Soil Metabolome Impacts the Formation of the Eco-corona and Adsorption Processes on Microplastic Surfaces
The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for th...
Saved in:
Published in | Environmental science & technology Vol. 57; no. 21; pp. 8139 - 8148 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
30.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/acs.est.3c01877 |
Cover
Loading…
Abstract | The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants. |
---|---|
AbstractList | The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants.The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants. The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants. The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants. This study shows that soil metabolites from different soils form an eco-corona of similar composition on microplastics, which acts as a barrier, inhibiting the adsorption of other metabolites and organic contaminants. |
Author | Li, Xiaona Yao, Shi Wang, Tao Song, Yang Arp, Hans Peter H. Jiang, Xin |
AuthorAffiliation | Department of Chemistry Chinese Academy of Sciences Norwegian University of Science and Technology (NTNU) School of Environmental Science and Engineering CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science Institute of Mountain Hazards and Environment University of Chinese Academy of Sciences Norwegian Geotechnical Institute (NGI) |
AuthorAffiliation_xml | – name: Norwegian University of Science and Technology (NTNU) – name: Norwegian Geotechnical Institute (NGI) – name: Department of Chemistry – name: Chinese Academy of Sciences – name: CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science – name: School of Environmental Science and Engineering – name: University of Chinese Academy of Sciences – name: Institute of Mountain Hazards and Environment |
Author_xml | – sequence: 1 givenname: Shi surname: Yao fullname: Yao, Shi organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xiaona surname: Li fullname: Li, Xiaona organization: School of Environmental Science and Engineering – sequence: 3 givenname: Tao surname: Wang fullname: Wang, Tao organization: Chinese Academy of Sciences – sequence: 4 givenname: Xin surname: Jiang fullname: Jiang, Xin organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yang orcidid: 0000-0002-6894-4580 surname: Song fullname: Song, Yang email: ysong@issas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Hans Peter H. orcidid: 0000-0002-0747-8838 surname: Arp fullname: Arp, Hans Peter H. organization: Norwegian University of Science and Technology (NTNU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37194262$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1LHTEQhkOx1ONpr3tXAr0pyB7zsdkkV0VEraC0oELvwmw2WyO7m22yW_Dfm_OhtIIUAiGZZ97MvJMDtDeEwSH0kZIVJYwegU0rl6YVt4QqKd-gBRWMFEIJuocWhFBeaF793EcHKd0TQhgn6h3a55LqklVsgfx18B2-chPUoQu9wxf9CHZKeLpz-CzEHiYfBhzazcWpDYUNMQyAYWjwcZNCHDfAjxisS8klnA9X3sYwdpAmb_H1HFvIsffobQtdch92-xLdnp3enHwrLr-fX5wcXxZQlowWCrSkytmWi1pXtZa2lFrwSjqoW0IqohmpKg3SSqVLodqGSimFJgBtQ2rHl-jrVnec69411g1ThM6M0fcQH0wAb_6NDP7O_Ap_TDaUcylYVviyU4jh95ztNb1P1nUdDC7MyXAquGIyr_-iTNFSUaEpyejnF-h9mOOQrcgUY1Jrnce1RJ_-rv657KeJZUBsgWxxStG1xvppM6TcjO9yF-tGqMk_w6wf2f2MnHf0Iu9J-vWMw23GOvBc62v0I-yly2U |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2025_137091 crossref_primary_10_1016_j_envres_2024_119960 crossref_primary_10_1016_j_scitotenv_2024_174451 crossref_primary_10_1016_j_scitotenv_2024_174770 crossref_primary_10_1079_cabireviews_2024_0037 crossref_primary_10_3390_cimb46050256 crossref_primary_10_1016_j_nantod_2024_102409 crossref_primary_10_1016_j_jhazmat_2023_132585 crossref_primary_10_1016_j_jhazmat_2024_133831 crossref_primary_10_1016_j_scitotenv_2023_165988 crossref_primary_10_1016_j_jhazmat_2024_134328 crossref_primary_10_3390_antibiotics13100941 crossref_primary_10_1016_j_scitotenv_2024_170824 crossref_primary_10_1016_j_watres_2025_123377 crossref_primary_10_1016_j_jenvman_2024_123343 crossref_primary_10_1016_j_scitotenv_2024_170501 crossref_primary_10_1016_j_ecoenv_2023_115580 crossref_primary_10_1016_j_envpol_2025_125997 crossref_primary_10_1016_j_scitotenv_2024_171230 crossref_primary_10_1039_D3EN00617D crossref_primary_10_1016_j_chemosphere_2024_141190 crossref_primary_10_1021_acs_est_4c01731 crossref_primary_10_1016_j_eehl_2024_03_001 crossref_primary_10_1016_j_trac_2024_117567 crossref_primary_10_1016_j_jhazmat_2025_137404 crossref_primary_10_1016_j_ecoenv_2024_117254 crossref_primary_10_1016_j_scitotenv_2024_171623 crossref_primary_10_1016_j_etap_2024_104372 |
Cites_doi | 10.1126/science.1114397 10.1021/acs.est.0c00615 10.1126/science.aba3656 10.1016/j.marpolbul.2018.04.027 10.1126/sciadv.abd1211 10.1016/j.soilbio.2017.10.027 10.1021/acs.est.7b02664 10.1016/j.scitotenv.2020.141469 10.1126/science.abg5433 10.1016/j.soilbio.2014.10.007 10.1021/es405721v 10.1021/acs.est.0c04097 10.1126/science.abh0945 10.1016/j.saa.2021.120604 10.1371/journal.pone.0021865 10.1021/acs.est.9b06187 10.1021/acs.est.8b02212 10.1016/j.marenvres.2016.07.004 10.1038/s41467-020-16235-3 10.1038/s41565-021-00924-1 10.1021/acs.est.0c07781 10.1021/acs.est.7b06173 10.1039/c6ay02343f 10.1016/j.trac.2018.10.006 10.1038/s41467-022-31251-1 10.1016/j.envpol.2021.117393 10.1016/j.watres.2021.117319 10.1021/acs.est.7b00423 10.1016/j.watres.2018.04.003 10.1016/j.jhazmat.2020.124357 10.1111/gcbb.12485 10.1016/j.watres.2021.117011 10.1021/es505233b 10.1021/acs.est.0c07121 10.1021/acs.est.1c01512 10.1038/s41893-020-0567-9 10.1016/j.envres.2016.05.045 10.1021/es301386z 10.1021/acs.est.7b05559 10.1021/acs.est.9b03304 10.1016/j.scitotenv.2020.137512 10.1016/j.envpol.2020.115496 10.1016/j.soilbio.2012.04.002 10.1039/d1en00115a 10.1021/acs.est.5b06069 10.1016/j.marpolbul.2018.03.039 10.1016/j.jhazmat.2021.127062 10.1021/acs.est.5b05478 10.1038/d41586-021-01143-3 10.1016/j.envpol.2016.04.018 10.1038/s41561-019-0417-4 10.1088/0957-4484/19/26/265602 10.1021/acs.est.8b05512 10.1038/s41467-020-17201-9 10.1016/j.envpol.2010.03.010 10.1021/es401288x 10.1002/ieam.1904 10.1126/science.aba9475 10.1039/c6ay02558g 10.1080/05704920701551530 10.1016/j.watres.2020.115978 10.1111/gcb.14020 10.1016/j.chemosphere.2018.01.166 10.1021/acs.est.0c07875 10.1016/j.chemosphere.2017.11.078 10.1016/j.hazadv.2022.100077 10.1016/j.cej.2020.126989 10.1021/acs.est.0c00942 10.1039/c8en00018b |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society Copyright American Chemical Society May 30, 2023 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society May 30, 2023 – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.est.3c01877 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 8148 |
ExternalDocumentID | PMC10233752 37194262 10_1021_acs_est_3c01877 b161291266 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 302371 – fundername: ; grantid: 2021309 – fundername: ; grantid: 42277303 |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABMVS ABOGM ABPPZ ABPTK ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH AAYXX ABBLG ABJNI ABLBI ADUKH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a4421-8a9718ecf35b96b97c4795367eabf0060920669a7c789458fd1777590aafd0be3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Aug 21 18:36:57 EDT 2025 Thu Jul 10 22:07:28 EDT 2025 Thu Jul 10 23:37:13 EDT 2025 Mon Jun 30 05:53:41 EDT 2025 Thu Apr 03 07:08:33 EDT 2025 Tue Jul 01 04:11:17 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Thu Jul 06 08:30:35 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | metabolite eco-corona phthalate sorption polyethylene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4421-8a9718ecf35b96b97c4795367eabf0060920669a7c789458fd1777590aafd0be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6894-4580 0000-0002-0747-8838 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10233752 |
PMID | 37194262 |
PQID | 2822799901 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10233752 proquest_miscellaneous_3153827827 proquest_miscellaneous_2814815910 proquest_journals_2822799901 pubmed_primary_37194262 crossref_citationtrail_10_1021_acs_est_3c01877 crossref_primary_10_1021_acs_est_3c01877 acs_journals_10_1021_acs_est_3c01877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-30 |
PublicationDateYYYYMMDD | 2023-05-30 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 Lu R. (ref34/cit34) 1999 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1126/science.1114397 – ident: ref24/cit24 doi: 10.1021/acs.est.0c00615 – ident: ref1/cit1 doi: 10.1126/science.aba3656 – ident: ref51/cit51 doi: 10.1016/j.marpolbul.2018.04.027 – ident: ref39/cit39 doi: 10.1126/sciadv.abd1211 – ident: ref9/cit9 doi: 10.1016/j.soilbio.2017.10.027 – ident: ref43/cit43 doi: 10.1021/acs.est.7b02664 – ident: ref45/cit45 doi: 10.1016/j.scitotenv.2020.141469 – ident: ref17/cit17 doi: 10.1126/science.abg5433 – ident: ref20/cit20 doi: 10.1016/j.soilbio.2014.10.007 – ident: ref29/cit29 doi: 10.1021/es405721v – ident: ref36/cit36 doi: 10.1021/acs.est.0c04097 – ident: ref61/cit61 doi: 10.1126/science.abh0945 – ident: ref37/cit37 doi: 10.1016/j.saa.2021.120604 – ident: ref54/cit54 doi: 10.1371/journal.pone.0021865 – ident: ref25/cit25 doi: 10.1021/acs.est.9b06187 – ident: ref62/cit62 doi: 10.1021/acs.est.8b02212 – ident: ref7/cit7 doi: 10.1016/j.marenvres.2016.07.004 – ident: ref15/cit15 doi: 10.1038/s41467-020-16235-3 – ident: ref55/cit55 doi: 10.1038/s41565-021-00924-1 – ident: ref3/cit3 doi: 10.1021/acs.est.0c07781 – ident: ref35/cit35 doi: 10.1021/acs.est.7b06173 – ident: ref40/cit40 doi: 10.1039/c6ay02343f – ident: ref32/cit32 doi: 10.1016/j.trac.2018.10.006 – ident: ref64/cit64 doi: 10.1038/s41467-022-31251-1 – ident: ref58/cit58 doi: 10.1016/j.envpol.2021.117393 – ident: ref21/cit21 doi: 10.1016/j.watres.2021.117319 – ident: ref14/cit14 doi: 10.1021/acs.est.7b00423 – ident: ref67/cit67 doi: 10.1016/j.watres.2018.04.003 – ident: ref30/cit30 doi: 10.1016/j.jhazmat.2020.124357 – ident: ref59/cit59 doi: 10.1111/gcbb.12485 – ident: ref4/cit4 doi: 10.1016/j.watres.2021.117011 – ident: ref33/cit33 doi: 10.1021/es505233b – ident: ref26/cit26 doi: 10.1021/acs.est.0c07121 – ident: ref68/cit68 doi: 10.1021/acs.est.1c01512 – ident: ref10/cit10 doi: 10.1038/s41893-020-0567-9 – ident: ref47/cit47 doi: 10.1016/j.envres.2016.05.045 – ident: ref57/cit57 doi: 10.1021/es301386z – ident: ref28/cit28 doi: 10.1021/acs.est.7b05559 – ident: ref11/cit11 doi: 10.1021/acs.est.9b03304 – ident: ref6/cit6 doi: 10.1016/j.scitotenv.2020.137512 – ident: ref56/cit56 doi: 10.1016/j.envpol.2020.115496 – ident: ref19/cit19 doi: 10.1016/j.soilbio.2012.04.002 – volume-title: Analytical Methods for Soils and Agricultural Chemistry year: 1999 ident: ref34/cit34 – ident: ref70/cit70 doi: 10.1039/d1en00115a – ident: ref22/cit22 doi: 10.1021/acs.est.5b06069 – ident: ref46/cit46 doi: 10.1016/j.marpolbul.2018.03.039 – ident: ref60/cit60 doi: 10.1016/j.jhazmat.2021.127062 – ident: ref8/cit8 doi: 10.1021/acs.est.5b05478 – ident: ref42/cit42 doi: 10.1038/d41586-021-01143-3 – ident: ref48/cit48 doi: 10.1016/j.envpol.2016.04.018 – ident: ref16/cit16 doi: 10.1038/s41561-019-0417-4 – ident: ref53/cit53 doi: 10.1088/0957-4484/19/26/265602 – ident: ref13/cit13 doi: 10.1021/acs.est.8b05512 – ident: ref18/cit18 doi: 10.1038/s41467-020-17201-9 – ident: ref52/cit52 doi: 10.1016/j.envpol.2010.03.010 – ident: ref23/cit23 doi: 10.1021/es401288x – ident: ref31/cit31 doi: 10.1002/ieam.1904 – ident: ref2/cit2 doi: 10.1126/science.aba9475 – ident: ref41/cit41 doi: 10.1039/c6ay02558g – ident: ref38/cit38 doi: 10.1080/05704920701551530 – ident: ref66/cit66 doi: 10.1016/j.watres.2020.115978 – ident: ref5/cit5 doi: 10.1111/gcb.14020 – ident: ref44/cit44 doi: 10.1016/j.chemosphere.2018.01.166 – ident: ref65/cit65 doi: 10.1021/acs.est.0c07875 – ident: ref49/cit49 doi: 10.1016/j.chemosphere.2017.11.078 – ident: ref27/cit27 doi: 10.1016/j.hazadv.2022.100077 – ident: ref50/cit50 doi: 10.1016/j.cej.2020.126989 – ident: ref63/cit63 doi: 10.1021/acs.est.0c00942 – ident: ref69/cit69 doi: 10.1039/c8en00018b |
SSID | ssj0002308 |
Score | 2.547844 |
Snippet | The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and... The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8139 |
SubjectTerms | Adsorption Chemical contaminants chemical pollutants Chemical pollution Contaminants environmental exposure Lipids Macromolecules Metabolites Metabolome Microplastics Nucleoside analogs nucleosides Nucleotide analogs Nucleotides Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Organic contaminants Phenylpropanoids Plastic debris Plastic pollution Plastics polyethylene Polyketides risk Risk assessment Soil Soil contamination Soil water Soils Solubilization Surface chemistry technology Water Pollutants, Chemical - analysis |
Title | Soil Metabolome Impacts the Formation of the Eco-corona and Adsorption Processes on Microplastic Surfaces |
URI | http://dx.doi.org/10.1021/acs.est.3c01877 https://www.ncbi.nlm.nih.gov/pubmed/37194262 https://www.proquest.com/docview/2822799901 https://www.proquest.com/docview/2814815910 https://www.proquest.com/docview/3153827827 https://pubmed.ncbi.nlm.nih.gov/PMC10233752 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BucCBR6EQKGiReuBiE-96vd5jVSUqSOESKuVm7csiIrWrOLnw65lxHKdpFMHR3ll7vZ6d-aSZ-QbgQgUuPI5FZP2jtPQ6soKHiGfBSqes5oEKhSc_suub9PtMznZk0Q8j-Dz5alwTo4GMhaP-ceoxPOEZgmxCQVfT3ugiks63zQq0yGY9i8_BA8gNuWbfDR1gy4cpkvd8zvjFJluraakKKdXkd7xe2dj9OSRy_PfnvITnHfJklxtVeQWPQnUKz-7xEZ7C2WhX9oai3blvXsN8Ws8XbBJWqDKL-jawb21xZcMQPrLxtv6R1WV7Y-TqyBEzgmGm8uzSN_WytUysK0sIDcOLCeUC3iF6xwWx6XpZUnbYG7gZj35eXUddk4bIpClPotxodG_BlUJanVmtXKooJKyCsSWxvWgijNdGOZXrVOalT5RSUg-NKf3QBnEGJ1VdhXfA0NRpqbyWRiFw4D6Xjgj6hmnQ3jtvB3CBu1d0h6wp2vg5Twq6iVtadFs6gHj7awvXEZ1Tv43F8Qlf-gl3G46P46LnW13ZrYMycZWmAOMAPvfDeEwp9mKqUK9JJiFaHARnx2UEeR-OkA1f83ajfv16hEo0NQ8YQL6nmL0A0YTvj1TzXy1dOJFzCCX5-__bvg_wlOOMNkNieA4nq-U6fETgtbKf2iP3F2w1Ksc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VcgAOpRQKKS0sUg9cnNprO-s9RlWiFJpKKK2Um7VfFhHBruLkwq9nxrGdplUkOHp31p5sZmefNDNvAM6F46HFOY-8vxdlVno65M7jPadjI7TkjgqFxze90V30bRpP98BvamFQiRLfVFZB_A27QHBBY-gnu6GhNnLiGTxHKMIpia9_OWl9LwLqpOlZIMPetCXzefICuo1MuX0bPYGYjzMlH1w9w9fwo1W6yjj51V0tddf8ecTn-D-_6hAOahzK-mvDeQN7Lj-CVw_YCY_geLApgkPR2guUb2E2KWZzNnZLNKB58duxq6rUsmQIJtmwqYZkRVYNDEzhGeJJUEzllvVtWSwqP8XqIgVXMnwYU2bgPWJ5VIhNVouMcsXewd1wcHs58uqWDZ6KIh54iZJ42TmThbGWPS2FiQQFiIVTOiPuF0n08VIJIxIZxUlmAyFELH2lMutrFx7Dfl7k7gMwdHwyFlbGSiCM4DaJDdH1-ZGT1hqrO3COu5fWR65Mq2g6D1IaxC1N6y3tQLf5h1NT055T94357gVf2wX3a8aP3aKnjcls9KC8XCEp3NiBL-00HlqKxKjcFSuSCYgkB6HabpmQ7iKOAA4_835tha0-oQgktRLoQLJln60AkYZvz-SznxV5OFF1hCLmJ_-2fZ_hxeh2fJ1eX918_wgvOa6ucif8U9hfLlbuDCHZUn-qTuFfAkIzKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9NADLdgSIg9sDEYK9vgkPbAS7rmkvRyj9VotQGdkEqlvkX3FVFRkqppX_jrsdNrtm6qBI-5812ci8-2ZPtngAvheGRxLiDtH8S5lYGOuAt41-nECC25o0Lh4W33ehx_mSQTXxRGtTDIRIU7VXUQn2713OYeYSC8pHHUle3IUCs58RSeUdCOEvl6V6NG_6JTnW76FsioO2kAfR5tQBbJVNsW6ZGb-TBb8p75GRzAuGG8zjr51V4tddv8eYDp-L9fdggvvT_KemsBegVPXHEE-_dQCo_guH9XDIekXhtUr2E6KqczNnRLFKRZ-duxm7rksmLoVLLBpiqSlXk90DdlYAgvQTFVWNazVbmo9RXzxQquYvgwpAzBOfr0yBAbrRY55Yy9gfGg_-PqOvCtGwIVxzwMUiXR6DmTR4mWXS2FiQUFioVTOicMGEkw8lIJI1IZJ2luQyFEIjtK5bajXXQMe0VZuBNgqABlIqxMlEB3gts0MQTb14mdtNZY3YILPL3MX70qq6PqPMxoEI8080fagvbmL2fGw59TF47Z7gWfmgXzNfLHbtKzjdjc8UH5uUJS2LEFH5tpvLwUkVGFK1dEExJYDrpsu2kiskkcHTl8zdu1JDb8RCKU1FKgBemWjDYEBB6-PVNMf9Yg4gTZEYmEv_u34_sAz79_HmTfbm6_nsILjovrFIrOGewtFyt3jp7ZUr-vL-JfxKg1qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+Metabolome+Impacts+the+Formation+of+the+Eco-corona+and+Adsorption+Processes+on+Microplastic+Surfaces&rft.jtitle=Environmental+science+%26+technology&rft.au=Yao%2C+Shi&rft.au=Li%2C+Xiaona&rft.au=Wang%2C+Tao&rft.au=Jiang%2C+Xin&rft.date=2023-05-30&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=57&rft.issue=21&rft.spage=8139&rft.epage=8148&rft_id=info:doi/10.1021%2Facs.est.3c01877&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_3c01877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |