Microporous Metal–Organic Frameworks for Adsorptive Separation of C5–C6 Alkane Isomers
Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched i...
Saved in:
Published in | Accounts of chemical research Vol. 52; no. 7; pp. 1968 - 1978 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal–organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5–C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5–C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5–C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2– = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5–C6 alkane isomers. Zr-bptc (bptc4–= 3,3′,5,5′-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4– = 3,3′,5,5′-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H2tcpb) (tcpb4– = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5–C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers. |
---|---|
AbstractList | Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal–organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5–C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5–C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5–C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2– = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5–C6 alkane isomers. Zr-bptc (bptc4–= 3,3′,5,5′-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4– = 3,3′,5,5′-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H2tcpb) (tcpb4– = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5–C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers. Not provided. The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal-organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5-C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5-C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5-C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2- = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5-C6 alkane isomers. Zr-bptc (bptc4-= 3,3',5,5'-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4- = 3,3',5,5'-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H2tcpb) (tcpb4- = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5-C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers.The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal-organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5-C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5-C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5-C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe2(bdp)3 (bdp2- = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5-C6 alkane isomers. Zr-bptc (bptc4-= 3,3',5,5'-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for n-hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc4- = 3,3',5,5'-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H2tcpb) (tcpb4- = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5-C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers. The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon catalytic isomerization reactions, less branched alkanes (with lower octane number) need to be separated from their more branched isomers (with higher octane number) in order to improve the octane rating of gasoline. To reduce the high energy input associated with distillations, the primary separation technique currently used in industry, adsorptive separation by porous solids has been proposed. For example, zeolite 5A has been used as the adsorbent material for adsorptive separation of linear alkanes from their branched isomers, as a supplement technology to distillations. However, due to the limited number of zeolite structures and the lack of porosity tenability in these compounds, the task has not been fully fulfilled by using zeolites. Metal-organic frameworks (MOFs), in light of their structural diversity and high tunability in terms of surface area, pore size, and pore shape, offer new opportunities for resolving industrially relevant separation of alkanes through selective adsorption. This Account summarizes recent development of microporous MOFs for the separation of alkanes, with an emphasis on C5-C6 alkane isomers, including early examples of alkane separation by MOFs, as well as the latest advancement on tailor-made microporous MOFs for size sieving of C5-C6 alkane isomers. The limitation of zeolite 5A as a sorbent material for the separation of C5-C6 alkane isomers lies in its relatively low adsorption capacity. In addition, it is not capable of separating branched alkanes, which is a crucial step for further improving the octane rating of gasoline. The high porosity and tunable pore size and pore shape of MOFs may afford them higher adsorption capacity and selectivity when used for alkane separation. MOFs with pore size slightly larger than the kinetic diameter of branched alkanes can effectively separate alkane isomers through thermodynamically controlled separation, as seen in the case of Fe (bdp) (bdp = 1,4-benzenedipyrazolate). This MOF is capable of separating a mixture of hexane isomers by the degrees of branching, with higher adsorption capacity than zeolites under similar conditions but with relatively low selectivity. One effective strategy for obtaining MOFs with optimal pore size and pore shape for highly selective adsorption is to make use of reticular chemistry and precise ligand design. By applying topologically directed design strategy and precisely controlling the pore structure or ligand functionality, we have successfully synthesized a series of highly robust MOFs built on tetratopic carboxylate linkers that demonstrate high performance for the separation of C5-C6 alkane isomers. Zr-bptc (bptc = 3,3',5,5'-biphenyltetracarboxylate) adsorbs linear alkanes only and excludes all branched isomers. This size-exclusion mechanism is very similar to that of zeolite 5A. Yet, Zr-bptc has a significantly enhanced adsorption capacity for -hexane, 70% higher than that of zeolite 5A under identical conditions. Zr-abtc (abtc = 3,3',5,5'-azobenzenetetracarboxylate) is capable of discriminating all three C6 alkane isomers via a thermodynamically controlled process, yielding a high separation factor for monobranched over dibranched isomers. MOFs with flexible framework may exhibit unexpected but desired adsorption properties. Ca(H tcpb) (tcpb = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene) can fully separate binary or ternary mixtures of C5-C6 alkane isomers into pure form through selective molecular sieving as a result of its temperature- and adsorbate-dependent framework flexibility. The intriguing structural properties and exceptional tunability of these MOFs make them promising candidates for industrial implementation of adsorptive separation of alkane isomers. |
Author | Li, Jing Wang, Hao |
AuthorAffiliation | Department of Chemistry and Chemical Biology Hoffmann Institute of Advanced Materials |
AuthorAffiliation_xml | – name: Department of Chemistry and Chemical Biology – name: Hoffmann Institute of Advanced Materials |
Author_xml | – sequence: 1 givenname: Hao surname: Wang fullname: Wang, Hao organization: Department of Chemistry and Chemical Biology – sequence: 2 givenname: Jing orcidid: 0000-0001-7792-4322 surname: Li fullname: Li, Jing email: jingli@rutgers.edu organization: Department of Chemistry and Chemical Biology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30883088$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1609984$$D View this record in Osti.gov |
BookMark | eNqFkU9vFCEYxompsdvWb2AM8dTLrvwdGG-bjdUmbXrQXrwQhgGlnYERGBtvfge_YT9JWXf34kEPBAi_5-V9n-cEHIUYLACvMFphRPBbbfJKGxPnUPJKdgg1XD4DC8wJWjLZyiOwQAjhembkGJzkfFevhDXiBTimSMrtWoAv196kOMUU5wyvbdHD46_fN-mrDt7Ai6RH-xDTfYYuJrjuc0xT8T8s_GQnnXTxMcDo4IZX0aaB6-FeBwsvcxxtymfgudNDti_3-ym4vXj_efNxeXXz4XKzvlpqxnBZtqRxRGvbMtETLbHgvaad0ZJ3tO8Ek9yRvmkxkYIKxwUlHeNEMNc2jhLB6Sl4s6sbc_EqG1-s-WZiCNYUhRvUtpJV6HwHTSl-n20uavTZ2GGoDdfRFcEtw5wKRCv6eo_O3Wh7NSU_6vRTHUyrwLsdUJ3LOVmn6p9_zChJ-0FhpLYJqZqQOiSk9glVMftLfKj_Hxnaybavd3FOoVr6b8kTqpWqdg |
CitedBy_id | crossref_primary_10_1016_j_chroma_2022_463493 crossref_primary_10_1021_jacs_3c04641 crossref_primary_10_1039_D1TC00810B crossref_primary_10_1002_anie_202200947 crossref_primary_10_1002_ange_202214060 crossref_primary_10_1016_j_cej_2023_141743 crossref_primary_10_1016_j_cej_2024_151146 crossref_primary_10_1039_D1NJ02175C crossref_primary_10_1002_ange_202015257 crossref_primary_10_1002_ange_202212032 crossref_primary_10_1007_s10876_021_01993_x crossref_primary_10_1021_acsmaterialslett_4c00113 crossref_primary_10_1039_D3QM00430A crossref_primary_10_1002_anie_202107963 crossref_primary_10_1021_acs_iecr_3c03709 crossref_primary_10_1039_D2TA04835C crossref_primary_10_1016_j_mtchem_2022_100840 crossref_primary_10_1002_ange_202000670 crossref_primary_10_1016_j_micromeso_2023_112970 crossref_primary_10_1021_acs_jpcc_0c09117 crossref_primary_10_1002_anie_202100707 crossref_primary_10_1002_anie_202201646 crossref_primary_10_1002_anie_202219053 crossref_primary_10_1021_acsami_1c08678 crossref_primary_10_1039_D0RA09307F crossref_primary_10_1016_j_micromeso_2024_113283 crossref_primary_10_1021_acs_iecr_4c02953 crossref_primary_10_1021_acs_inorgchem_2c01024 crossref_primary_10_1016_j_inoche_2020_108339 crossref_primary_10_1039_D0TA05538G crossref_primary_10_1021_acsmaterialslett_3c00282 crossref_primary_10_1021_jacs_1c03762 crossref_primary_10_1002_smll_202412724 crossref_primary_10_1021_acsmaterialslett_4c02402 crossref_primary_10_1002_app_56009 crossref_primary_10_1016_j_cej_2023_145096 crossref_primary_10_1016_j_cjche_2020_05_023 crossref_primary_10_1021_acsmaterialslett_5c00055 crossref_primary_10_1039_D1CE00899D crossref_primary_10_1002_anie_202007681 crossref_primary_10_1007_s12274_020_2714_z crossref_primary_10_1007_s10853_020_05180_7 crossref_primary_10_1016_j_memsci_2020_118426 crossref_primary_10_1016_j_jssc_2021_122541 crossref_primary_10_1021_jacs_1c12068 crossref_primary_10_1002_asia_202400899 crossref_primary_10_1016_j_cej_2024_150833 crossref_primary_10_1016_j_cej_2019_123836 crossref_primary_10_1007_s12274_020_2935_1 crossref_primary_10_3390_catal13010115 crossref_primary_10_1002_ange_202201646 crossref_primary_10_1002_anie_202017105 crossref_primary_10_1021_cbe_3c00099 crossref_primary_10_1039_C9CC05997K crossref_primary_10_1002_ange_202219053 crossref_primary_10_1016_j_enchem_2021_100057 crossref_primary_10_1039_C9CC06239D crossref_primary_10_1038_s41467_023_35984_5 crossref_primary_10_1002_chem_202000933 crossref_primary_10_1016_j_seppur_2023_124241 crossref_primary_10_1021_acsmaterialslett_4c00731 crossref_primary_10_1039_D3QM00715D crossref_primary_10_1002_anie_202213959 crossref_primary_10_1002_smm2_1016 crossref_primary_10_1002_ange_202320008 crossref_primary_10_1002_aic_16236 crossref_primary_10_1016_j_micromeso_2023_112670 crossref_primary_10_1002_ange_202007681 crossref_primary_10_3724_SP_J_1123_2023_07029 crossref_primary_10_1039_D0NJ03628E crossref_primary_10_3390_molecules28114422 crossref_primary_10_1039_D1FD00037C crossref_primary_10_1002_anie_202411960 crossref_primary_10_1016_j_seppur_2021_120010 crossref_primary_10_1021_acs_inorgchem_4c01740 crossref_primary_10_1039_D1CC01931G crossref_primary_10_1002_advs_202201494 crossref_primary_10_1021_acsami_0c10702 crossref_primary_10_3390_catal11020204 crossref_primary_10_1002_ange_202017105 crossref_primary_10_1016_j_apsusc_2023_157592 crossref_primary_10_1021_acs_jpcc_9b11196 crossref_primary_10_1039_D0EN01011A crossref_primary_10_1002_zaac_202200240 crossref_primary_10_1021_acsmaterialslett_4c00166 crossref_primary_10_1063_1_5120528 crossref_primary_10_1002_ange_202200947 crossref_primary_10_1021_cbe_3c00115 crossref_primary_10_1016_j_fuel_2023_130006 crossref_primary_10_1016_j_seppur_2023_123203 crossref_primary_10_1021_jacs_3c02195 crossref_primary_10_1021_acs_inorgchem_0c02878 crossref_primary_10_1039_D3AY02241B crossref_primary_10_1002_slct_202201863 crossref_primary_10_1039_D1CE00722J crossref_primary_10_1039_C9CE01932D crossref_primary_10_1002_adma_202002563 crossref_primary_10_2139_ssrn_4157489 crossref_primary_10_1016_j_cej_2024_156241 crossref_primary_10_1021_acsmaterialslett_3c01278 crossref_primary_10_1002_adma_202002603 crossref_primary_10_1016_j_apmate_2021_12_002 crossref_primary_10_1016_j_seppur_2023_124660 crossref_primary_10_1039_D0DT00943A crossref_primary_10_1002_ange_202308418 crossref_primary_10_1002_anie_202211359 crossref_primary_10_1016_j_chroma_2024_465357 crossref_primary_10_1002_ange_202213959 crossref_primary_10_1002_anie_202211808 crossref_primary_10_1002_anie_202015257 crossref_primary_10_1016_j_ccr_2023_215111 crossref_primary_10_1016_j_seppur_2025_132203 crossref_primary_10_1016_j_jmgm_2020_107574 crossref_primary_10_1038_s41467_024_46556_6 crossref_primary_10_1039_C9TA12230C crossref_primary_10_1002_aic_17937 crossref_primary_10_1002_anie_202320008 crossref_primary_10_1007_s41061_019_0257_0 crossref_primary_10_1021_acs_analchem_1c03641 crossref_primary_10_1021_jacs_3c06175 crossref_primary_10_1039_D2TA09326J crossref_primary_10_1002_ange_202411960 crossref_primary_10_1016_j_jphotochem_2023_115032 crossref_primary_10_1021_acs_accounts_1c00328 crossref_primary_10_1039_D0TA04898D crossref_primary_10_1002_ejic_202100819 crossref_primary_10_1016_j_mtadv_2021_100145 crossref_primary_10_1016_j_jssc_2021_122100 crossref_primary_10_1002_ange_202100707 crossref_primary_10_1002_anie_202308418 crossref_primary_10_1002_ange_202211808 crossref_primary_10_1021_acs_cgd_0c00258 crossref_primary_10_1039_D0DT04252H crossref_primary_10_1016_j_jece_2023_111027 crossref_primary_10_1002_chem_202302856 crossref_primary_10_1039_C9DT04068D crossref_primary_10_2139_ssrn_4158399 crossref_primary_10_1039_D1CE00780G crossref_primary_10_1016_j_ccr_2020_213738 crossref_primary_10_1039_D0QI01230K crossref_primary_10_3390_chemistry3010024 crossref_primary_10_1016_j_jssc_2020_121209 crossref_primary_10_1021_acs_inorgchem_0c02962 crossref_primary_10_1021_jacs_0c03176 crossref_primary_10_1002_anie_202300722 crossref_primary_10_1021_acs_inorgchem_0c03257 crossref_primary_10_1021_acs_inorgchem_3c02070 crossref_primary_10_1021_jacs_3c08541 crossref_primary_10_1002_anie_202214060 crossref_primary_10_1016_j_memsci_2022_120916 crossref_primary_10_1021_acsnano_1c08605 crossref_primary_10_1039_D1CE00068C crossref_primary_10_1016_j_ccr_2024_215996 crossref_primary_10_1039_D2SC05742E crossref_primary_10_1016_j_envpol_2023_121475 crossref_primary_10_1021_acs_cgd_0c00247 crossref_primary_10_1021_acs_inorgchem_0c01185 crossref_primary_10_1007_s12274_020_2831_8 crossref_primary_10_1021_acsami_1c16315 crossref_primary_10_1039_C9SC05721H crossref_primary_10_1016_j_seppur_2022_122095 crossref_primary_10_1002_advs_202204963 crossref_primary_10_1021_acs_cgd_0c00408 crossref_primary_10_1002_ange_202300722 crossref_primary_10_1021_jacs_4c05095 crossref_primary_10_1002_chem_202101871 crossref_primary_10_1093_nsr_nwaa094 crossref_primary_10_1002_ange_202107963 crossref_primary_10_1002_anie_202212032 crossref_primary_10_1021_acs_inorgchem_1c00404 crossref_primary_10_1002_anie_202000670 crossref_primary_10_1016_j_jhazmat_2022_128321 crossref_primary_10_1016_j_jiec_2022_07_047 crossref_primary_10_1039_D4CE00696H crossref_primary_10_1021_acsami_1c03242 crossref_primary_10_1039_D2SC00207H crossref_primary_10_1021_acs_chemmater_1c03084 crossref_primary_10_1002_ange_202211359 |
Cites_doi | 10.1142/p037 10.1021/ie000456p 10.1002/anie.200503503 10.1021/la001189v 10.1126/science.aaf2458 10.1021/jacs.6b10768 10.1016/j.micromeso.2013.09.005 10.1021/ie202995g 10.1038/nchem.2718 10.1016/j.talanta.2012.07.063 10.1038/nature11893 10.1021/ja509446h 10.1021/jacs.5b12366 10.1126/science.1234071 10.1039/C4CS00032C 10.1021/cm402897c 10.1016/j.micromeso.2014.04.009 10.1080/01496398808058436 10.1016/j.chroma.2012.07.097 10.1260/0263-6174.32.6.475 10.1002/aic.690431014 10.1039/C5CP06342F 10.1002/anie.201808716 10.1016/j.colsurfa.2017.01.036 10.1002/anie.200502844 10.1016/j.micromeso.2003.09.025 10.1039/c1cc12253c 10.1021/jacs.5b02556 10.1126/science.aat0586 10.1002/anie.201204475 10.1039/b802426j 10.1021/acsami.7b18620 10.1126/science.aam7232 10.1021/ja1058229 10.1016/j.micromeso.2012.12.017 10.1002/anie.200503778 10.1073/pnas.0602439103 10.1021/jacs.5b10308 10.1016/j.memsci.2005.06.032 10.1002/anie.201506345 10.1038/532435a 10.1039/C8EE00459E 10.1002/adfm.201401974 10.1038/s41563-018-0206-2 10.1021/cr200216x 10.1016/j.chroma.2013.02.024 10.1038/ncomms9697 10.1021/jp0721898 10.1039/C7CS00885F 10.1021/acs.iecr.6b02175 10.1038/s41467-018-04152-5 10.1039/c3cp44381g 10.1126/science.aaf6323 |
ContentType | Journal Article |
CorporateAuthor | Univ. of Texas at Dallas, Richardson, TX (United States) |
CorporateAuthor_xml | – name: Univ. of Texas at Dallas, Richardson, TX (United States) |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/acs.accounts.8b00658 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1978 |
ExternalDocumentID | 1609984 30883088 10_1021_acs_accounts_8b00658 c062602234 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM YIN 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a441t-926f2aae947d2a8175da3bca85b3db7485f2d69128737f5732b45274f96f32753 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri May 19 01:10:16 EDT 2023 Fri Jul 11 11:52:02 EDT 2025 Wed Feb 19 02:30:42 EST 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 03:16:03 EDT 2025 Thu Aug 27 13:43:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-926f2aae947d2a8175da3bca85b3db7485f2d69128737f5732b45274f96f32753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 FG02-08ER46491 USDOE Office of Science (SC) |
ORCID | 0000-0001-7792-4322 0000000177924322 |
PMID | 30883088 |
PQID | 2194153703 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1609984 proquest_miscellaneous_2194153703 pubmed_primary_30883088 crossref_citationtrail_10_1021_acs_accounts_8b00658 crossref_primary_10_1021_acs_accounts_8b00658 acs_journals_10_1021_acs_accounts_8b00658 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-16 |
PublicationDateYYYYMMDD | 2019-07-16 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Myers R. A. (ref5/cit5) 2004 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Yang R. T. (ref3/cit3) 1997 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – volume-title: Gas Separation by Adsorption Processes year: 1997 ident: ref3/cit3 doi: 10.1142/p037 – ident: ref4/cit4 doi: 10.1021/ie000456p – ident: ref49/cit49 doi: 10.1002/anie.200503503 – ident: ref7/cit7 doi: 10.1021/la001189v – ident: ref26/cit26 doi: 10.1126/science.aaf2458 – ident: ref46/cit46 doi: 10.1021/jacs.6b10768 – ident: ref43/cit43 doi: 10.1016/j.micromeso.2013.09.005 – ident: ref10/cit10 doi: 10.1021/ie202995g – ident: ref18/cit18 doi: 10.1038/nchem.2718 – ident: ref40/cit40 doi: 10.1016/j.talanta.2012.07.063 – ident: ref14/cit14 doi: 10.1038/nature11893 – ident: ref21/cit21 doi: 10.1021/ja509446h – ident: ref20/cit20 doi: 10.1021/jacs.5b12366 – ident: ref29/cit29 doi: 10.1126/science.1234071 – ident: ref15/cit15 doi: 10.1039/C4CS00032C – ident: ref13/cit13 doi: 10.1021/cm402897c – ident: ref50/cit50 doi: 10.1016/j.micromeso.2014.04.009 – ident: ref2/cit2 doi: 10.1080/01496398808058436 – ident: ref38/cit38 doi: 10.1016/j.chroma.2012.07.097 – ident: ref45/cit45 doi: 10.1260/0263-6174.32.6.475 – ident: ref6/cit6 doi: 10.1002/aic.690431014 – ident: ref44/cit44 doi: 10.1039/C5CP06342F – ident: ref23/cit23 doi: 10.1002/anie.201808716 – ident: ref41/cit41 doi: 10.1016/j.colsurfa.2017.01.036 – ident: ref47/cit47 doi: 10.1002/anie.200502844 – ident: ref8/cit8 doi: 10.1016/j.micromeso.2003.09.025 – ident: ref54/cit54 doi: 10.1039/c1cc12253c – ident: ref55/cit55 doi: 10.1021/jacs.5b02556 – volume-title: Handbook of Petroleum Refining Processes year: 2004 ident: ref5/cit5 – ident: ref24/cit24 doi: 10.1126/science.aat0586 – ident: ref19/cit19 doi: 10.1002/anie.201204475 – ident: ref11/cit11 doi: 10.1039/b802426j – ident: ref35/cit35 doi: 10.1039/c1cc12253c – ident: ref33/cit33 doi: 10.1021/acsami.7b18620 – ident: ref28/cit28 doi: 10.1126/science.aam7232 – ident: ref53/cit53 doi: 10.1021/ja1058229 – ident: ref42/cit42 doi: 10.1016/j.micromeso.2012.12.017 – ident: ref52/cit52 doi: 10.1002/anie.200503778 – ident: ref51/cit51 doi: 10.1073/pnas.0602439103 – ident: ref17/cit17 doi: 10.1021/jacs.5b10308 – ident: ref9/cit9 doi: 10.1016/j.memsci.2005.06.032 – ident: ref30/cit30 doi: 10.1002/anie.201506345 – ident: ref1/cit1 doi: 10.1038/532435a – ident: ref32/cit32 doi: 10.1039/C8EE00459E – ident: ref37/cit37 doi: 10.1002/adfm.201401974 – ident: ref27/cit27 doi: 10.1038/s41563-018-0206-2 – ident: ref12/cit12 doi: 10.1021/cr200216x – ident: ref39/cit39 doi: 10.1016/j.chroma.2013.02.024 – ident: ref25/cit25 doi: 10.1038/ncomms9697 – ident: ref48/cit48 doi: 10.1021/jp0721898 – ident: ref16/cit16 doi: 10.1039/C7CS00885F – ident: ref34/cit34 doi: 10.1021/acs.iecr.6b02175 – ident: ref31/cit31 doi: 10.1038/s41467-018-04152-5 – ident: ref36/cit36 doi: 10.1039/c3cp44381g – ident: ref22/cit22 doi: 10.1126/science.aaf6323 |
SSID | ssj0002467 |
Score | 2.6324894 |
Snippet | Conspectus The separation of alkane isomers, particularly C5–C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality... The separation of alkane isomers, particularly C5-C6 alkanes, is of paramount importance in the petrochemical industry to achieve high quality gasoline. Upon... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1968 |
SubjectTerms | Chemistry |
Title | Microporous Metal–Organic Frameworks for Adsorptive Separation of C5–C6 Alkane Isomers |
URI | http://dx.doi.org/10.1021/acs.accounts.8b00658 https://www.ncbi.nlm.nih.gov/pubmed/30883088 https://www.proquest.com/docview/2194153703 https://www.osti.gov/biblio/1609984 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7B9gCXQvlpl9LKSFw4eNm1HTs-riJWbaWFQ6lUcbFsx760Sqome-HEO_CGPAnj_CwCVBUOuUSxo4zHM9_EM98AvI2h1GWIjGphLRVOBWqjcnSuS26dTJx1qVB4_VGeXIizy-zyV6D45wk-W7y3vsGpu84JzSx3nc98CDtM4j5OUKg431peJmTPkYkhssgFG0vl7pglOSTf_OaQJjVurLvBZud0Vk_g01i60-eaXM02rZv5r38zOf7j9zyF3QF_kmWvMHvwIFTP4FExtn17Dl_WKUUPUXm9acg6IDb_8e17X7HpyWpM5WoIgl2yLJv69iYZTHIeehLxuiJ1JEWGgwpJltdXtgrktKnT7_EXcLH68Lk4oUMDBmoRJbVUMxmZtUELVTKbI9IoLXfe5plLtMwizyIrpUYXp7iKmeLMiQzD3Khl5AwDoZcwqeoqHABRUijHfBQ6ccJlc8e19LkWYZ6FeWBqCu9QMGbYQI3pzsbZwqSbo7TMIK0p8HHFjB-YzFNDjet7RtHtqJueyeOe5w-TMhhEIolO16e8I9-ahURMnYspvBl1xOACpVMWlCeujEEXgKCIoyWdwn6vPNv3cbTp6Xr1H197CI8RpKVKM7qQr2HS3m7CEQKh1h132v8TfegGbQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5VAutLzK0gJG4sIhy67t2PFxFbHaQreXtqjiYtmOfWmVVE32won_0H_YX8I4j61AqqoecrFix4_xzOd45huAz8EXqvCBJoobk3ArfWKCtMlUFcxYETnrYqDw6lgsz_j38_R8C9IhFgY7UWNLdXuJf8cuMPsay0yXQKGeZLY1nU_gKeIRGgV7np9sFDDloqPKxJMyzzgdIubuaSXaJVf_Y5dGFe6v-zFna3sWO_Bz0-vW5eRism7sxP3-j9Dx0cPahec9GiXzTnxewJYvX8J2PiSBewW_VtFhDzF6ta7JyiNSv_1z08VvOrIYHLtqgtCXzIu6ur6K6pOc-I5SvCpJFUieYqVckPnlhSk9Oayr-LP8NZwtvp3my6RPx5AYxExNoqgI1BivuCyoyRB3FIZZZ7LURpJmnqWBFkKhwZNMhlQyanmKh96gRGAUj0VvYFRWpX8LRAouLXWBq8gQl04tU8Jlivtp6qeeyjF8wYnR_XaqdXtTTmc6Fg6zpfvZGgMbFk67ntc8pte4fKBWsql11fF6PPD-fpQJjbgkkuu66IXkGj0TiLAzPoZPg6hoXKB454LziSuj0SAgRGKoV8ew18nQ5nsMNXx83j1itB9he3m6OtJHh8c_9uEZwrcYg5bMxAGMmuu1f48QqbEf2g3xFwCKDs4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgkYAL78dSHkbiwsHLruPY8XEVWLXAVkilUtWLZTv2pVWyqrMXTvwH_iG_hJk8VoBUVXDIxYodezz2fI5nviHkTQyVrkLkTAtrmXAqMBuVY3NdZdZJ5KzDQOH1odw_Fh9P8pPfUn1BJxK0lLpLfFzVmyoODAOLd1hu-yQKaVa4znxeJzfw5g6Ve1ke7TZhLmRPlwmnZVEIPkbNXdIK2iaf_rBNkwbW2OW4s7M_q7vkdNfzzu3kbLZt3cx_-4vU8b-Gdo_cGVApXfZqdJ9cC_UDcqsck8E9JKdrdNwDrN5sE10HQOw_v__o4zg9XY0OXokCBKbLKjUXG9xG6VHoqcWbmjaRljlUKiVdnp_ZOtCD1OBP80fkePXha7nPhrQMzAJ2apnmMnJrgxaq4rYA_FHZzHlb5A7JmkWRR15JDYZPZSrmKuNO5HD4jVrGjMPx6DGZ1E0dnhKqpFCO-yg0MsXlc5dp6QstwjwP88DVlLwFwZhhWSXT3ZjzhcHCUVpmkNaUZOPkGT_wm2OajfMrarFdrU3P73HF-3uoFwbwCZLsevRG8q1ZSEDahZiS16O6GJggvHsBecLMGDAMAJUy2F-n5EmvR7vvZbDT4_PsH0b7itz88n5lPh8cftojtwHFYSgaW8jnZNJebMMLQEqte9mtiV-o6BFR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microporous+Metal%E2%80%93Organic+Frameworks+for+Adsorptive+Separation+of+C5%E2%80%93C6+Alkane+Isomers&rft.jtitle=Accounts+of+chemical+research&rft.au=Wang%2C+Hao&rft.au=Li%2C+Jing&rft.date=2019-07-16&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=52&rft.issue=7&rft.spage=1968&rft.epage=1978&rft_id=info:doi/10.1021%2Facs.accounts.8b00658&rft.externalDocID=c062602234 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |