Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters

Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-dri...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 136; no. 28; pp. 9842 - 9845
Main Authors Qian, Kun, Sweeny, Brendan C, Johnston-Peck, Aaron C, Niu, Wenxin, Graham, Jeremy O, DuChene, Joseph S, Qiu, Jingjing, Wang, Yi-Chung, Engelhard, Mark H, Su, Dong, Stach, Eric A, Wei, Wei David
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion.
AbstractList Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO₂) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H₂O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO₂ conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion.
Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion.Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion.
Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion.
Author Niu, Wenxin
Qian, Kun
DuChene, Joseph S
Stach, Eric A
Wei, Wei David
Graham, Jeremy O
Su, Dong
Qiu, Jingjing
Engelhard, Mark H
Wang, Yi-Chung
Sweeny, Brendan C
Johnston-Peck, Aaron C
AuthorAffiliation Department of Chemistry and Center for Nanostructured Electronic Materials
Center for Functional Nanomaterials
Environmental Molecular Sciences Laboratory
University of Florida
Brookhaven National Laboratory
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Center for Functional Nanomaterials
– name: Department of Chemistry and Center for Nanostructured Electronic Materials
– name: Brookhaven National Laboratory
– name: Pacific Northwest National Laboratory
– name: University of Florida
– name: Environmental Molecular Sciences Laboratory
Author_xml – sequence: 1
  givenname: Kun
  surname: Qian
  fullname: Qian, Kun
  organization: University of Florida
– sequence: 2
  givenname: Brendan C
  surname: Sweeny
  fullname: Sweeny, Brendan C
  organization: University of Florida
– sequence: 3
  givenname: Aaron C
  surname: Johnston-Peck
  fullname: Johnston-Peck, Aaron C
  organization: Brookhaven National Laboratory
– sequence: 4
  givenname: Wenxin
  surname: Niu
  fullname: Niu, Wenxin
  organization: University of Florida
– sequence: 5
  givenname: Jeremy O
  surname: Graham
  fullname: Graham, Jeremy O
  organization: University of Florida
– sequence: 6
  givenname: Joseph S
  surname: DuChene
  fullname: DuChene, Joseph S
  organization: University of Florida
– sequence: 7
  givenname: Jingjing
  surname: Qiu
  fullname: Qiu, Jingjing
  organization: University of Florida
– sequence: 8
  givenname: Yi-Chung
  surname: Wang
  fullname: Wang, Yi-Chung
  organization: University of Florida
– sequence: 9
  givenname: Mark H
  surname: Engelhard
  fullname: Engelhard, Mark H
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Dong
  surname: Su
  fullname: Su, Dong
  organization: Brookhaven National Laboratory
– sequence: 11
  givenname: Eric A
  surname: Stach
  fullname: Stach, Eric A
  organization: Brookhaven National Laboratory
– sequence: 12
  givenname: Wei David
  surname: Wei
  fullname: Wei, Wei David
  email: wei@chem.ufl.edu
  organization: University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24972055$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLw0AQB_BFKvahB7-A5CLoIXbfm3iTaqtQH1jFY5hsNpCSZutuUtBPb0prD1LwsAwLvxmG__RRp7KVQeiU4CuCKRnOQWCOY7U6QD0iKA4FobKDehhjGqpIsi7qez9vv5xG5Ah1KY8VxUL00HjWuBy0CV5K8AtbhbeuWJkq-IDauODVZI2uC1tdBxNbZsETVHYJri50aYJZ8W2CR6hb6I_RYQ6lNyfbOkDv47u30X04fZ48jG6mIXBO6jDiQuk4i3iMGWCIcc5SzamKUpYaRaWK8khmXGqlsRRGSgYMGxVnIiNcUWADdLGZu3T2szG-ThaF16YsoTK28QmNIyk5w-37jxLRLqMU46KlZ1vapAuTJUtXLMB9Jb8xteByA7Sz3juT7wjByfoEye4ErR3-sbqoYR1i7aAo93acbzpA-2RuG1e1Ee5xPzXykaY
CitedBy_id crossref_primary_10_1002_adom_201700004
crossref_primary_10_1039_C4RA12503G
crossref_primary_10_1016_j_apsusc_2021_152196
crossref_primary_10_1002_admi_201600588
crossref_primary_10_3390_catal14070448
crossref_primary_10_1016_j_ccr_2024_216351
crossref_primary_10_1002_admi_201600348
crossref_primary_10_1021_acsanm_3c01671
crossref_primary_10_1016_j_cattod_2022_05_024
crossref_primary_10_1016_j_renene_2024_120484
crossref_primary_10_3389_fenrg_2024_1251188
crossref_primary_10_1039_C7NR08474A
crossref_primary_10_1039_D2SE01201D
crossref_primary_10_1021_acs_analchem_6b01261
crossref_primary_10_3390_cells12141893
crossref_primary_10_1002_anie_201901987
crossref_primary_10_1021_nl503585m
crossref_primary_10_1016_S1872_2067_17_62990_5
crossref_primary_10_1021_jacs_5b06323
crossref_primary_10_1039_C8FD00144H
crossref_primary_10_3390_catal11070848
crossref_primary_10_1002_ange_201711725
crossref_primary_10_1021_acsphotonics_6b00628
crossref_primary_10_1002_admi_201500169
crossref_primary_10_1039_C8GC01317A
crossref_primary_10_1021_acs_jpcc_5b02357
crossref_primary_10_1063_5_0045590
crossref_primary_10_1039_D4CP00322E
crossref_primary_10_1021_acs_jpcc_5b10531
crossref_primary_10_1021_jacs_9b13453
crossref_primary_10_1016_j_jcat_2018_06_008
crossref_primary_10_1002_asia_201701807
crossref_primary_10_1063_5_0027108
crossref_primary_10_1039_C5NR08521G
crossref_primary_10_1039_C8NR05144E
crossref_primary_10_1021_acssuschemeng_8b00643
crossref_primary_10_1039_C4RA15818K
crossref_primary_10_1039_C6TA04468A
crossref_primary_10_3390_molecules29102347
crossref_primary_10_1360_SSC_2024_0169
crossref_primary_10_1016_j_jcis_2017_03_089
crossref_primary_10_1021_acsami_9b07110
crossref_primary_10_1039_C7CC09770K
crossref_primary_10_1016_j_apsusc_2023_158858
crossref_primary_10_1016_j_materresbull_2021_111422
crossref_primary_10_1002_aenm_202003159
crossref_primary_10_1021_acsnano_3c08182
crossref_primary_10_1016_j_jechem_2023_04_027
crossref_primary_10_1039_C7CP05378A
crossref_primary_10_1021_jacs_0c07027
crossref_primary_10_1021_cs5018375
crossref_primary_10_1016_j_jcat_2017_08_018
crossref_primary_10_1021_acs_nanolett_3c00013
crossref_primary_10_1016_j_nanoen_2021_106638
crossref_primary_10_1007_s12274_022_4712_9
crossref_primary_10_1007_s11244_021_01552_8
crossref_primary_10_1021_acs_nanolett_5b02453
crossref_primary_10_1039_D4TA07839J
crossref_primary_10_1146_annurev_physchem_052516_044948
crossref_primary_10_1039_C7CP07786F
crossref_primary_10_1063_1_5098834
crossref_primary_10_1021_acs_nanolett_9b04895
crossref_primary_10_1002_adma_202006654
crossref_primary_10_1016_j_surfrep_2021_100532
crossref_primary_10_1039_C7CP07762A
crossref_primary_10_1021_acs_jpclett_5b02393
crossref_primary_10_1021_jacs_7b04470
crossref_primary_10_1016_j_saa_2023_123137
crossref_primary_10_1038_s41570_022_00368_8
crossref_primary_10_1016_j_mssp_2015_07_054
crossref_primary_10_1039_C8RA05450A
crossref_primary_10_1016_j_jcis_2024_01_159
crossref_primary_10_1002_ente_201700001
crossref_primary_10_1002_smll_201602583
crossref_primary_10_1016_j_cattod_2019_05_017
crossref_primary_10_1016_j_cclet_2018_03_027
crossref_primary_10_1038_srep16660
crossref_primary_10_1039_C6NR02547A
crossref_primary_10_3390_catal14070417
crossref_primary_10_1038_srep42524
crossref_primary_10_1016_j_jpowsour_2022_232002
crossref_primary_10_1016_j_nantod_2017_08_008
crossref_primary_10_1007_s11426_015_5419_5
crossref_primary_10_1021_acsami_0c23164
crossref_primary_10_1021_acs_jpcc_3c05178
crossref_primary_10_1016_j_jcis_2017_10_053
crossref_primary_10_3390_nano10050912
crossref_primary_10_1016_j_ijhydene_2020_08_241
crossref_primary_10_1016_j_matlet_2015_04_030
crossref_primary_10_1557_jmr_2018_16
crossref_primary_10_1557_jmr_2016_128
crossref_primary_10_1016_j_physb_2020_412697
crossref_primary_10_1021_acsami_9b20231
crossref_primary_10_1021_acsanm_2c04012
crossref_primary_10_1016_j_apcatb_2017_11_026
crossref_primary_10_1016_S1872_2067_18_63094_3
crossref_primary_10_1038_srep18152
crossref_primary_10_1021_acscatal_9b00384
crossref_primary_10_1007_s10853_021_06184_7
crossref_primary_10_1016_j_apsusc_2018_01_308
crossref_primary_10_1016_j_omx_2020_100055
crossref_primary_10_1021_acscatal_9b00390
crossref_primary_10_1016_j_physb_2024_415970
crossref_primary_10_1021_jasms_0c00480
crossref_primary_10_1002_cctc_201600937
crossref_primary_10_1016_j_ijhydene_2019_02_120
crossref_primary_10_1021_acs_chemrev_9b00201
crossref_primary_10_1007_s11051_023_05850_y
crossref_primary_10_1149_1945_7111_ab6a7c
crossref_primary_10_3390_catal10020221
crossref_primary_10_1016_j_jcat_2016_04_011
crossref_primary_10_1021_acsami_1c16811
crossref_primary_10_1016_j_apcatb_2020_119618
crossref_primary_10_1007_s00604_019_3701_5
crossref_primary_10_1016_j_esci_2024_100312
crossref_primary_10_1557_mrs_2019_292
crossref_primary_10_1016_j_catcom_2020_106116
crossref_primary_10_1021_acsnano_6b01108
crossref_primary_10_1016_j_jclepro_2021_126200
crossref_primary_10_1063_5_0199589
crossref_primary_10_1002_cptc_201700165
crossref_primary_10_1063_1_4935750
crossref_primary_10_1016_j_nantod_2018_08_009
crossref_primary_10_1021_acsnano_6b00263
crossref_primary_10_1002_anie_201711725
crossref_primary_10_3390_nano12091580
crossref_primary_10_1016_j_jpowsour_2015_11_016
crossref_primary_10_1021_jacs_6b04175
crossref_primary_10_1021_jacs_7b08868
crossref_primary_10_1039_D1TA08950A
crossref_primary_10_1002_chem_201801223
crossref_primary_10_3390_photochem2040052
crossref_primary_10_1016_j_nanoen_2018_02_040
crossref_primary_10_1039_C6RA11390G
crossref_primary_10_1002_cplu_201500032
crossref_primary_10_35848_1347_4065_ac2ab5
crossref_primary_10_1002_adma_202414959
crossref_primary_10_1039_C8CC02853B
crossref_primary_10_1088_2053_1591_2_9_095021
crossref_primary_10_3390_ijms25137241
crossref_primary_10_1002_cnma_201900187
crossref_primary_10_1002_ente_202401991
crossref_primary_10_1016_j_matlet_2016_08_066
crossref_primary_10_1039_D1SC00064K
crossref_primary_10_1016_j_solener_2019_10_022
crossref_primary_10_1016_j_apcatb_2021_120341
crossref_primary_10_1186_s11671_016_1492_8
crossref_primary_10_1016_j_chempr_2018_06_004
crossref_primary_10_1002_smll_201703610
crossref_primary_10_1016_j_mssp_2018_12_026
crossref_primary_10_1021_acs_jpcc_7b03566
crossref_primary_10_1088_1361_648X_aa85ef
crossref_primary_10_1021_acsnano_0c06278
crossref_primary_10_1021_acsami_8b17663
crossref_primary_10_1021_acsenergylett_1c00563
crossref_primary_10_1021_acs_langmuir_4c00267
crossref_primary_10_1002_asia_202001202
crossref_primary_10_1016_j_ijhydene_2019_03_189
crossref_primary_10_1016_j_rser_2025_115490
crossref_primary_10_1021_acsami_2c10152
crossref_primary_10_1007_s10562_015_1568_6
crossref_primary_10_1039_C5RA25337C
crossref_primary_10_1039_D3NR02755D
crossref_primary_10_1021_acscatal_4c01544
crossref_primary_10_1007_s00604_019_3401_1
crossref_primary_10_1016_j_chemosphere_2024_142995
crossref_primary_10_1021_acsami_5b06287
crossref_primary_10_1021_jacs_8b07767
crossref_primary_10_4028_www_scientific_net_AMM_886_107
crossref_primary_10_1039_D4CY00084F
crossref_primary_10_1039_C5TC01406A
crossref_primary_10_1021_acsnano_3c00758
crossref_primary_10_1039_C8CP04241A
crossref_primary_10_1002_ppsc_201700297
crossref_primary_10_1016_j_vacuum_2016_04_031
crossref_primary_10_1039_D5CC00438A
crossref_primary_10_3390_catal13060946
crossref_primary_10_1021_acsnano_9b00219
crossref_primary_10_1021_acsomega_0c05021
crossref_primary_10_1002_eem2_12338
crossref_primary_10_1021_acsaem_9b01730
crossref_primary_10_1039_C9CC02574J
crossref_primary_10_1021_acscatal_3c02550
crossref_primary_10_1021_jacs_6b10983
crossref_primary_10_1016_j_solmat_2016_09_037
crossref_primary_10_1016_j_ijhydene_2020_02_208
crossref_primary_10_1146_annurev_physchem_090519_045502
crossref_primary_10_1016_j_cej_2020_124558
crossref_primary_10_1021_acsomega_2c04129
crossref_primary_10_1016_j_cej_2022_136440
crossref_primary_10_1088_1361_6528_aaf17e
crossref_primary_10_1021_acsaem_9b00091
crossref_primary_10_1021_acs_langmuir_7b01117
crossref_primary_10_1007_s12274_016_1225_4
crossref_primary_10_1016_j_electacta_2017_11_106
crossref_primary_10_3390_nano13040660
crossref_primary_10_1016_j_apcatb_2017_10_045
crossref_primary_10_1002_smll_202101638
crossref_primary_10_1093_nsr_nwx019
crossref_primary_10_1039_D0DT00670J
crossref_primary_10_1021_acscatal_8b00791
crossref_primary_10_3390_catal10050539
crossref_primary_10_1002_adma_201405674
crossref_primary_10_1016_j_apsusc_2021_151953
crossref_primary_10_1063_1_5057366
crossref_primary_10_1021_acs_jpcc_9b02769
crossref_primary_10_1016_j_physrep_2022_07_002
crossref_primary_10_1021_acsnano_3c03575
crossref_primary_10_1016_j_apsusc_2018_09_031
crossref_primary_10_1002_cctc_201901799
crossref_primary_10_1016_j_elecom_2018_10_005
crossref_primary_10_1016_j_mser_2017_11_001
crossref_primary_10_1002_ppsc_201500059
crossref_primary_10_1021_jacs_2c01272
crossref_primary_10_1021_acsnano_0c04736
crossref_primary_10_1021_acs_nanolett_8b01675
crossref_primary_10_1021_cm5039914
crossref_primary_10_1111_jace_15520
crossref_primary_10_1002_smll_201900975
crossref_primary_10_1021_acs_chemrev_7b00430
crossref_primary_10_1021_acsnano_2c12314
crossref_primary_10_1016_j_catcom_2019_105921
crossref_primary_10_1002_ange_201901987
crossref_primary_10_1021_acsami_5b01918
crossref_primary_10_1016_j_chemphys_2014_10_016
crossref_primary_10_1038_s41598_018_33795_z
crossref_primary_10_1007_s12572_025_00395_w
crossref_primary_10_1016_j_nanoen_2017_03_014
crossref_primary_10_1016_S1452_3981_23_17405_0
crossref_primary_10_1021_acsami_0c04941
crossref_primary_10_1021_acsnano_9b05030
crossref_primary_10_1002_aenm_201501339
crossref_primary_10_1021_jacs_6b12850
crossref_primary_10_1016_j_matdes_2017_03_084
crossref_primary_10_1016_j_progsurf_2016_11_001
crossref_primary_10_1021_acsami_5b04104
crossref_primary_10_1021_acs_nanolett_0c03431
crossref_primary_10_1039_C8CY00674A
crossref_primary_10_1039_D2TA07813A
crossref_primary_10_1007_s12274_018_2035_7
crossref_primary_10_1063_5_0064697
crossref_primary_10_1002_advs_201903730
crossref_primary_10_1071_EN15006
crossref_primary_10_1039_C8NR07447J
crossref_primary_10_1016_j_snb_2019_03_020
crossref_primary_10_1021_jacs_9b01044
crossref_primary_10_1016_j_saa_2021_120803
crossref_primary_10_7566_JPSJ_85_094606
crossref_primary_10_1039_D0QM00042F
crossref_primary_10_1039_C7CP06527B
crossref_primary_10_1021_acsami_0c08241
crossref_primary_10_1088_1361_6528_ad7144
crossref_primary_10_1016_j_talanta_2017_08_005
crossref_primary_10_1016_j_cocis_2019_01_014
crossref_primary_10_1016_j_cej_2021_129668
crossref_primary_10_1016_j_electacta_2018_05_052
crossref_primary_10_1002_pssb_202200312
crossref_primary_10_1016_j_cclet_2021_07_059
crossref_primary_10_1039_C5CS00448A
crossref_primary_10_1016_j_nanoen_2018_04_048
crossref_primary_10_1002_adfm_201906744
crossref_primary_10_1088_1361_6463_abfb18
crossref_primary_10_1021_acs_jpcc_5c01200
crossref_primary_10_1039_C7NR02951A
crossref_primary_10_1039_D2CP04582F
crossref_primary_10_1021_acsanm_9b01678
crossref_primary_10_1002_solr_202100611
crossref_primary_10_1016_j_cattod_2018_04_022
crossref_primary_10_1021_acs_jpcc_1c07575
crossref_primary_10_1039_D0NA00641F
crossref_primary_10_1063_5_0161292
crossref_primary_10_1002_adfm_202503186
crossref_primary_10_1021_acs_chemmater_9b00275
crossref_primary_10_1016_j_ijhydene_2024_02_002
crossref_primary_10_1016_j_mssp_2015_07_026
crossref_primary_10_1016_j_jece_2023_110209
crossref_primary_10_1021_acs_chemrev_9b00187
crossref_primary_10_1016_j_apcatb_2018_05_094
crossref_primary_10_1021_acs_jpcc_6b09731
crossref_primary_10_1021_acs_langmuir_8b00642
crossref_primary_10_1021_acs_nanolett_3c00697
crossref_primary_10_1016_j_jallcom_2019_01_223
crossref_primary_10_1016_j_surfin_2021_101367
crossref_primary_10_1002_cssc_202000905
crossref_primary_10_1021_acsomega_0c03743
crossref_primary_10_1039_C5CE01125F
crossref_primary_10_1002_ange_201502892
crossref_primary_10_1039_C6EE02265K
crossref_primary_10_1002_adfm_201901825
crossref_primary_10_1016_j_nanoen_2017_07_036
crossref_primary_10_3390_nano14141214
crossref_primary_10_1021_acsnano_6b01840
crossref_primary_10_1016_j_jphotochem_2018_03_016
crossref_primary_10_1016_j_susc_2019_04_007
crossref_primary_10_3389_fchem_2021_742794
crossref_primary_10_1039_C5NJ01882J
crossref_primary_10_1016_j_jmat_2016_11_005
crossref_primary_10_1021_jacsau_3c00600
crossref_primary_10_1016_j_cej_2021_133256
crossref_primary_10_1039_D4CY00345D
crossref_primary_10_1002_aenm_201501250
crossref_primary_10_1016_j_jcis_2017_12_003
crossref_primary_10_1002_admi_202101241
crossref_primary_10_1021_acsami_7b06265
crossref_primary_10_1016_j_apcatb_2023_123383
crossref_primary_10_3390_catal8040161
crossref_primary_10_1002_chem_201605473
crossref_primary_10_1063_5_0163354
crossref_primary_10_3390_ma8063128
crossref_primary_10_1002_anie_201502892
crossref_primary_10_1021_acs_jpcc_8b00205
Cites_doi 10.1021/nn203457a
10.1002/anie.201301652
10.1039/c1cp21194c
10.1038/nnano.2013.18
10.1039/c3cc46832a
10.1038/nmat3151
10.1088/0034-4885/76/4/046401
10.1021/nl4018385
10.1038/238037a0
10.1021/ja200086g
10.1021/ar3002393
10.1021/ja410230u
10.1016/j.jcat.2009.11.006
10.1021/nl1022354
10.1002/anie.200806116
10.1126/science.1203056
10.1021/nl8023164
10.1039/c3ee40656c
10.1039/C2CY20481A
10.1021/nn101994t
10.1038/277637a0
10.1021/cr00033a003
10.1038/nchem.1048
10.1021/nn102555u
10.1021/jp410049j
10.1021/ja309392x
10.1002/adma.201104241
10.1002/anie.201404259
10.1021/ja305225s
10.1021/ja104482t
10.1021/ja2072737
10.1016/j.jcat.2007.02.010
10.1021/ar300302z
10.1002/anie.201306504
10.1039/C1EE02875H
10.1021/ja310501y
10.1021/ja2011498
10.1126/science.1061051
10.1021/ja1086358
10.1021/nl2022459
10.1021/ar200331z
10.1021/jp209006n
10.1039/C0CP00917B
10.1021/ja410994f
10.1021/cr00033a004
10.1021/ja0315199
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/ja504097v
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9845
ExternalDocumentID 24972055
10_1021_ja504097v
c465466068
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a441t-8457c9d84903a0a90f3bc4278b3be72678f86d46c7c065e663a30e79d5d1472a3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 04:02:39 EDT 2025
Fri Jul 11 06:05:44 EDT 2025
Mon Jul 21 05:59:52 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Tue Jul 01 04:33:01 EDT 2025
Thu Aug 27 13:42:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a441t-8457c9d84903a0a90f3bc4278b3be72678f86d46c7c065e663a30e79d5d1472a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24972055
PQID 1545777345
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_2986643064
proquest_miscellaneous_1545777345
pubmed_primary_24972055
crossref_primary_10_1021_ja504097v
crossref_citationtrail_10_1021_ja504097v
acs_journals_10_1021_ja504097v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-16
PublicationDateYYYYMMDD 2014-07-16
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Seh Z. W. (ref2/cit2i) 2012; 24
Knight M. W. (ref12/cit12b) 2011; 332
Asahi R. (ref1/cit1b) 2001; 293
Thimsen E. (ref2/cit2e) 2011; 11
ref2/cit2r
Wang F. (ref2/cit2m) 2013; 135
Linic S. (ref9/cit9b) 2013; 46
Tanaka A. (ref2/cit2k) 2014; 136
Gao H. W. (ref2/cit2c) 2012; 6
Warren S. C. (ref2/cit2q) 2012; 5
Sastre F. (ref2/cit2p) 2013; 6
Zhang X. M. (ref2/cit2j) 2013; 76
Qiu J. J. (ref10/cit10) 2013; 135
Hagfeldt A. (ref15/cit15b) 1995; 95
Bian Z. F. (ref2/cit2a) 2014; 136
Fuku K. (ref2/cit2l) 2013; 52
Carim A. I. (ref11/cit11b) 2011; 5
Ingram D. B. (ref9/cit9a) 2011; 133
Primo A. (ref2/cit2g) 2011; 13
Wei W. (ref11/cit11c) 2008; 8
Mayer M. T. (ref1/cit1c) 2013; 46
Qian K. (ref3/cit3a) 2013; 3
Priebe J. B. (ref2/cit2h) 2013; 52
Rosseler O. (ref15/cit15d) 2010; 269
Pu Y. C. (ref6/cit6b) 2013; 13
Hoffmann M. R. (ref15/cit15c) 1995; 95
Sabio E. M. (ref7/cit7b) 2012; 116
Wei W. (ref11/cit11d) 2009; 48
Stevanovic A. (ref8/cit8) 2012; 134
Linic S. (ref2/cit2d) 2011; 10
Qian H. F. (ref2/cit2o) 2012; 45
Subramanian V. (ref7/cit7a) 2004; 126
Lee C. (ref1/cit1d) 2014; 118
Primo A. (ref2/cit2f) 2011; 133
Tanaka A. (ref4/cit4) 2012; 134
Murdoch M. (ref6/cit6a) 2011; 3
Bukasov R. (ref11/cit11a) 2010; 4
Lee Y. K. (ref13/cit13) 2011; 11
Qian K. (ref3/cit3b) 2007; 248
Mubeen S. (ref12/cit12a) 2013; 8
Inoue T. (ref15/cit15a) 1979; 277
Huss A. S. (ref14/cit14) 2010; 132
Fujishima A. (ref1/cit1a) 1972; 238
Silva C. G. (ref2/cit2b) 2011; 133
Awate S. V. (ref5/cit5) 2011; 13
Yan J. Q. (ref2/cit2n) 2013; 49
References_xml – volume: 6
  start-page: 234
  year: 2012
  ident: ref2/cit2c
  publication-title: ACS Nano
  doi: 10.1021/nn203457a
– volume: 52
  start-page: 7446
  year: 2013
  ident: ref2/cit2l
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301652
– volume: 13
  start-page: 11329
  year: 2011
  ident: ref5/cit5
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21194c
– volume: 8
  start-page: 247
  year: 2013
  ident: ref12/cit12a
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.18
– volume: 49
  start-page: 11767
  year: 2013
  ident: ref2/cit2n
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46832a
– volume: 10
  start-page: 911
  year: 2011
  ident: ref2/cit2d
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3151
– volume: 76
  start-page: 046401
  year: 2013
  ident: ref2/cit2j
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/4/046401
– volume: 13
  start-page: 3817
  year: 2013
  ident: ref6/cit6b
  publication-title: Nano Lett.
  doi: 10.1021/nl4018385
– volume: 238
  start-page: 37
  year: 1972
  ident: ref1/cit1a
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 133
  start-page: 5202
  year: 2011
  ident: ref9/cit9a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200086g
– volume: 46
  start-page: 1890
  year: 2013
  ident: ref9/cit9b
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3002393
– volume: 136
  start-page: 586
  year: 2014
  ident: ref2/cit2k
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410230u
– volume: 269
  start-page: 179
  year: 2010
  ident: ref15/cit15d
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.11.006
– volume: 11
  start-page: 35
  year: 2011
  ident: ref2/cit2e
  publication-title: Nano Lett.
  doi: 10.1021/nl1022354
– volume: 48
  start-page: 4210
  year: 2009
  ident: ref11/cit11d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200806116
– volume: 332
  start-page: 702
  year: 2011
  ident: ref12/cit12b
  publication-title: Science
  doi: 10.1126/science.1203056
– volume: 8
  start-page: 3446
  year: 2008
  ident: ref11/cit11c
  publication-title: Nano Lett.
  doi: 10.1021/nl8023164
– volume: 6
  start-page: 2211
  year: 2013
  ident: ref2/cit2p
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40656c
– volume: 3
  start-page: 679
  year: 2013
  ident: ref3/cit3a
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C2CY20481A
– volume: 4
  start-page: 6639
  year: 2010
  ident: ref11/cit11a
  publication-title: ACS Nano
  doi: 10.1021/nn101994t
– volume: 277
  start-page: 637
  year: 1979
  ident: ref15/cit15a
  publication-title: Nature
  doi: 10.1038/277637a0
– volume: 95
  start-page: 49
  year: 1995
  ident: ref15/cit15b
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a003
– volume: 3
  start-page: 489
  year: 2011
  ident: ref6/cit6a
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1048
– volume: 5
  start-page: 1818
  year: 2011
  ident: ref11/cit11b
  publication-title: ACS Nano
  doi: 10.1021/nn102555u
– volume: 118
  start-page: 598
  year: 2014
  ident: ref1/cit1d
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp410049j
– volume: 135
  start-page: 38
  year: 2013
  ident: ref10/cit10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309392x
– volume: 24
  start-page: 2310
  year: 2012
  ident: ref2/cit2i
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104241
– ident: ref2/cit2r
  doi: 10.1002/anie.201404259
– volume: 134
  start-page: 14526
  year: 2012
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305225s
– volume: 132
  start-page: 13963
  year: 2010
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104482t
– volume: 134
  start-page: 324
  year: 2012
  ident: ref8/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2072737
– volume: 248
  start-page: 137
  year: 2007
  ident: ref3/cit3b
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.02.010
– volume: 46
  start-page: 1558
  year: 2013
  ident: ref1/cit1c
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300302z
– volume: 52
  start-page: 11420
  year: 2013
  ident: ref2/cit2h
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201306504
– volume: 5
  start-page: 5133
  year: 2012
  ident: ref2/cit2q
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02875H
– volume: 135
  start-page: 5588
  year: 2013
  ident: ref2/cit2m
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310501y
– volume: 133
  start-page: 6930
  year: 2011
  ident: ref2/cit2f
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2011498
– volume: 293
  start-page: 269
  year: 2001
  ident: ref1/cit1b
  publication-title: Science
  doi: 10.1126/science.1061051
– volume: 133
  start-page: 595
  year: 2011
  ident: ref2/cit2b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1086358
– volume: 11
  start-page: 4251
  year: 2011
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl2022459
– volume: 45
  start-page: 1470
  year: 2012
  ident: ref2/cit2o
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200331z
– volume: 116
  start-page: 3161
  year: 2012
  ident: ref7/cit7b
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209006n
– volume: 13
  start-page: 886
  year: 2011
  ident: ref2/cit2g
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C0CP00917B
– volume: 136
  start-page: 458
  year: 2014
  ident: ref2/cit2a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410994f
– volume: 95
  start-page: 69
  year: 1995
  ident: ref15/cit15c
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
– volume: 126
  start-page: 4943
  year: 2004
  ident: ref7/cit7a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0315199
SSID ssj0004281
Score 2.587953
Snippet Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2)...
Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO₂)...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9842
SubjectTerms electron transfer
energy conversion
gold
nanogold
photocatalysis
photocatalysts
titanium dioxide
Title Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters
URI http://dx.doi.org/10.1021/ja504097v
https://www.ncbi.nlm.nih.gov/pubmed/24972055
https://www.proquest.com/docview/1545777345
https://www.proquest.com/docview/2986643064
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ07T8MwEMdPUAZYeD_KS-YxsAQ5jh3HbFVLQUhFiFLRrbIdR0KgFpWWoZ-ec9MUEBS2DJc4sS--38Xx_wBOlctCJ3kcGCltwFOGR1zQgEc2Qx5RLEv8BufGbXzd4jdt0Z6Dkxkr-MzrAwnqRZne52GBxYn0GVal2vzc_MiSsGBcmcRRIR_09VQfeuzb99AzgyfHcaW-ArVid07-O8nz-XBgzu3op1jjX7e8CssTriSV3BHWYM5112GxWpRz24B6c9jPtHXkDnkZfS-o9f1ERx4RNvvk3iu4-jG6IFe9l5TgpIvZdH4x0nwaOdLIhTg3oVW_fKheB5MiCoFG0hkECRfSqjThikaaakWzyFhfX8NExkmGsSpL4pTHVlqkEYcAoiPqpEpFGnLJdLQFpW6v63aAGPQ6gTgQZkhRqVCaG5lhgqVCE1JtaRkOsZc7k5fgrTNe32aYXxTdUYazYgA6diJB7ithvPxmejw1fc11N34zOipGsYO96Zc6dNf1htg0gqGUMuJitg1TSYw8hkxWhu3cBaZNYVIqGRVi979H2oMlRCjuv_aG8T6UBv2hO0BMGZjDsZt-AI2v3qU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ05T8MwFMctKAMs3Ec5DWJgCXIcO47ZUKGUowhREGyR7TgSompRD4Z-ep5zUEBUsGV4sR37xf69OP4_hA6lTX0rWOhpIYzHEgpXjBOPBSYFHpE0jdwB5-Zt2HhkV8_8uZDJcWdhoBF9KKmfbeKP1QWcTBAnTpvpfRrNAIRQF2id1lrjM5A08kvUFVEYlCpCX291K5Dpf1-BJmBltrzUF_I8RVnDsr9KXo-HA31sRj80G__X8kU0X1AmPs3dYglN2c4ymq2Vyd1WUL017KXKWHwH9Aye6J313LSHnwA9e_je6bm6ETvBF912gmEKhtg6Lwy3XkYWN3NZzlX0WD9_qDW8IqWCp4B7Bl7EuDAyiZgkgSJKkjTQxmXb0IG2gsLKlUZhwkIjDLCJBRxRAbFCJjzxmaAqWEOVTrdjNxDW4IMc4MBPgakSLhXTIoVwS_raJ8qQKtqF3oiLV6IfZ7vdFKKNsjuq6Kgch9gUguQuL0b7N9ODT9O3XIXjN6P9cjBj6E238aE6tjuEqgEThRAB45NtqIxCoDMgtCpazz3hsyoIUQUlnG_-9Uh7aLbx0LyJby5vr7fQHMAVc9-B_XAbVQa9od0BgBno3cxzPwAV-ucG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JT-QwEEZLLBJwYRtmaLYxiMNcgpzEjmNuqKFh2EUPGm6R7dgSAnWjXjjw6ylnaRaB4JaDYzt2OfUqjr8C2JbWhVawJNBCmIDlEV4xTgMWG4c8IiOX-gPOZ-fJ0TU7vuE3VaDoz8JgJ_pYU7_YxPer-iF3lcKAlwri1OszPY7DpN-u88HWXrP9cg4ySsMad0WaxLWS0OtbvRcy_bde6BO0LFxMaw4uRp0r_iy52xkO9I55eqfb-P3ez8NsRZtkrzSPBRiznUWYbtZJ3n5Aqz3sOWUsuUSKRosM9nv-9Uf-I4L2yJXXdfUzt0sOu_c5wVcxxthlZaR9-2TJWSnPuQTXrYN_zaOgSq0QKOSfQZAyLozMUyZprKiS1MXa-KwbOtZWROjBXJrkLDHCIKNYxBIVUytkzvOQiUjFP2Gi0-3YZSAabZEjJIQO2SrnUjEtHIZdMtQhVYY2YANHJKuWRj8rdr0jjDrq4WjAn3ouMlMJk_v8GPcfFd0aFX0o1Tg-KrRZT2iGo-k3QFTHdofYNOKiECJm_PMykUwTpDQktQb8Kq1h1BSGqiKinK989Ui_Yepyv5Wd_j0_WYUZZCzmPweHyRpMDHpDu44cM9AbhfE-A8Vf6Yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Plasmon-Driven+Water+Reduction%3A+Gold+Nanoparticle+Size+Matters&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Qian%2C+Kun&rft.au=Sweeny%2C+Brendan+C&rft.au=Johnston-Peck%2C+Aaron+C&rft.au=Niu%2C+Wenxin&rft.date=2014-07-16&rft.issn=1520-5126&rft.volume=136&rft.issue=28+p.9842-9845&rft.spage=9842&rft.epage=9845&rft_id=info:doi/10.1021%2Fja504097v&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon