Microporous Metal–Organic Frameworks for Adsorptive Separation of C5–C6 Alkane Isomers

Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched i...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 52; no. 7; pp. 1968 - 1978
Main Authors Wang, Hao, Li, Jing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal–organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5–C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5–C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5–C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2– = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5–C6 alkane isomers. Zr-bptc (bptc4–= 3,3′,5,5′-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4– = 3,3′,5,5′-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca­(H2tcpb) (tcpb4– = 1,2,4,5-tetrakis­(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5–C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers.
AbstractList Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal–organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5–C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5–C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5–C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2– = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5–C6 alkane isomers. Zr-bptc (bptc4–= 3,3′,5,5′-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4– = 3,3′,5,5′-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca­(H2tcpb) (tcpb4– = 1,2,4,5-tetrakis­(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5–C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers.
Not provided.
The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal-organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5-C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5-C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5-C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2- = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5-C6 alkane isomers. Zr-bptc (bptc4-= 3,3',5,5'-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4- = 3,3',5,5'-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H2tcpb) (tcpb4- = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5-C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers.The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal-organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5-C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5-C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5-C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2- = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5-C6 alkane isomers. Zr-bptc (bptc4-= 3,3',5,5'-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4- = 3,3',5,5'-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H2tcpb) (tcpb4- = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5-C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers.
The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal-organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5-C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5-C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5-C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe (bdp) (bdp = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5-C6 alkane isomers. Zr-bptc (bptc = 3,3',5,5'-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for -hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc = 3,3',5,5'-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H tcpb) (tcpb = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5-C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers.
Author Li, Jing
Wang, Hao
AuthorAffiliation Department of Chemistry and Chemical Biology
Hoffmann Institute of Advanced Materials
AuthorAffiliation_xml – name: Department of Chemistry and Chemical Biology
– name: Hoffmann Institute of Advanced Materials
Author_xml – sequence: 1
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Department of Chemistry and Chemical Biology
– sequence: 2
  givenname: Jing
  orcidid: 0000-0001-7792-4322
  surname: Li
  fullname: Li, Jing
  email: jingli@rutgers.edu
  organization: Department of Chemistry and Chemical Biology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30883088$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1609984$$D View this record in Osti.gov
BookMark eNqFkU9vFCEYxompsdvWb2AM8dTLrvwdGG-bjdUmbXrQXrwQhgGlnYERGBtvfge_YT9JWXf34kEPBAi_5-V9n-cEHIUYLACvMFphRPBbbfJKGxPnUPJKdgg1XD4DC8wJWjLZyiOwQAjhembkGJzkfFevhDXiBTimSMrtWoAv196kOMUU5wyvbdHD46_fN-mrDt7Ai6RH-xDTfYYuJrjuc0xT8T8s_GQnnXTxMcDo4IZX0aaB6-FeBwsvcxxtymfgudNDti_3-ym4vXj_efNxeXXz4XKzvlpqxnBZtqRxRGvbMtETLbHgvaad0ZJ3tO8Ek9yRvmkxkYIKxwUlHeNEMNc2jhLB6Sl4s6sbc_EqG1-s-WZiCNYUhRvUtpJV6HwHTSl-n20uavTZ2GGoDdfRFcEtw5wKRCv6eo_O3Wh7NSU_6vRTHUyrwLsdUJ3LOVmn6p9_zChJ-0FhpLYJqZqQOiSk9glVMftLfKj_Hxnaybavd3FOoVr6b8kTqpWqdg
CitedBy_id crossref_primary_10_1016_j_chroma_2022_463493
crossref_primary_10_1021_jacs_3c04641
crossref_primary_10_1039_D1TC00810B
crossref_primary_10_1002_anie_202200947
crossref_primary_10_1002_ange_202214060
crossref_primary_10_1016_j_cej_2023_141743
crossref_primary_10_1016_j_cej_2024_151146
crossref_primary_10_1039_D1NJ02175C
crossref_primary_10_1002_ange_202015257
crossref_primary_10_1002_ange_202212032
crossref_primary_10_1007_s10876_021_01993_x
crossref_primary_10_1021_acsmaterialslett_4c00113
crossref_primary_10_1039_D3QM00430A
crossref_primary_10_1002_anie_202107963
crossref_primary_10_1021_acs_iecr_3c03709
crossref_primary_10_1039_D2TA04835C
crossref_primary_10_1016_j_mtchem_2022_100840
crossref_primary_10_1002_ange_202000670
crossref_primary_10_1016_j_micromeso_2023_112970
crossref_primary_10_1021_acs_jpcc_0c09117
crossref_primary_10_1002_anie_202100707
crossref_primary_10_1002_anie_202201646
crossref_primary_10_1002_anie_202219053
crossref_primary_10_1021_acsami_1c08678
crossref_primary_10_1039_D0RA09307F
crossref_primary_10_1016_j_micromeso_2024_113283
crossref_primary_10_1021_acs_iecr_4c02953
crossref_primary_10_1021_acs_inorgchem_2c01024
crossref_primary_10_1016_j_inoche_2020_108339
crossref_primary_10_1039_D0TA05538G
crossref_primary_10_1021_acsmaterialslett_3c00282
crossref_primary_10_1021_jacs_1c03762
crossref_primary_10_1002_smll_202412724
crossref_primary_10_1021_acsmaterialslett_4c02402
crossref_primary_10_1002_app_56009
crossref_primary_10_1016_j_cej_2023_145096
crossref_primary_10_1016_j_cjche_2020_05_023
crossref_primary_10_1021_acsmaterialslett_5c00055
crossref_primary_10_1039_D1CE00899D
crossref_primary_10_1002_anie_202007681
crossref_primary_10_1007_s12274_020_2714_z
crossref_primary_10_1007_s10853_020_05180_7
crossref_primary_10_1016_j_memsci_2020_118426
crossref_primary_10_1016_j_jssc_2021_122541
crossref_primary_10_1021_jacs_1c12068
crossref_primary_10_1002_asia_202400899
crossref_primary_10_1016_j_cej_2024_150833
crossref_primary_10_1016_j_cej_2019_123836
crossref_primary_10_1007_s12274_020_2935_1
crossref_primary_10_3390_catal13010115
crossref_primary_10_1002_ange_202201646
crossref_primary_10_1002_anie_202017105
crossref_primary_10_1021_cbe_3c00099
crossref_primary_10_1039_C9CC05997K
crossref_primary_10_1002_ange_202219053
crossref_primary_10_1016_j_enchem_2021_100057
crossref_primary_10_1039_C9CC06239D
crossref_primary_10_1038_s41467_023_35984_5
crossref_primary_10_1002_chem_202000933
crossref_primary_10_1016_j_seppur_2023_124241
crossref_primary_10_1021_acsmaterialslett_4c00731
crossref_primary_10_1039_D3QM00715D
crossref_primary_10_1002_anie_202213959
crossref_primary_10_1002_smm2_1016
crossref_primary_10_1002_ange_202320008
crossref_primary_10_1002_aic_16236
crossref_primary_10_1016_j_micromeso_2023_112670
crossref_primary_10_1002_ange_202007681
crossref_primary_10_3724_SP_J_1123_2023_07029
crossref_primary_10_1039_D0NJ03628E
crossref_primary_10_3390_molecules28114422
crossref_primary_10_1039_D1FD00037C
crossref_primary_10_1002_anie_202411960
crossref_primary_10_1016_j_seppur_2021_120010
crossref_primary_10_1021_acs_inorgchem_4c01740
crossref_primary_10_1039_D1CC01931G
crossref_primary_10_1002_advs_202201494
crossref_primary_10_1021_acsami_0c10702
crossref_primary_10_3390_catal11020204
crossref_primary_10_1002_ange_202017105
crossref_primary_10_1016_j_apsusc_2023_157592
crossref_primary_10_1021_acs_jpcc_9b11196
crossref_primary_10_1039_D0EN01011A
crossref_primary_10_1002_zaac_202200240
crossref_primary_10_1021_acsmaterialslett_4c00166
crossref_primary_10_1063_1_5120528
crossref_primary_10_1002_ange_202200947
crossref_primary_10_1021_cbe_3c00115
crossref_primary_10_1016_j_fuel_2023_130006
crossref_primary_10_1016_j_seppur_2023_123203
crossref_primary_10_1021_jacs_3c02195
crossref_primary_10_1021_acs_inorgchem_0c02878
crossref_primary_10_1039_D3AY02241B
crossref_primary_10_1002_slct_202201863
crossref_primary_10_1039_D1CE00722J
crossref_primary_10_1039_C9CE01932D
crossref_primary_10_1002_adma_202002563
crossref_primary_10_2139_ssrn_4157489
crossref_primary_10_1016_j_cej_2024_156241
crossref_primary_10_1021_acsmaterialslett_3c01278
crossref_primary_10_1002_adma_202002603
crossref_primary_10_1016_j_apmate_2021_12_002
crossref_primary_10_1016_j_seppur_2023_124660
crossref_primary_10_1039_D0DT00943A
crossref_primary_10_1002_ange_202308418
crossref_primary_10_1002_anie_202211359
crossref_primary_10_1016_j_chroma_2024_465357
crossref_primary_10_1002_ange_202213959
crossref_primary_10_1002_anie_202211808
crossref_primary_10_1002_anie_202015257
crossref_primary_10_1016_j_ccr_2023_215111
crossref_primary_10_1016_j_seppur_2025_132203
crossref_primary_10_1016_j_jmgm_2020_107574
crossref_primary_10_1038_s41467_024_46556_6
crossref_primary_10_1039_C9TA12230C
crossref_primary_10_1002_aic_17937
crossref_primary_10_1002_anie_202320008
crossref_primary_10_1007_s41061_019_0257_0
crossref_primary_10_1021_acs_analchem_1c03641
crossref_primary_10_1021_jacs_3c06175
crossref_primary_10_1039_D2TA09326J
crossref_primary_10_1002_ange_202411960
crossref_primary_10_1016_j_jphotochem_2023_115032
crossref_primary_10_1021_acs_accounts_1c00328
crossref_primary_10_1039_D0TA04898D
crossref_primary_10_1002_ejic_202100819
crossref_primary_10_1016_j_mtadv_2021_100145
crossref_primary_10_1016_j_jssc_2021_122100
crossref_primary_10_1002_ange_202100707
crossref_primary_10_1002_anie_202308418
crossref_primary_10_1002_ange_202211808
crossref_primary_10_1021_acs_cgd_0c00258
crossref_primary_10_1039_D0DT04252H
crossref_primary_10_1016_j_jece_2023_111027
crossref_primary_10_1002_chem_202302856
crossref_primary_10_1039_C9DT04068D
crossref_primary_10_2139_ssrn_4158399
crossref_primary_10_1039_D1CE00780G
crossref_primary_10_1016_j_ccr_2020_213738
crossref_primary_10_1039_D0QI01230K
crossref_primary_10_3390_chemistry3010024
crossref_primary_10_1016_j_jssc_2020_121209
crossref_primary_10_1021_acs_inorgchem_0c02962
crossref_primary_10_1021_jacs_0c03176
crossref_primary_10_1002_anie_202300722
crossref_primary_10_1021_acs_inorgchem_0c03257
crossref_primary_10_1021_acs_inorgchem_3c02070
crossref_primary_10_1021_jacs_3c08541
crossref_primary_10_1002_anie_202214060
crossref_primary_10_1016_j_memsci_2022_120916
crossref_primary_10_1021_acsnano_1c08605
crossref_primary_10_1039_D1CE00068C
crossref_primary_10_1016_j_ccr_2024_215996
crossref_primary_10_1039_D2SC05742E
crossref_primary_10_1016_j_envpol_2023_121475
crossref_primary_10_1021_acs_cgd_0c00247
crossref_primary_10_1021_acs_inorgchem_0c01185
crossref_primary_10_1007_s12274_020_2831_8
crossref_primary_10_1021_acsami_1c16315
crossref_primary_10_1039_C9SC05721H
crossref_primary_10_1016_j_seppur_2022_122095
crossref_primary_10_1002_advs_202204963
crossref_primary_10_1021_acs_cgd_0c00408
crossref_primary_10_1002_ange_202300722
crossref_primary_10_1021_jacs_4c05095
crossref_primary_10_1002_chem_202101871
crossref_primary_10_1093_nsr_nwaa094
crossref_primary_10_1002_ange_202107963
crossref_primary_10_1002_anie_202212032
crossref_primary_10_1021_acs_inorgchem_1c00404
crossref_primary_10_1002_anie_202000670
crossref_primary_10_1016_j_jhazmat_2022_128321
crossref_primary_10_1016_j_jiec_2022_07_047
crossref_primary_10_1039_D4CE00696H
crossref_primary_10_1021_acsami_1c03242
crossref_primary_10_1039_D2SC00207H
crossref_primary_10_1021_acs_chemmater_1c03084
crossref_primary_10_1002_ange_202211359
Cites_doi 10.1142/p037
10.1021/ie000456p
10.1002/anie.200503503
10.1021/la001189v
10.1126/science.aaf2458
10.1021/jacs.6b10768
10.1016/j.micromeso.2013.09.005
10.1021/ie202995g
10.1038/nchem.2718
10.1016/j.talanta.2012.07.063
10.1038/nature11893
10.1021/ja509446h
10.1021/jacs.5b12366
10.1126/science.1234071
10.1039/C4CS00032C
10.1021/cm402897c
10.1016/j.micromeso.2014.04.009
10.1080/01496398808058436
10.1016/j.chroma.2012.07.097
10.1260/0263-6174.32.6.475
10.1002/aic.690431014
10.1039/C5CP06342F
10.1002/anie.201808716
10.1016/j.colsurfa.2017.01.036
10.1002/anie.200502844
10.1016/j.micromeso.2003.09.025
10.1039/c1cc12253c
10.1021/jacs.5b02556
10.1126/science.aat0586
10.1002/anie.201204475
10.1039/b802426j
10.1021/acsami.7b18620
10.1126/science.aam7232
10.1021/ja1058229
10.1016/j.micromeso.2012.12.017
10.1002/anie.200503778
10.1073/pnas.0602439103
10.1021/jacs.5b10308
10.1016/j.memsci.2005.06.032
10.1002/anie.201506345
10.1038/532435a
10.1039/C8EE00459E
10.1002/adfm.201401974
10.1038/s41563-018-0206-2
10.1021/cr200216x
10.1016/j.chroma.2013.02.024
10.1038/ncomms9697
10.1021/jp0721898
10.1039/C7CS00885F
10.1021/acs.iecr.6b02175
10.1038/s41467-018-04152-5
10.1039/c3cp44381g
10.1126/science.aaf6323
ContentType Journal Article
CorporateAuthor Univ. of Texas at Dallas, Richardson, TX (United States)
CorporateAuthor_xml – name: Univ. of Texas at Dallas, Richardson, TX (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/acs.accounts.8b00658
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1978
ExternalDocumentID 1609984
30883088
10_1021_acs_accounts_8b00658
c062602234
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
YIN
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a441t-926f2aae947d2a8175da3bca85b3db7485f2d69128737f5732b45274f96f32753
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri May 19 01:10:16 EDT 2023
Fri Jul 11 11:52:02 EDT 2025
Wed Feb 19 02:30:42 EST 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 03:16:03 EDT 2025
Thu Aug 27 13:43:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a441t-926f2aae947d2a8175da3bca85b3db7485f2d69128737f5732b45274f96f32753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
FG02-08ER46491
USDOE Office of Science (SC)
ORCID 0000-0001-7792-4322
0000000177924322
PMID 30883088
PQID 2194153703
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_1609984
proquest_miscellaneous_2194153703
pubmed_primary_30883088
crossref_citationtrail_10_1021_acs_accounts_8b00658
crossref_primary_10_1021_acs_accounts_8b00658
acs_journals_10_1021_acs_accounts_8b00658
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-16
PublicationDateYYYYMMDD 2019-07-16
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Myers R. A. (ref5/cit5) 2004
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Yang R. T. (ref3/cit3) 1997
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – volume-title: Gas Separation by Adsorption Processes
  year: 1997
  ident: ref3/cit3
  doi: 10.1142/p037
– ident: ref4/cit4
  doi: 10.1021/ie000456p
– ident: ref49/cit49
  doi: 10.1002/anie.200503503
– ident: ref7/cit7
  doi: 10.1021/la001189v
– ident: ref26/cit26
  doi: 10.1126/science.aaf2458
– ident: ref46/cit46
  doi: 10.1021/jacs.6b10768
– ident: ref43/cit43
  doi: 10.1016/j.micromeso.2013.09.005
– ident: ref10/cit10
  doi: 10.1021/ie202995g
– ident: ref18/cit18
  doi: 10.1038/nchem.2718
– ident: ref40/cit40
  doi: 10.1016/j.talanta.2012.07.063
– ident: ref14/cit14
  doi: 10.1038/nature11893
– ident: ref21/cit21
  doi: 10.1021/ja509446h
– ident: ref20/cit20
  doi: 10.1021/jacs.5b12366
– ident: ref29/cit29
  doi: 10.1126/science.1234071
– ident: ref15/cit15
  doi: 10.1039/C4CS00032C
– ident: ref13/cit13
  doi: 10.1021/cm402897c
– ident: ref50/cit50
  doi: 10.1016/j.micromeso.2014.04.009
– ident: ref2/cit2
  doi: 10.1080/01496398808058436
– ident: ref38/cit38
  doi: 10.1016/j.chroma.2012.07.097
– ident: ref45/cit45
  doi: 10.1260/0263-6174.32.6.475
– ident: ref6/cit6
  doi: 10.1002/aic.690431014
– ident: ref44/cit44
  doi: 10.1039/C5CP06342F
– ident: ref23/cit23
  doi: 10.1002/anie.201808716
– ident: ref41/cit41
  doi: 10.1016/j.colsurfa.2017.01.036
– ident: ref47/cit47
  doi: 10.1002/anie.200502844
– ident: ref8/cit8
  doi: 10.1016/j.micromeso.2003.09.025
– ident: ref54/cit54
  doi: 10.1039/c1cc12253c
– ident: ref55/cit55
  doi: 10.1021/jacs.5b02556
– volume-title: Handbook of Petroleum Refining Processes
  year: 2004
  ident: ref5/cit5
– ident: ref24/cit24
  doi: 10.1126/science.aat0586
– ident: ref19/cit19
  doi: 10.1002/anie.201204475
– ident: ref11/cit11
  doi: 10.1039/b802426j
– ident: ref35/cit35
  doi: 10.1039/c1cc12253c
– ident: ref33/cit33
  doi: 10.1021/acsami.7b18620
– ident: ref28/cit28
  doi: 10.1126/science.aam7232
– ident: ref53/cit53
  doi: 10.1021/ja1058229
– ident: ref42/cit42
  doi: 10.1016/j.micromeso.2012.12.017
– ident: ref52/cit52
  doi: 10.1002/anie.200503778
– ident: ref51/cit51
  doi: 10.1073/pnas.0602439103
– ident: ref17/cit17
  doi: 10.1021/jacs.5b10308
– ident: ref9/cit9
  doi: 10.1016/j.memsci.2005.06.032
– ident: ref30/cit30
  doi: 10.1002/anie.201506345
– ident: ref1/cit1
  doi: 10.1038/532435a
– ident: ref32/cit32
  doi: 10.1039/C8EE00459E
– ident: ref37/cit37
  doi: 10.1002/adfm.201401974
– ident: ref27/cit27
  doi: 10.1038/s41563-018-0206-2
– ident: ref12/cit12
  doi: 10.1021/cr200216x
– ident: ref39/cit39
  doi: 10.1016/j.chroma.2013.02.024
– ident: ref25/cit25
  doi: 10.1038/ncomms9697
– ident: ref48/cit48
  doi: 10.1021/jp0721898
– ident: ref16/cit16
  doi: 10.1039/C7CS00885F
– ident: ref34/cit34
  doi: 10.1021/acs.iecr.6b02175
– ident: ref31/cit31
  doi: 10.1038/s41467-018-04152-5
– ident: ref36/cit36
  doi: 10.1039/c3cp44381g
– ident: ref22/cit22
  doi: 10.1126/science.aaf6323
SSID ssj0002467
Score 2.6324894
Snippet Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality...
The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1968
SubjectTerms Chemistry
Title Microporous Metal–Organic Frameworks for Adsorptive Separation of C5–C6 Alkane Isomers
URI http://dx.doi.org/10.1021/acs.accounts.8b00658
https://www.ncbi.nlm.nih.gov/pubmed/30883088
https://www.proquest.com/docview/2194153703
https://www.osti.gov/biblio/1609984
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7B9gCXQvlpl9LKSFw4eNm1HTs-riJWbaWFQ6lUcbFsx760Sqome-HEO_CGPAnj_CwCVBUOuUSxo4zHM9_EM98AvI2h1GWIjGphLRVOBWqjcnSuS26dTJx1qVB4_VGeXIizy-zyV6D45wk-W7y3vsGpu84JzSx3nc98CDtM4j5OUKg431peJmTPkYkhssgFG0vl7pglOSTf_OaQJjVurLvBZud0Vk_g01i60-eaXM02rZv5r38zOf7j9zyF3QF_kmWvMHvwIFTP4FExtn17Dl_WKUUPUXm9acg6IDb_8e17X7HpyWpM5WoIgl2yLJv69iYZTHIeehLxuiJ1JEWGgwpJltdXtgrktKnT7_EXcLH68Lk4oUMDBmoRJbVUMxmZtUELVTKbI9IoLXfe5plLtMwizyIrpUYXp7iKmeLMiQzD3Khl5AwDoZcwqeoqHABRUijHfBQ6ccJlc8e19LkWYZ6FeWBqCu9QMGbYQI3pzsbZwqSbo7TMIK0p8HHFjB-YzFNDjet7RtHtqJueyeOe5w-TMhhEIolO16e8I9-ahURMnYspvBl1xOACpVMWlCeujEEXgKCIoyWdwn6vPNv3cbTp6Xr1H197CI8RpKVKM7qQr2HS3m7CEQKh1h132v8TfegGbQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5VAutLzK0gJG4sIhy67t2PFxFbHaQreXtqjiYtmOfWmVVE32won_0H_YX8I4j61AqqoecrFix4_xzOd45huAz8EXqvCBJoobk3ArfWKCtMlUFcxYETnrYqDw6lgsz_j38_R8C9IhFgY7UWNLdXuJf8cuMPsay0yXQKGeZLY1nU_gKeIRGgV7np9sFDDloqPKxJMyzzgdIubuaSXaJVf_Y5dGFe6v-zFna3sWO_Bz0-vW5eRism7sxP3-j9Dx0cPahec9GiXzTnxewJYvX8J2PiSBewW_VtFhDzF6ta7JyiNSv_1z08VvOrIYHLtqgtCXzIu6ur6K6pOc-I5SvCpJFUieYqVckPnlhSk9Oayr-LP8NZwtvp3my6RPx5AYxExNoqgI1BivuCyoyRB3FIZZZ7LURpJmnqWBFkKhwZNMhlQyanmKh96gRGAUj0VvYFRWpX8LRAouLXWBq8gQl04tU8Jlivtp6qeeyjF8wYnR_XaqdXtTTmc6Fg6zpfvZGgMbFk67ntc8pte4fKBWsql11fF6PPD-fpQJjbgkkuu66IXkGj0TiLAzPoZPg6hoXKB454LziSuj0SAgRGKoV8ew18nQ5nsMNXx83j1itB9he3m6OtJHh8c_9uEZwrcYg5bMxAGMmuu1f48QqbEf2g3xFwCKDs4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgkYAL78dSHkbiwsHLruPY8XEVWLXAVkilUtWLZTv2pVWyqrMXTvwH_iG_hJk8VoBUVXDIxYodezz2fI5nviHkTQyVrkLkTAtrmXAqMBuVY3NdZdZJ5KzDQOH1odw_Fh9P8pPfUn1BJxK0lLpLfFzVmyoODAOLd1hu-yQKaVa4znxeJzfw5g6Ve1ke7TZhLmRPlwmnZVEIPkbNXdIK2iaf_rBNkwbW2OW4s7M_q7vkdNfzzu3kbLZt3cx_-4vU8b-Gdo_cGVApXfZqdJ9cC_UDcqsck8E9JKdrdNwDrN5sE10HQOw_v__o4zg9XY0OXokCBKbLKjUXG9xG6VHoqcWbmjaRljlUKiVdnp_ZOtCD1OBP80fkePXha7nPhrQMzAJ2apnmMnJrgxaq4rYA_FHZzHlb5A7JmkWRR15JDYZPZSrmKuNO5HD4jVrGjMPx6DGZ1E0dnhKqpFCO-yg0MsXlc5dp6QstwjwP88DVlLwFwZhhWSXT3ZjzhcHCUVpmkNaUZOPkGT_wm2OajfMrarFdrU3P73HF-3uoFwbwCZLsevRG8q1ZSEDahZiS16O6GJggvHsBecLMGDAMAJUy2F-n5EmvR7vvZbDT4_PsH0b7itz88n5lPh8cftojtwHFYSgaW8jnZNJebMMLQEqte9mtiV-o6BFR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microporous+Metal%E2%80%93Organic+Frameworks+for+Adsorptive+Separation+of+C5%E2%80%93C6+Alkane+Isomers&rft.jtitle=Accounts+of+chemical+research&rft.au=Wang%2C+Hao&rft.au=Li%2C+Jing&rft.date=2019-07-16&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=52&rft.issue=7&rft.spage=1968&rft.epage=1978&rft_id=info:doi/10.1021%2Facs.accounts.8b00658&rft.externalDocID=c062602234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon