIq5l1nCircFMpY-uCsUq7hjeNMoS5ojGkIcZwrBSjunKYypKT4hw8X-e2MohT8p1Ms4jSi_32IJbe8mWcYX67sM9W9iSHnDXH6bUf7i3Kinwrljm6cjpnGZJ1QvtRjj72Y5I-CILFshPx506y9OIv6ffcf-DFit_5YOf_suJmd7wkNaWLhVbLD6P9fm_J9FWwuqgr8fndTvAPxZHv2UE0xQ-iLqy7
CitedBy_id crossref_primary_10_1016_j_energy_2016_05_009
crossref_primary_10_1016_j_applthermaleng_2023_120755
crossref_primary_10_1016_j_renene_2022_07_107
crossref_primary_10_1002_nag_2145
crossref_primary_10_1080_01495739_2022_2077870
crossref_primary_10_1016_j_petrol_2021_108941
crossref_primary_10_1016_j_geoen_2023_211756
crossref_primary_10_1016_j_geothermics_2023_102910
crossref_primary_10_1016_j_marpetgeo_2024_106848
crossref_primary_10_3390_su15043551
crossref_primary_10_1007_s00231_015_1554_y
crossref_primary_10_1002_er_3352
crossref_primary_10_1016_j_compgeo_2023_105458
crossref_primary_10_1016_j_earscirev_2020_103182
crossref_primary_10_1016_j_energy_2013_07_063
crossref_primary_10_1002_2017JB014892
crossref_primary_10_1007_s00603_017_1185_3
crossref_primary_10_1111_gfl_12156
crossref_primary_10_3390_pr9061020
crossref_primary_10_1016_j_jhydrol_2018_01_032
crossref_primary_10_1016_j_applthermaleng_2018_10_130
crossref_primary_10_1016_S1876_3804_24_60502_1
crossref_primary_10_1007_s10659_014_9505_2
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_103
crossref_primary_10_1016_j_renene_2019_05_054
crossref_primary_10_1016_j_renene_2020_12_042
crossref_primary_10_1016_j_renene_2022_01_033
crossref_primary_10_1016_j_ijrmms_2020_104583
crossref_primary_10_3390_pr7040202
crossref_primary_10_1007_s11708_019_0612_4
crossref_primary_10_1061_IJGNAI_GMENG_7731
crossref_primary_10_2113_2021_9171191
crossref_primary_10_1016_j_applthermaleng_2017_01_013
crossref_primary_10_1016_j_energy_2013_06_025
crossref_primary_10_1016_j_geothermics_2020_101953
crossref_primary_10_1016_j_renene_2019_02_070
crossref_primary_10_1002_nag_3408
crossref_primary_10_1016_j_renene_2023_119045
crossref_primary_10_1016_j_ijsolstr_2017_06_022
crossref_primary_10_1007_s10596_019_09921_9
crossref_primary_10_1016_j_earscirev_2018_09_004
crossref_primary_10_1016_j_applthermaleng_2018_03_008
crossref_primary_10_1016_j_enganabound_2020_03_008
crossref_primary_10_1016_j_compgeo_2018_02_024
crossref_primary_10_1016_j_geothermics_2016_04_005
crossref_primary_10_1016_j_icheatmasstransfer_2012_11_003
crossref_primary_10_1016_j_cma_2024_117165
crossref_primary_10_1002_2012JB010016
crossref_primary_10_1007_s00603_015_0724_z
crossref_primary_10_1016_j_jhydrol_2023_130549
crossref_primary_10_1007_s12665_022_10202_5
crossref_primary_10_1016_j_geothermics_2021_102216
crossref_primary_10_1016_j_geothermics_2020_102016
crossref_primary_10_1016_j_geothermics_2019_03_005
crossref_primary_10_1016_j_enganabound_2018_08_003
crossref_primary_10_1016_j_renene_2022_11_101
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121127
crossref_primary_10_1080_17486025_2023_2256301
crossref_primary_10_1061__ASCE_EM_1943_7889_0002156
crossref_primary_10_5194_gmd_16_7375_2023
crossref_primary_10_1016_j_compgeo_2022_104942
crossref_primary_10_1016_j_geoen_2022_211378
crossref_primary_10_1016_j_cma_2021_114182
crossref_primary_10_1016_j_energy_2014_05_038
crossref_primary_10_1016_j_renene_2024_121160
crossref_primary_10_2139_ssrn_4072504
crossref_primary_10_1016_j_jhydrol_2021_126076
crossref_primary_10_1186_s40517_014_0017_x
crossref_primary_10_1016_j_applthermaleng_2023_120027
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119216
crossref_primary_10_1016_j_geothermics_2013_11_004
crossref_primary_10_1029_2022WR032137
crossref_primary_10_3390_pr9081474
crossref_primary_10_1080_01495739_2019_1571973
crossref_primary_10_1016_j_geothermics_2016_08_006
crossref_primary_10_1016_j_applthermaleng_2018_08_015
crossref_primary_10_1016_j_geothermics_2020_101816
crossref_primary_10_1016_j_cma_2019_06_037
crossref_primary_10_2298_TAM211118007K
crossref_primary_10_1007_s12517_021_08098_9
crossref_primary_10_1016_j_applthermaleng_2017_01_078
crossref_primary_10_1002_jgrb_50256
crossref_primary_10_1016_j_advwatres_2016_02_011
crossref_primary_10_1016_j_compgeo_2023_106033
crossref_primary_10_1016_j_jclepro_2021_128050
crossref_primary_10_1016_j_geothermics_2022_102463
crossref_primary_10_1016_j_enganabound_2021_08_011
crossref_primary_10_1016_j_ijrmms_2016_12_007
crossref_primary_10_1080_01495739_2014_885337
crossref_primary_10_1016_j_energy_2019_04_131
crossref_primary_10_3390_su13126918
crossref_primary_10_1007_s11012_014_9876_2
crossref_primary_10_1016_j_geoen_2024_213523
Cites_doi 10.1029/JB094iB01p00637
10.1016/S0020-7683(01)00081-6
10.1029/JB094iB02p01927
10.1016/0148-9062(96)00002-2
10.1016/S1365-1609(97)80071-8
10.1029/2003GL018838
10.1063/1.1712886
10.2118/426-PA
10.1016/0375-6505(95)00013-G
10.1016/0093-6413(80)90042-7
10.1016/S0375-6505(97)00021-7
10.1007/s00603-005-0052-9
10.1016/0020-7225(82)90036-2
10.1016/0009-2509(84)80028-7
10.2118/2156-A
10.1016/j.ijrmms.2011.12.003
10.1002/1096-9853(200009)24:11<893::AID-NAG105>3.0.CO;2-V
10.1016/S0375-6505(99)00028-0
10.1016/j.geothermics.2008.06.001
10.1016/j.ces.2006.08.003
10.1016/j.geothermics.2007.11.002
10.1016/0020-7225(94)90169-4
10.1002/nag.336
10.1016/S0017-9310(99)00043-5
10.1002/nag.440
10.2118/6093-PA
10.2516/ogst:2002030
10.1016/j.ijrmms.2007.07.001
10.1016/0020-7225(65)90044-3
10.1016/j.compgeo.2011.03.007
10.1016/S0375-6505(99)00026-7
10.1007/BF01177125
10.1016/j.geothermics.2006.11.008
10.1016/0020-7225(70)90015-7
10.1016/0375-6505(95)00014-H
10.1016/0148-9062(83)91609-1
10.1115/1.2826043
10.1016/S0017-9310(02)00203-X
10.1016/0021-8928(60)90107-6
10.1016/0375-6505(94)90032-9
10.2172/5984399
10.1061/(ASCE)0733-9410(1992)118:1(107)
10.1016/0020-7683(77)90031-2
10.1029/JB086iB08p07145
10.1007/BF01202949
10.1016/S0920-4105(02)00159-6
10.1002/1097-0207(20000930)49:3<421::AID-NME48>3.0.CO;2-6
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
1XC
VOOES
DOI 10.1029/2012JB009161
DatabaseName Istex
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID oai_HAL_hal_00918608v1
26363656
10_1029_2012JB009161
JGRB17221
ark_67375_WNG_8P3R8H6L_9
Genre article
GeographicLocations Sandoval County New Mexico
United States
New Mexico
Fenton Hill
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
1XC
VOOES
ID FETCH-LOGICAL-a4421-dbfa885b1f76ef81beb095bde73665cf9899bd16f39d191dd80bb62c5f02a4813
ISSN 0148-0227
IngestDate Fri May 09 12:17:55 EDT 2025
Mon Jul 21 09:14:36 EDT 2025
Tue Jul 01 01:55:53 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Wed Jan 22 16:51:00 EST 2025
Wed Oct 30 09:53:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B7
Keywords stress
skeletons
porosity
finite element analysis
North America
mass transfer
fluid pressure
geothermal reservoirs
circulation
displacements
temperature
Chemical potential
equilibrium
Diffusion
fractures
theory
energy
hot dry rocks
constitutive modeling
Hot Dry Rock
geothermal energy
dual-porous media
local thermal non-equilibrium
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4421-dbfa885b1f76ef81beb095bde73665cf9899bd16f39d191dd80bb62c5f02a4813
Notes ark:/67375/WNG-8P3R8H6L-9
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.Tab-delimited Table 6.
istex:D7C50806504E88303EBF5BE760837E71F81D928D
ArticleID:2012JB009161
ORCID 0000-0002-8313-0358
OpenAccessLink https://hal.science/hal-00918608
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_00918608v1
pascalfrancis_primary_26363656
crossref_citationtrail_10_1029_2012JB009161
crossref_primary_10_1029_2012JB009161
wiley_primary_10_1029_2012JB009161_JGRB17221
istex_primary_ark_67375_WNG_8P3R8H6L_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Koh, J., H. Roshan, and S. S. Rahman (2011), A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs, Comput. Geotech., 38(5), 669-682.
Eringen, A. C., and J. D. Ingram (1965), A continuum theory of chemically reacting media, Int. J. Eng. Sci., 3, 197-212.
Khalili, N., and A. P. S. Selvadurai (2003), A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Lett., 30(24), 2268, doi:10.1029/2003GL018838.
Masters, I., W. K. S. Pao, and R. W. Lewis (2000), Coupling temperature to a double-porosity model of deformable porous media, Int. J. Numer. Methods Eng., 49, 421-438.
Wakao, N., and S. Kaguei (1982), Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York.
Khalili, N., and B. Loret (2001), An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media formulation, Int. J. Solids Struct., 38, 8305-8330.
deMarsily, G. (1981), Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic, Paris.
Wilson, R. K., and E. C. Aifantis (1982), On the theory of consolidation with double porosity, Int. J. Eng. Sci., 20(9), 1009-1035.
Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164.
Bruel, D. (2002), Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: Example of the Soultz-Sous-Forêts European hot fractured rock geothermal project, Rhine Graben, France, Oil Gas Sci. Technol., 57, 459-470.
Elsworth, D. (1989), Theory of thermal recovery from a spherically stimulated hot dry rock reservoir, J. Geophys. Res., 94, 1927-1934.
Mitchell, J. K. (1993), Fundamentals of Soil Behavior, John Wiley, New York.
Brown, D., R. DuTeaux, P. Kruger, D. Swenson, and T. Yamaguchi (1999), Fluid circulation and heat extraction from engineered geothermal reservoirs, Geothermics, 28, 553-572.
Warren, J. B., and P. J. Root (1963), The behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255.
Hsu, C. T. (1999), A closure model for transient heat conduction in porous media, J. Heat Transfer, 121, 733-739.
Elsworth, D., and M. Bai (1992), Flow-deformation response of dual-porosity media, J. Geotech. Eng., 118, 107-124.
Aifantis, E. C. (1980a), On the problem of diffusion in solids, Acta Mech., 37, 265-296.
Pecker, C., and H. Deresiewicz (1973), Thermal effects on wave propagation in liquid-filled porous media, Acta Mech., 16, 45-64.
Bejan, A. (1993), Heat Transfer, John Wiley, New York.
Zhang, J., and J. C. Roegiers (2005), Double porosity finite element method for borehole modeling, Rock Mech. Rock Eng., 38, 217-242.
Gelet, R., B. Loret, and N. Khalili (2011), Borehole stability analysis in a thermo-poro-elastic dual porosity medium, Int. J. Rock Mech. Min. Sci., 50, 65-76, doi:10.1016/j.ijrmms.2011.12.003.
Tenma, N., T. Yamaguchi, and G. Zyvoloski (2008), The Hijiori hot dry rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir, Geothermics, 37, 19-52.
Kohl, T., K. F. Evansi, R. J. Hopkirk, and L. Rybach (1995), Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs, Geothermics, 24, 345-359.
Ghassemi, A., and A. Diek (2002), Porothermoelasticity for swelling shales, J. Pet. Sci. Eng., 34, 123-135.
Murphy, H. D., R. G. Lawton, J. W. Tester, R. M. Potter, D. W. Brow, and R. L. Aamodt (1977), Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing, Soc. Pet. Eng. J., 17, 317-326.
Nair, R., Y. Abousleiman, and M. Zaman (2004), A finite element porothermoelastic model for dual-porosity media, Int. J. Numer. Anal. Methods Geomech., 28, 875-898.
Hicks, T. W., R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe, and N. E. V. Rodrigues (1996), A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation, Int. J. Rock Mech. Min. Sci., 33(5), 499-511.
Nield, D. A., A. V. Kuznetsov, and M. Xiong (2002), Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, Int. J. Heat Mass Transfer, 45, 4949-4955.
Heuze, F. E. (1983), High-temperature mechanical, physical and thermal properties of granitic rocks: A review, Int. J. Rock Mech. Min. Sci., 20(1), 3-10.
Bowen, R. M., and P. J. Chen (1975), Waves in a binary mixture of linear elastic materials, J. Méc., 14, 237-266.
Bower, K. M., and G. Zyvoloski (1997), A numerical model for thermo-hydro-mechanical coupling in fractured rock, Int. J. Rock Mech. Min. Sci., 34, 1201-1211.
Ghassemi, A., S. Tarasovs, and A. H.-D. Cheng (2005), Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs, Int. J. Numer. Anal. Methods Geomech., 29, 829-844.
Zanotti, F., and R. G. Carbonell (1984), Development of transport equations for multiphase systems-III: Application to heat transfer in packed beds, Chem. Eng. Sci., 39, 299-311.
Barenblatt, G. I., U. P. Zheltov, and G. H. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Engl. Transl., 24, 1286-1303.
Jiang, P. X., R. N. Xu, and W. Gong (2006), Particle-to-fluid heat transfer coefficients in miniporous media, Chem. Eng. Sci., 61, 7213-7222.
Aifantis, E. C. (1980b), Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun., 7, 219-226.
Biot, M. A. (1977), Variational-lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Struct., 13(6), 579-597.
Armstead, H. C. H., and J. W. Tester (1987), Heat Mining: A New Source of Energy, E.&F.N. Spon, London.
Bruel, D. (1995), Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir, Geothermics, 24, 361-374.
Tenzer, H. (2001), Development of hot dry rock technology, Bull. Geo-Heat Cent., 32, 14-22.
Loret, B. and N. Khalili (2000b), A three-phase model for unsaturated soils, Int. J. Numer. Anal. Methods Geomech., 24, 893-927.
Bai, M., and J. C. Rogiers (1994), Fluid flow and heat flow in deformable fractured porous media, Int. J. Eng. Sci., 32, 1615-1633.
Richards, H. G., R. H. Parker, A. S. P. Green, R. H. Jones, J. D. M. Nicholls, D. A. C. Nicol, M. M. Randall, S. Richards, R. C. Stewart, and J. Willis-Richards (1994), The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985-1988), Geothermics, 23(2), 73-109.
Bataillé, A., P. Genthon, M. Rabinowicz, and B. Fritz (2006), Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an enhanced geothermal system, Geothermics, 35, 654-682.
Bruel, D. (2007), Using the migration of the induced seismicity as a constraint for fractured hot dry rock reservoir modelling, Int. J. Rock Mech. Min. Sci., 44(8), 1106-1117.
Belytschko, T., and T. J. R. Hughes (1983), Computational Methods for Transient Analysis, North-Holland, Amsterdam.
Murphy, H. D., J. W. Tester, C. O. Grigsby, and R. M. Potter (1981), Energy extraction from fractured geothermal reservoirs in low-permeability crystalline rock, J. Geophys. Res., 86, 7145-7158.
Kolditz, O., and C. Clauser (1998), Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.), Geothermics, 27, 1-23.
De La Cruz, V., and T. J. T. Spanos (1989), Thermomechanical coupling during seismic wave propagation in a porous medium, J. Geophys. Res., 94, 637-642.
Hughes, T. J. R. (1987), The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice Hall, Englewood Cliffs, N. J.
Hayashi, K., J. Willis-Richards, R. J. Hopkirk, and Y. Niibori (1999), Numerical models of HDR geothermal reservoirs-A review of current thinking and progress, Geothermics, 28, 507-518.
Minkowycz, W. J., A. Haji-Sheikh, and K. Vafai (1999), On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number, Int. J. Heat Mass Transfer, 42, 3373-3385.
Ghassemi, A., A. Nygren, and A. Cheng (2008), Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis, Geothermics, 37, 525-539.
Bowen, R. M., and D. J. Garcia (1970), On the thermodynamics of mixtures with several temperatures, Int. J. Eng. Sci., 8, 63-83.
Kazemi, H. (1969), Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J., 9(4), 451-462.
Khalili, N., and S. Valliappan (1996), Unified theory of flow and deformation in double porous media, Eur. J. Mech., 15(2), 321-336.
1970; 8
2000; 49
2006; 35
2004; 28
2002; 57
1973; 16
1994; 23
2008; 37
1999; 121
1975; 14
1999; 42
2005; 29
1981; 86
1996; 33
1965; 3
1969; 9
1980; 37
2006; 61
2000
1995; 24
2002; 45
1941; 12
1982; 20
1987
1983; 20
1992; 118
1983
1982
1981
2005; 38
1994; 32
1998; 27
2011
2000; 24
1999; 28
2002; 34
1996
1993
2011; 38
1966; I
2003; 30
1996; 15
1989; 94
1977; 17
1960; 24
1984; 39
1997; 34
2011; 50
1963; 3
1980; 7
2001; 38
1977; 13
2007; 44
2001; 32
e_1_2_14_31_1
e_1_2_14_52_1
e_1_2_14_50_1
e_1_2_14_10_1
e_1_2_14_35_1
Khalili N. (e_1_2_14_40_1) 1996; 15
e_1_2_14_33_1
e_1_2_14_54_1
e_1_2_14_14_1
e_1_2_14_39_1
Bejan A. (e_1_2_14_8_1) 1993
e_1_2_14_16_1
e_1_2_14_37_1
e_1_2_14_58_1
Wakao N. (e_1_2_14_57_1) 1982
e_1_2_14_6_1
e_1_2_14_60_1
e_1_2_14_2_1
e_1_2_14_41_1
e_1_2_14_62_1
e_1_2_14_45_1
e_1_2_14_24_1
e_1_2_14_43_1
Tenzer H. (e_1_2_14_56_1) 2001; 32
e_1_2_14_22_1
e_1_2_14_28_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_47_1
e_1_2_14_19_1
Bowen R. M. (e_1_2_14_12_1) 1975; 14
Armstead H. C. H. (e_1_2_14_4_1) 1987
Marsily G. (e_1_2_14_20_1) 1981
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_51_1
e_1_2_14_11_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
Loret B. (e_1_2_14_44_1) 2000
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_17_1
e_1_2_14_36_1
Mitchell J. K. (e_1_2_14_48_1) 1993
e_1_2_14_59_1
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_7_1
e_1_2_14_42_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
Belytschko T. (e_1_2_14_9_1) 1983
e_1_2_14_21_1
e_1_2_14_27_1
e_1_2_14_25_1
e_1_2_14_18_1
Hughes T. J. R. (e_1_2_14_34_1) 1987
References_xml – reference: Masters, I., W. K. S. Pao, and R. W. Lewis (2000), Coupling temperature to a double-porosity model of deformable porous media, Int. J. Numer. Methods Eng., 49, 421-438.
– reference: Armstead, H. C. H., and J. W. Tester (1987), Heat Mining: A New Source of Energy, E.&F.N. Spon, London.
– reference: Tenzer, H. (2001), Development of hot dry rock technology, Bull. Geo-Heat Cent., 32, 14-22.
– reference: Bowen, R. M., and D. J. Garcia (1970), On the thermodynamics of mixtures with several temperatures, Int. J. Eng. Sci., 8, 63-83.
– reference: De La Cruz, V., and T. J. T. Spanos (1989), Thermomechanical coupling during seismic wave propagation in a porous medium, J. Geophys. Res., 94, 637-642.
– reference: Kolditz, O., and C. Clauser (1998), Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.), Geothermics, 27, 1-23.
– reference: Mitchell, J. K. (1993), Fundamentals of Soil Behavior, John Wiley, New York.
– reference: Elsworth, D. (1989), Theory of thermal recovery from a spherically stimulated hot dry rock reservoir, J. Geophys. Res., 94, 1927-1934.
– reference: Hsu, C. T. (1999), A closure model for transient heat conduction in porous media, J. Heat Transfer, 121, 733-739.
– reference: Wilson, R. K., and E. C. Aifantis (1982), On the theory of consolidation with double porosity, Int. J. Eng. Sci., 20(9), 1009-1035.
– reference: Brown, D., R. DuTeaux, P. Kruger, D. Swenson, and T. Yamaguchi (1999), Fluid circulation and heat extraction from engineered geothermal reservoirs, Geothermics, 28, 553-572.
– reference: Gelet, R., B. Loret, and N. Khalili (2011), Borehole stability analysis in a thermo-poro-elastic dual porosity medium, Int. J. Rock Mech. Min. Sci., 50, 65-76, doi:10.1016/j.ijrmms.2011.12.003.
– reference: Warren, J. B., and P. J. Root (1963), The behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255.
– reference: Ghassemi, A., S. Tarasovs, and A. H.-D. Cheng (2005), Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs, Int. J. Numer. Anal. Methods Geomech., 29, 829-844.
– reference: Zhang, J., and J. C. Roegiers (2005), Double porosity finite element method for borehole modeling, Rock Mech. Rock Eng., 38, 217-242.
– reference: Zanotti, F., and R. G. Carbonell (1984), Development of transport equations for multiphase systems-III: Application to heat transfer in packed beds, Chem. Eng. Sci., 39, 299-311.
– reference: Loret, B. and N. Khalili (2000b), A three-phase model for unsaturated soils, Int. J. Numer. Anal. Methods Geomech., 24, 893-927.
– reference: Kazemi, H. (1969), Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J., 9(4), 451-462.
– reference: Tenma, N., T. Yamaguchi, and G. Zyvoloski (2008), The Hijiori hot dry rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir, Geothermics, 37, 19-52.
– reference: Bataillé, A., P. Genthon, M. Rabinowicz, and B. Fritz (2006), Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an enhanced geothermal system, Geothermics, 35, 654-682.
– reference: Eringen, A. C., and J. D. Ingram (1965), A continuum theory of chemically reacting media, Int. J. Eng. Sci., 3, 197-212.
– reference: Hicks, T. W., R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe, and N. E. V. Rodrigues (1996), A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation, Int. J. Rock Mech. Min. Sci., 33(5), 499-511.
– reference: Ghassemi, A., A. Nygren, and A. Cheng (2008), Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis, Geothermics, 37, 525-539.
– reference: Bai, M., and J. C. Rogiers (1994), Fluid flow and heat flow in deformable fractured porous media, Int. J. Eng. Sci., 32, 1615-1633.
– reference: deMarsily, G. (1981), Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic, Paris.
– reference: Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164.
– reference: Wakao, N., and S. Kaguei (1982), Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York.
– reference: Elsworth, D., and M. Bai (1992), Flow-deformation response of dual-porosity media, J. Geotech. Eng., 118, 107-124.
– reference: Richards, H. G., R. H. Parker, A. S. P. Green, R. H. Jones, J. D. M. Nicholls, D. A. C. Nicol, M. M. Randall, S. Richards, R. C. Stewart, and J. Willis-Richards (1994), The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985-1988), Geothermics, 23(2), 73-109.
– reference: Heuze, F. E. (1983), High-temperature mechanical, physical and thermal properties of granitic rocks: A review, Int. J. Rock Mech. Min. Sci., 20(1), 3-10.
– reference: Khalili, N., and B. Loret (2001), An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media formulation, Int. J. Solids Struct., 38, 8305-8330.
– reference: Khalili, N., and A. P. S. Selvadurai (2003), A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Lett., 30(24), 2268, doi:10.1029/2003GL018838.
– reference: Hayashi, K., J. Willis-Richards, R. J. Hopkirk, and Y. Niibori (1999), Numerical models of HDR geothermal reservoirs-A review of current thinking and progress, Geothermics, 28, 507-518.
– reference: Pecker, C., and H. Deresiewicz (1973), Thermal effects on wave propagation in liquid-filled porous media, Acta Mech., 16, 45-64.
– reference: Aifantis, E. C. (1980a), On the problem of diffusion in solids, Acta Mech., 37, 265-296.
– reference: Bower, K. M., and G. Zyvoloski (1997), A numerical model for thermo-hydro-mechanical coupling in fractured rock, Int. J. Rock Mech. Min. Sci., 34, 1201-1211.
– reference: Bruel, D. (1995), Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir, Geothermics, 24, 361-374.
– reference: Aifantis, E. C. (1980b), Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun., 7, 219-226.
– reference: Kohl, T., K. F. Evansi, R. J. Hopkirk, and L. Rybach (1995), Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs, Geothermics, 24, 345-359.
– reference: Barenblatt, G. I., U. P. Zheltov, and G. H. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Engl. Transl., 24, 1286-1303.
– reference: Nield, D. A., A. V. Kuznetsov, and M. Xiong (2002), Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, Int. J. Heat Mass Transfer, 45, 4949-4955.
– reference: Murphy, H. D., R. G. Lawton, J. W. Tester, R. M. Potter, D. W. Brow, and R. L. Aamodt (1977), Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing, Soc. Pet. Eng. J., 17, 317-326.
– reference: Hughes, T. J. R. (1987), The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice Hall, Englewood Cliffs, N. J.
– reference: Bowen, R. M., and P. J. Chen (1975), Waves in a binary mixture of linear elastic materials, J. Méc., 14, 237-266.
– reference: Jiang, P. X., R. N. Xu, and W. Gong (2006), Particle-to-fluid heat transfer coefficients in miniporous media, Chem. Eng. Sci., 61, 7213-7222.
– reference: Minkowycz, W. J., A. Haji-Sheikh, and K. Vafai (1999), On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number, Int. J. Heat Mass Transfer, 42, 3373-3385.
– reference: Bejan, A. (1993), Heat Transfer, John Wiley, New York.
– reference: Ghassemi, A., and A. Diek (2002), Porothermoelasticity for swelling shales, J. Pet. Sci. Eng., 34, 123-135.
– reference: Khalili, N., and S. Valliappan (1996), Unified theory of flow and deformation in double porous media, Eur. J. Mech., 15(2), 321-336.
– reference: Koh, J., H. Roshan, and S. S. Rahman (2011), A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs, Comput. Geotech., 38(5), 669-682.
– reference: Biot, M. A. (1977), Variational-lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Struct., 13(6), 579-597.
– reference: Bruel, D. (2007), Using the migration of the induced seismicity as a constraint for fractured hot dry rock reservoir modelling, Int. J. Rock Mech. Min. Sci., 44(8), 1106-1117.
– reference: Belytschko, T., and T. J. R. Hughes (1983), Computational Methods for Transient Analysis, North-Holland, Amsterdam.
– reference: Murphy, H. D., J. W. Tester, C. O. Grigsby, and R. M. Potter (1981), Energy extraction from fractured geothermal reservoirs in low-permeability crystalline rock, J. Geophys. Res., 86, 7145-7158.
– reference: Nair, R., Y. Abousleiman, and M. Zaman (2004), A finite element porothermoelastic model for dual-porosity media, Int. J. Numer. Anal. Methods Geomech., 28, 875-898.
– reference: Bruel, D. (2002), Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: Example of the Soultz-Sous-Forêts European hot fractured rock geothermal project, Rhine Graben, France, Oil Gas Sci. Technol., 57, 459-470.
– volume: 24
  start-page: 1286
  year: 1960
  end-page: 1303
  article-title: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks
  publication-title: J. Appl. Math. Mech.
– year: 2011
– year: 1981
– volume: 30
  issue: 24
  year: 2003
  article-title: A fully coupled constitutive model for thermo‐hydro‐mechanical analysis in elastic media with double porosity
  publication-title: Geophys. Res. Lett.
– volume: 118
  start-page: 107
  year: 1992
  end-page: 124
  article-title: Flow‐deformation response of dual‐porosity media
  publication-title: J. Geotech. Eng.
– volume: 34
  start-page: 1201
  year: 1997
  end-page: 1211
  article-title: A numerical model for thermo‐hydro‐mechanical coupling in fractured rock
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 20
  start-page: 1009
  issue: 9
  year: 1982
  end-page: 1035
  article-title: On the theory of consolidation with double porosity
  publication-title: Int. J. Eng. Sci.
– volume: 3
  start-page: 197
  year: 1965
  end-page: 212
  article-title: A continuum theory of chemically reacting media
  publication-title: Int. J. Eng. Sci.
– volume: 39
  start-page: 299
  year: 1984
  end-page: 311
  article-title: Development of transport equations for multiphase systems—III: Application to heat transfer in packed beds
  publication-title: Chem. Eng. Sci.
– volume: 13
  start-page: 579
  issue: 6
  year: 1977
  end-page: 597
  article-title: Variational‐lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion
  publication-title: Int. J. Solids Struct.
– volume: 12
  start-page: 155
  year: 1941
  end-page: 164
  article-title: General theory of three‐dimensional consolidation
  publication-title: J. Appl. Phys.
– volume: 61
  start-page: 7213
  year: 2006
  end-page: 7222
  article-title: Particle‐to‐fluid heat transfer coefficients in miniporous media
  publication-title: Chem. Eng. Sci.
– volume: 20
  start-page: 3
  issue: 1
  year: 1983
  end-page: 10
  article-title: High‐temperature mechanical, physical and thermal properties of granitic rocks: A review
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 1982
– volume: 24
  start-page: 361
  year: 1995
  end-page: 374
  article-title: Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir
  publication-title: Geothermics
– volume: 29
  start-page: 829
  year: 2005
  end-page: 844
  article-title: Integral equation solution of heat extraction‐induced thermal stress in enhanced geothermal reservoirs
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 27
  start-page: 1
  year: 1998
  end-page: 23
  article-title: Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.)
  publication-title: Geothermics
– volume: 42
  start-page: 3373
  year: 1999
  end-page: 3385
  article-title: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number
  publication-title: Int. J. Heat Mass Transfer
– year: 1993
– volume: 37
  start-page: 525
  year: 2008
  end-page: 539
  article-title: Effects of heat extraction on fracture aperture: A poro‐thermoelastic analysis
  publication-title: Geothermics
– volume: 23
  start-page: 73
  issue: 2
  year: 1994
  end-page: 109
  article-title: The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988)
  publication-title: Geothermics
– volume: 94
  start-page: 637
  year: 1989
  end-page: 642
  article-title: Thermomechanical coupling during seismic wave propagation in a porous medium
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 19
  year: 2008
  end-page: 52
  article-title: The Hijiori hot dry rock test site, Japan: Evaluation and optimization of heat extraction from a two‐layered reservoir
  publication-title: Geothermics
– year: 1983
– volume: 50
  start-page: 65
  year: 2011
  end-page: 76
  article-title: Borehole stability analysis in a thermo‐poro‐elastic dual porosity medium
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 57
  start-page: 459
  year: 2002
  end-page: 470
  article-title: Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: Example of the Soultz‐Sous‐Forêts European hot fractured rock geothermal project, Rhine Graben, France
  publication-title: Oil Gas Sci. Technol.
– volume: 37
  start-page: 265
  year: 1980
  end-page: 296
  article-title: On the problem of diffusion in solids
  publication-title: Acta Mech.
– volume: 7
  start-page: 219
  year: 1980
  end-page: 226
  article-title: Further comments on the problem of heat extraction from hot dry rocks
  publication-title: Mech. Res. Commun.
– year: 1987
– volume: 24
  start-page: 893
  year: 2000
  end-page: 927
  article-title: A three‐phase model for unsaturated soils
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 44
  start-page: 1106
  issue: 8
  year: 2007
  end-page: 1117
  article-title: Using the migration of the induced seismicity as a constraint for fractured hot dry rock reservoir modelling
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 28
  start-page: 507
  year: 1999
  end-page: 518
  article-title: Numerical models of HDR geothermal reservoirs—A review of current thinking and progress
  publication-title: Geothermics
– year: 1996
– volume: 34
  start-page: 123
  year: 2002
  end-page: 135
  article-title: Porothermoelasticity for swelling shales
  publication-title: J. Pet. Sci. Eng.
– volume: 49
  start-page: 421
  year: 2000
  end-page: 438
  article-title: Coupling temperature to a double‐porosity model of deformable porous media
  publication-title: Int. J. Numer. Methods Eng.
– volume: 32
  start-page: 14
  year: 2001
  end-page: 22
  article-title: Development of hot dry rock technology
  publication-title: Bull. Geo‐Heat Cent.
– volume: 28
  start-page: 553
  year: 1999
  end-page: 572
  article-title: Fluid circulation and heat extraction from engineered geothermal reservoirs
  publication-title: Geothermics
– volume: 86
  start-page: 7145
  year: 1981
  end-page: 7158
  article-title: Energy extraction from fractured geothermal reservoirs in low‐permeability crystalline rock
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 875
  year: 2004
  end-page: 898
  article-title: A finite element porothermoelastic model for dual‐porosity media
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 9
  start-page: 451
  issue: 4
  year: 1969
  end-page: 462
  article-title: Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution
  publication-title: Soc. Pet. Eng. J.
– volume: 35
  start-page: 654
  year: 2006
  end-page: 682
  article-title: Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an enhanced geothermal system
  publication-title: Geothermics
– volume: 45
  start-page: 4949
  year: 2002
  end-page: 4955
  article-title: Effect of local thermal non‐equilibrium on thermally developing forced convection in a porous medium
  publication-title: Int. J. Heat Mass Transfer
– volume: I
  year: 1966
– volume: 8
  start-page: 63
  year: 1970
  end-page: 83
  article-title: On the thermodynamics of mixtures with several temperatures
  publication-title: Int. J. Eng. Sci.
– volume: 24
  start-page: 345
  year: 1995
  end-page: 359
  article-title: Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs
  publication-title: Geothermics
– volume: 38
  start-page: 217
  year: 2005
  end-page: 242
  article-title: Double porosity finite element method for borehole modeling
  publication-title: Rock Mech. Rock Eng.
– volume: 38
  start-page: 8305
  year: 2001
  end-page: 8330
  article-title: An elasto‐plastic model for non‐isothermal analysis of flow and deformation in unsaturated porous media formulation
  publication-title: Int. J. Solids Struct.
– volume: 17
  start-page: 317
  year: 1977
  end-page: 326
  article-title: Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing
  publication-title: Soc. Pet. Eng. J.
– volume: 15
  start-page: 321
  issue: 2
  year: 1996
  end-page: 336
  article-title: Unified theory of flow and deformation in double porous media
  publication-title: Eur. J. Mech.
– start-page: 253
  year: 2000
  end-page: 276
– volume: 38
  start-page: 669
  issue: 5
  year: 2011
  end-page: 682
  article-title: A numerical study on the long term thermo‐poroelastic effects of cold water injection into naturally fractured geothermal reservoirs
  publication-title: Comput. Geotech.
– volume: 121
  start-page: 733
  year: 1999
  end-page: 739
  article-title: A closure model for transient heat conduction in porous media
  publication-title: J. Heat Transfer
– volume: 16
  start-page: 45
  year: 1973
  end-page: 64
  article-title: Thermal effects on wave propagation in liquid‐filled porous media
  publication-title: Acta Mech.
– volume: 3
  start-page: 245
  year: 1963
  end-page: 255
  article-title: The behaviour of naturally fractured reservoirs
  publication-title: Soc. Pet. Eng. J.
– volume: 14
  start-page: 237
  year: 1975
  end-page: 266
  article-title: Waves in a binary mixture of linear elastic materials
  publication-title: J. Méc.
– volume: 33
  start-page: 499
  issue: 5
  year: 1996
  end-page: 511
  article-title: A hydro‐thermo‐mechanical numerical model for HDR geothermal reservoir evaluation
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 32
  start-page: 1615
  year: 1994
  end-page: 1633
  article-title: Fluid flow and heat flow in deformable fractured porous media
  publication-title: Int. J. Eng. Sci.
– volume: 94
  start-page: 1927
  year: 1989
  end-page: 1934
  article-title: Theory of thermal recovery from a spherically stimulated hot dry rock reservoir
  publication-title: J. Geophys. Res.
– ident: e_1_2_14_19_1
  doi: 10.1029/JB094iB01p00637
– ident: e_1_2_14_21_1
– volume: 15
  start-page: 321
  issue: 2
  year: 1996
  ident: e_1_2_14_40_1
  article-title: Unified theory of flow and deformation in double porous media
  publication-title: Eur. J. Mech.
– ident: e_1_2_14_38_1
  doi: 10.1016/S0020-7683(01)00081-6
– ident: e_1_2_14_22_1
  doi: 10.1029/JB094iB02p01927
– ident: e_1_2_14_32_1
  doi: 10.1016/0148-9062(96)00002-2
– ident: e_1_2_14_14_1
  doi: 10.1016/S1365-1609(97)80071-8
– ident: e_1_2_14_39_1
  doi: 10.1029/2003GL018838
– volume: 14
  start-page: 237
  year: 1975
  ident: e_1_2_14_12_1
  article-title: Waves in a binary mixture of linear elastic materials
  publication-title: J. Méc.
– ident: e_1_2_14_10_1
  doi: 10.1063/1.1712886
– ident: e_1_2_14_58_1
  doi: 10.2118/426-PA
– ident: e_1_2_14_41_1
  doi: 10.1016/0375-6505(95)00013-G
– ident: e_1_2_14_3_1
  doi: 10.1016/0093-6413(80)90042-7
– ident: e_1_2_14_43_1
  doi: 10.1016/S0375-6505(97)00021-7
– volume: 32
  start-page: 14
  year: 2001
  ident: e_1_2_14_56_1
  article-title: Development of hot dry rock technology
  publication-title: Bull. Geo‐Heat Cent.
– volume-title: Quantitative Hydrogeology: Groundwater Hydrology for Engineers
  year: 1981
  ident: e_1_2_14_20_1
– ident: e_1_2_14_61_1
  doi: 10.1007/s00603-005-0052-9
– ident: e_1_2_14_59_1
  doi: 10.1016/0020-7225(82)90036-2
– ident: e_1_2_14_60_1
  doi: 10.1016/0009-2509(84)80028-7
– volume-title: Heat Transfer
  year: 1993
  ident: e_1_2_14_8_1
– ident: e_1_2_14_36_1
  doi: 10.2118/2156-A
– ident: e_1_2_14_26_1
  doi: 10.1016/j.ijrmms.2011.12.003
– ident: e_1_2_14_45_1
  doi: 10.1002/1096-9853(200009)24:11<893::AID-NAG105>3.0.CO;2-V
– ident: e_1_2_14_15_1
  doi: 10.1016/S0375-6505(99)00028-0
– volume-title: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: e_1_2_14_34_1
– ident: e_1_2_14_29_1
  doi: 10.1016/j.geothermics.2008.06.001
– start-page: 253
  volume-title: CISM Courses and Lectures 426 “Advanced Numerical Applications and Plasticity in Geomechanics”, Udine, Italy
  year: 2000
  ident: e_1_2_14_44_1
– ident: e_1_2_14_35_1
  doi: 10.1016/j.ces.2006.08.003
– ident: e_1_2_14_55_1
  doi: 10.1016/j.geothermics.2007.11.002
– ident: e_1_2_14_5_1
  doi: 10.1016/0020-7225(94)90169-4
– ident: e_1_2_14_51_1
  doi: 10.1002/nag.336
– ident: e_1_2_14_47_1
  doi: 10.1016/S0017-9310(99)00043-5
– ident: e_1_2_14_28_1
  doi: 10.1002/nag.440
– volume-title: Heat and Mass Transfer in Packed Beds
  year: 1982
  ident: e_1_2_14_57_1
– ident: e_1_2_14_49_1
  doi: 10.2118/6093-PA
– ident: e_1_2_14_17_1
  doi: 10.2516/ogst:2002030
– ident: e_1_2_14_18_1
  doi: 10.1016/j.ijrmms.2007.07.001
– volume-title: Heat Mining: A New Source of Energy
  year: 1987
  ident: e_1_2_14_4_1
– ident: e_1_2_14_24_1
  doi: 10.1016/0020-7225(65)90044-3
– ident: e_1_2_14_37_1
– ident: e_1_2_14_42_1
  doi: 10.1016/j.compgeo.2011.03.007
– ident: e_1_2_14_30_1
  doi: 10.1016/S0375-6505(99)00026-7
– ident: e_1_2_14_53_1
  doi: 10.1007/BF01177125
– ident: e_1_2_14_7_1
  doi: 10.1016/j.geothermics.2006.11.008
– ident: e_1_2_14_13_1
  doi: 10.1016/0020-7225(70)90015-7
– ident: e_1_2_14_16_1
  doi: 10.1016/0375-6505(95)00014-H
– ident: e_1_2_14_31_1
  doi: 10.1016/0148-9062(83)91609-1
– ident: e_1_2_14_33_1
  doi: 10.1115/1.2826043
– volume-title: Fundamentals of Soil Behavior
  year: 1993
  ident: e_1_2_14_48_1
– ident: e_1_2_14_52_1
  doi: 10.1016/S0017-9310(02)00203-X
– ident: e_1_2_14_25_1
– ident: e_1_2_14_6_1
  doi: 10.1016/0021-8928(60)90107-6
– volume-title: Computational Methods for Transient Analysis
  year: 1983
  ident: e_1_2_14_9_1
– ident: e_1_2_14_54_1
  doi: 10.1016/0375-6505(94)90032-9
– ident: e_1_2_14_62_1
  doi: 10.2172/5984399
– ident: e_1_2_14_23_1
  doi: 10.1061/(ASCE)0733-9410(1992)118:1(107)
– ident: e_1_2_14_11_1
  doi: 10.1016/0020-7683(77)90031-2
– ident: e_1_2_14_50_1
  doi: 10.1029/JB086iB08p07145
– ident: e_1_2_14_2_1
  doi: 10.1007/BF01202949
– ident: e_1_2_14_27_1
  doi: 10.1016/S0920-4105(02)00159-6
– ident: e_1_2_14_46_1
  doi: 10.1002/1097-0207(20000930)49:3<421::AID-NME48>3.0.CO;2-6
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.44501
Snippet The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The...
The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mixtures applied to three-phase poroelastic media. The...
SourceID hal
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Civil Engineering
dual porosity
Earth sciences
Earth, ocean, space
Engineering Sciences
enhanced geothermal system
Exact sciences and technology
fluid loss
heat exchange
mass exchange
thermo-hydro-mechanical couplings
Title A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity
URI https://api.istex.fr/ark:/67375/WNG-8P3R8H6L-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JB009161
https://hal.science/hal-00918608
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdYKySEhGCAVh6ThWBfRiBPN_nYjtKulK6qOrFvkZ04rKJtSttMlL-e86N5TBsvVUp9jvO8-zl39t0ZoddBDIY0A-vETSxquBT6QeoRHxQ5r-mShMNHW3r5Dknv3O1feBeFS5CMLtmwd9HPG-NK_oerUAd8FVGy_8DZ_KRQAWXgL2yBw7D9Kx5Ll4zVPDUut_EqNeZchPHqlB_Zcga6pFzoRoxpyG-Wag7_YPMb_Hs2lQ7_2Vz6GiYiXioT7ui9D-NjEZW0ukqnKzVSG6eZCLECZV04eVWmgksq7VeeLnd811mE8tHmbmfQmVQ8FAdnY1WTz_p86rUGp4PTYoZID0dYhevqphQBAF1Tt3RFUJ-1jBWDmCJ1YaUXViGcWtzazRu7d9MW2VHFZfttUA4tlce9mkX72tct9zm0iQM_j-yhug0mhVlD9XZnOBrnI3Iys07hIGS5MuRXEdAr-hXCLhNOmXDLhFcmyI5woVdXC2XqF6EjMuDx3pcfrqIr7V0KT926AP8P4cFL1_BqE7X6StWykqrR5CF6oAUAt5SAPkJ3-GIfHbTWYpYlnW_xEZZlxaj1PrqrFkDdQqnLdanxGaw3kC5BwQEnsymYUnrf_bOI04XOrQ4HjdSJHqNtC98CAKwBgCUA8HSBJQCwBgC-BgAMAMA5ADAAAOcAwAIAWAEA7wDwBJ1_7ExOeoZeS8SgrmtbRswS6vses5Im4QnYapyBccFi3nQI8aIk8IOAxRZJnCC2AiuOfZMxYkdeYtrU9S3nKarBrfEDhD3KmRMx0DBsUDNck0bCRkmoLbRz0-MNdLzjWhjpRPtivZdZKB0-7CAs87iB3uStlyrBzC3tXoEA5E1EVnjAZCjqRAOfmP4VNDqS8pE3o6tvwnOz6YVfht3QHzljv0cGYdBAhxUByg_YoaSB3kqJ-u09hf3uuA0WkG09-9P5nqN7RW_xAtU2q4y_BHV-ww41Dn8B5OrmkA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thermo-hydro-mechanical+coupled+model+in+local+thermal+non-equilibrium+for+fractured+HDR+reservoir+with+double+porosity&rft.jtitle=Journal+of+geophysical+research&rft.au=GELET%2C+R&rft.au=LORET%2C+B&rft.au=KHALILI%2C+N&rft.date=2012-07-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=117&rft.issue=B7&rft_id=info:doi/10.1029%2F2012JB009161&rft.externalDBID=n%2Fa&rft.externalDocID=26363656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon