Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters
Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-dri...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 28; pp. 9842 - 9845 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion. |
---|---|
AbstractList | Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO₂) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H₂O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO₂ conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion. Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion.Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion. Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2) heterostructures with different sizes of Au nanoparticles (NPs). Our study clearly demonstrates the essential role played by Au NP size in plasmon-driven H2O reduction and reveals two distinct mechanisms to clarify visible-light photocatalytic activity under different excitation conditions. The size of the Au NP governs the efficiency of plasmon-mediated electron transfer and plays a critical role in determining the reduction potentials of the electrons transferred to the TiO2 conduction band. Our discovery provides a facile method of manipulating photocatalytic activity simply by varying the Au NP size and is expected to greatly facilitate the design of suitable plasmonic photocatalysts for solar-to-fuel energy conversion. |
Author | Niu, Wenxin Qian, Kun DuChene, Joseph S Stach, Eric A Wei, Wei David Graham, Jeremy O Su, Dong Qiu, Jingjing Engelhard, Mark H Wang, Yi-Chung Sweeny, Brendan C Johnston-Peck, Aaron C |
AuthorAffiliation | Department of Chemistry and Center for Nanostructured Electronic Materials Center for Functional Nanomaterials Environmental Molecular Sciences Laboratory University of Florida Brookhaven National Laboratory Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – name: Center for Functional Nanomaterials – name: Department of Chemistry and Center for Nanostructured Electronic Materials – name: Brookhaven National Laboratory – name: Pacific Northwest National Laboratory – name: University of Florida – name: Environmental Molecular Sciences Laboratory |
Author_xml | – sequence: 1 givenname: Kun surname: Qian fullname: Qian, Kun organization: University of Florida – sequence: 2 givenname: Brendan C surname: Sweeny fullname: Sweeny, Brendan C organization: University of Florida – sequence: 3 givenname: Aaron C surname: Johnston-Peck fullname: Johnston-Peck, Aaron C organization: Brookhaven National Laboratory – sequence: 4 givenname: Wenxin surname: Niu fullname: Niu, Wenxin organization: University of Florida – sequence: 5 givenname: Jeremy O surname: Graham fullname: Graham, Jeremy O organization: University of Florida – sequence: 6 givenname: Joseph S surname: DuChene fullname: DuChene, Joseph S organization: University of Florida – sequence: 7 givenname: Jingjing surname: Qiu fullname: Qiu, Jingjing organization: University of Florida – sequence: 8 givenname: Yi-Chung surname: Wang fullname: Wang, Yi-Chung organization: University of Florida – sequence: 9 givenname: Mark H surname: Engelhard fullname: Engelhard, Mark H organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Dong surname: Su fullname: Su, Dong organization: Brookhaven National Laboratory – sequence: 11 givenname: Eric A surname: Stach fullname: Stach, Eric A organization: Brookhaven National Laboratory – sequence: 12 givenname: Wei David surname: Wei fullname: Wei, Wei David email: wei@chem.ufl.edu organization: University of Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24972055$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLw0AQB_BFKvahB7-A5CLoIXbfm3iTaqtQH1jFY5hsNpCSZutuUtBPb0prD1LwsAwLvxmG__RRp7KVQeiU4CuCKRnOQWCOY7U6QD0iKA4FobKDehhjGqpIsi7qez9vv5xG5Ah1KY8VxUL00HjWuBy0CV5K8AtbhbeuWJkq-IDauODVZI2uC1tdBxNbZsETVHYJri50aYJZ8W2CR6hb6I_RYQ6lNyfbOkDv47u30X04fZ48jG6mIXBO6jDiQuk4i3iMGWCIcc5SzamKUpYaRaWK8khmXGqlsRRGSgYMGxVnIiNcUWADdLGZu3T2szG-ThaF16YsoTK28QmNIyk5w-37jxLRLqMU46KlZ1vapAuTJUtXLMB9Jb8xteByA7Sz3juT7wjByfoEye4ErR3-sbqoYR1i7aAo93acbzpA-2RuG1e1Ee5xPzXykaY |
CitedBy_id | crossref_primary_10_1002_adom_201700004 crossref_primary_10_1039_C4RA12503G crossref_primary_10_1016_j_apsusc_2021_152196 crossref_primary_10_1002_admi_201600588 crossref_primary_10_3390_catal14070448 crossref_primary_10_1016_j_ccr_2024_216351 crossref_primary_10_1002_admi_201600348 crossref_primary_10_1021_acsanm_3c01671 crossref_primary_10_1016_j_cattod_2022_05_024 crossref_primary_10_1016_j_renene_2024_120484 crossref_primary_10_3389_fenrg_2024_1251188 crossref_primary_10_1039_C7NR08474A crossref_primary_10_1039_D2SE01201D crossref_primary_10_1021_acs_analchem_6b01261 crossref_primary_10_3390_cells12141893 crossref_primary_10_1002_anie_201901987 crossref_primary_10_1021_nl503585m crossref_primary_10_1016_S1872_2067_17_62990_5 crossref_primary_10_1021_jacs_5b06323 crossref_primary_10_1039_C8FD00144H crossref_primary_10_3390_catal11070848 crossref_primary_10_1002_ange_201711725 crossref_primary_10_1021_acsphotonics_6b00628 crossref_primary_10_1002_admi_201500169 crossref_primary_10_1039_C8GC01317A crossref_primary_10_1021_acs_jpcc_5b02357 crossref_primary_10_1063_5_0045590 crossref_primary_10_1039_D4CP00322E crossref_primary_10_1021_acs_jpcc_5b10531 crossref_primary_10_1021_jacs_9b13453 crossref_primary_10_1016_j_jcat_2018_06_008 crossref_primary_10_1002_asia_201701807 crossref_primary_10_1063_5_0027108 crossref_primary_10_1039_C5NR08521G crossref_primary_10_1039_C8NR05144E crossref_primary_10_1021_acssuschemeng_8b00643 crossref_primary_10_1039_C4RA15818K crossref_primary_10_1039_C6TA04468A crossref_primary_10_3390_molecules29102347 crossref_primary_10_1360_SSC_2024_0169 crossref_primary_10_1016_j_jcis_2017_03_089 crossref_primary_10_1021_acsami_9b07110 crossref_primary_10_1039_C7CC09770K crossref_primary_10_1016_j_apsusc_2023_158858 crossref_primary_10_1016_j_materresbull_2021_111422 crossref_primary_10_1002_aenm_202003159 crossref_primary_10_1021_acsnano_3c08182 crossref_primary_10_1016_j_jechem_2023_04_027 crossref_primary_10_1039_C7CP05378A crossref_primary_10_1021_jacs_0c07027 crossref_primary_10_1021_cs5018375 crossref_primary_10_1016_j_jcat_2017_08_018 crossref_primary_10_1021_acs_nanolett_3c00013 crossref_primary_10_1016_j_nanoen_2021_106638 crossref_primary_10_1007_s12274_022_4712_9 crossref_primary_10_1007_s11244_021_01552_8 crossref_primary_10_1021_acs_nanolett_5b02453 crossref_primary_10_1039_D4TA07839J crossref_primary_10_1146_annurev_physchem_052516_044948 crossref_primary_10_1039_C7CP07786F crossref_primary_10_1063_1_5098834 crossref_primary_10_1021_acs_nanolett_9b04895 crossref_primary_10_1002_adma_202006654 crossref_primary_10_1016_j_surfrep_2021_100532 crossref_primary_10_1039_C7CP07762A crossref_primary_10_1021_acs_jpclett_5b02393 crossref_primary_10_1021_jacs_7b04470 crossref_primary_10_1016_j_saa_2023_123137 crossref_primary_10_1038_s41570_022_00368_8 crossref_primary_10_1016_j_mssp_2015_07_054 crossref_primary_10_1039_C8RA05450A crossref_primary_10_1016_j_jcis_2024_01_159 crossref_primary_10_1002_ente_201700001 crossref_primary_10_1002_smll_201602583 crossref_primary_10_1016_j_cattod_2019_05_017 crossref_primary_10_1016_j_cclet_2018_03_027 crossref_primary_10_1038_srep16660 crossref_primary_10_1039_C6NR02547A crossref_primary_10_3390_catal14070417 crossref_primary_10_1038_srep42524 crossref_primary_10_1016_j_jpowsour_2022_232002 crossref_primary_10_1016_j_nantod_2017_08_008 crossref_primary_10_1007_s11426_015_5419_5 crossref_primary_10_1021_acsami_0c23164 crossref_primary_10_1021_acs_jpcc_3c05178 crossref_primary_10_1016_j_jcis_2017_10_053 crossref_primary_10_3390_nano10050912 crossref_primary_10_1016_j_ijhydene_2020_08_241 crossref_primary_10_1016_j_matlet_2015_04_030 crossref_primary_10_1557_jmr_2018_16 crossref_primary_10_1557_jmr_2016_128 crossref_primary_10_1016_j_physb_2020_412697 crossref_primary_10_1021_acsami_9b20231 crossref_primary_10_1021_acsanm_2c04012 crossref_primary_10_1016_j_apcatb_2017_11_026 crossref_primary_10_1016_S1872_2067_18_63094_3 crossref_primary_10_1038_srep18152 crossref_primary_10_1021_acscatal_9b00384 crossref_primary_10_1007_s10853_021_06184_7 crossref_primary_10_1016_j_apsusc_2018_01_308 crossref_primary_10_1016_j_omx_2020_100055 crossref_primary_10_1021_acscatal_9b00390 crossref_primary_10_1016_j_physb_2024_415970 crossref_primary_10_1021_jasms_0c00480 crossref_primary_10_1002_cctc_201600937 crossref_primary_10_1016_j_ijhydene_2019_02_120 crossref_primary_10_1021_acs_chemrev_9b00201 crossref_primary_10_1007_s11051_023_05850_y crossref_primary_10_1149_1945_7111_ab6a7c crossref_primary_10_3390_catal10020221 crossref_primary_10_1016_j_jcat_2016_04_011 crossref_primary_10_1021_acsami_1c16811 crossref_primary_10_1016_j_apcatb_2020_119618 crossref_primary_10_1007_s00604_019_3701_5 crossref_primary_10_1016_j_esci_2024_100312 crossref_primary_10_1557_mrs_2019_292 crossref_primary_10_1016_j_catcom_2020_106116 crossref_primary_10_1021_acsnano_6b01108 crossref_primary_10_1016_j_jclepro_2021_126200 crossref_primary_10_1063_5_0199589 crossref_primary_10_1002_cptc_201700165 crossref_primary_10_1063_1_4935750 crossref_primary_10_1016_j_nantod_2018_08_009 crossref_primary_10_1021_acsnano_6b00263 crossref_primary_10_1002_anie_201711725 crossref_primary_10_3390_nano12091580 crossref_primary_10_1016_j_jpowsour_2015_11_016 crossref_primary_10_1021_jacs_6b04175 crossref_primary_10_1021_jacs_7b08868 crossref_primary_10_1039_D1TA08950A crossref_primary_10_1002_chem_201801223 crossref_primary_10_3390_photochem2040052 crossref_primary_10_1016_j_nanoen_2018_02_040 crossref_primary_10_1039_C6RA11390G crossref_primary_10_1002_cplu_201500032 crossref_primary_10_35848_1347_4065_ac2ab5 crossref_primary_10_1002_adma_202414959 crossref_primary_10_1039_C8CC02853B crossref_primary_10_1088_2053_1591_2_9_095021 crossref_primary_10_3390_ijms25137241 crossref_primary_10_1002_cnma_201900187 crossref_primary_10_1002_ente_202401991 crossref_primary_10_1016_j_matlet_2016_08_066 crossref_primary_10_1039_D1SC00064K crossref_primary_10_1016_j_solener_2019_10_022 crossref_primary_10_1016_j_apcatb_2021_120341 crossref_primary_10_1186_s11671_016_1492_8 crossref_primary_10_1016_j_chempr_2018_06_004 crossref_primary_10_1002_smll_201703610 crossref_primary_10_1016_j_mssp_2018_12_026 crossref_primary_10_1021_acs_jpcc_7b03566 crossref_primary_10_1088_1361_648X_aa85ef crossref_primary_10_1021_acsnano_0c06278 crossref_primary_10_1021_acsami_8b17663 crossref_primary_10_1021_acsenergylett_1c00563 crossref_primary_10_1021_acs_langmuir_4c00267 crossref_primary_10_1002_asia_202001202 crossref_primary_10_1016_j_ijhydene_2019_03_189 crossref_primary_10_1016_j_rser_2025_115490 crossref_primary_10_1021_acsami_2c10152 crossref_primary_10_1007_s10562_015_1568_6 crossref_primary_10_1039_C5RA25337C crossref_primary_10_1039_D3NR02755D crossref_primary_10_1021_acscatal_4c01544 crossref_primary_10_1007_s00604_019_3401_1 crossref_primary_10_1016_j_chemosphere_2024_142995 crossref_primary_10_1021_acsami_5b06287 crossref_primary_10_1021_jacs_8b07767 crossref_primary_10_4028_www_scientific_net_AMM_886_107 crossref_primary_10_1039_D4CY00084F crossref_primary_10_1039_C5TC01406A crossref_primary_10_1021_acsnano_3c00758 crossref_primary_10_1039_C8CP04241A crossref_primary_10_1002_ppsc_201700297 crossref_primary_10_1016_j_vacuum_2016_04_031 crossref_primary_10_1039_D5CC00438A crossref_primary_10_3390_catal13060946 crossref_primary_10_1021_acsnano_9b00219 crossref_primary_10_1021_acsomega_0c05021 crossref_primary_10_1002_eem2_12338 crossref_primary_10_1021_acsaem_9b01730 crossref_primary_10_1039_C9CC02574J crossref_primary_10_1021_acscatal_3c02550 crossref_primary_10_1021_jacs_6b10983 crossref_primary_10_1016_j_solmat_2016_09_037 crossref_primary_10_1016_j_ijhydene_2020_02_208 crossref_primary_10_1146_annurev_physchem_090519_045502 crossref_primary_10_1016_j_cej_2020_124558 crossref_primary_10_1021_acsomega_2c04129 crossref_primary_10_1016_j_cej_2022_136440 crossref_primary_10_1088_1361_6528_aaf17e crossref_primary_10_1021_acsaem_9b00091 crossref_primary_10_1021_acs_langmuir_7b01117 crossref_primary_10_1007_s12274_016_1225_4 crossref_primary_10_1016_j_electacta_2017_11_106 crossref_primary_10_3390_nano13040660 crossref_primary_10_1016_j_apcatb_2017_10_045 crossref_primary_10_1002_smll_202101638 crossref_primary_10_1093_nsr_nwx019 crossref_primary_10_1039_D0DT00670J crossref_primary_10_1021_acscatal_8b00791 crossref_primary_10_3390_catal10050539 crossref_primary_10_1002_adma_201405674 crossref_primary_10_1016_j_apsusc_2021_151953 crossref_primary_10_1063_1_5057366 crossref_primary_10_1021_acs_jpcc_9b02769 crossref_primary_10_1016_j_physrep_2022_07_002 crossref_primary_10_1021_acsnano_3c03575 crossref_primary_10_1016_j_apsusc_2018_09_031 crossref_primary_10_1002_cctc_201901799 crossref_primary_10_1016_j_elecom_2018_10_005 crossref_primary_10_1016_j_mser_2017_11_001 crossref_primary_10_1002_ppsc_201500059 crossref_primary_10_1021_jacs_2c01272 crossref_primary_10_1021_acsnano_0c04736 crossref_primary_10_1021_acs_nanolett_8b01675 crossref_primary_10_1021_cm5039914 crossref_primary_10_1111_jace_15520 crossref_primary_10_1002_smll_201900975 crossref_primary_10_1021_acs_chemrev_7b00430 crossref_primary_10_1021_acsnano_2c12314 crossref_primary_10_1016_j_catcom_2019_105921 crossref_primary_10_1002_ange_201901987 crossref_primary_10_1021_acsami_5b01918 crossref_primary_10_1016_j_chemphys_2014_10_016 crossref_primary_10_1038_s41598_018_33795_z crossref_primary_10_1007_s12572_025_00395_w crossref_primary_10_1016_j_nanoen_2017_03_014 crossref_primary_10_1016_S1452_3981_23_17405_0 crossref_primary_10_1021_acsami_0c04941 crossref_primary_10_1021_acsnano_9b05030 crossref_primary_10_1002_aenm_201501339 crossref_primary_10_1021_jacs_6b12850 crossref_primary_10_1016_j_matdes_2017_03_084 crossref_primary_10_1016_j_progsurf_2016_11_001 crossref_primary_10_1021_acsami_5b04104 crossref_primary_10_1021_acs_nanolett_0c03431 crossref_primary_10_1039_C8CY00674A crossref_primary_10_1039_D2TA07813A crossref_primary_10_1007_s12274_018_2035_7 crossref_primary_10_1063_5_0064697 crossref_primary_10_1002_advs_201903730 crossref_primary_10_1071_EN15006 crossref_primary_10_1039_C8NR07447J crossref_primary_10_1016_j_snb_2019_03_020 crossref_primary_10_1021_jacs_9b01044 crossref_primary_10_1016_j_saa_2021_120803 crossref_primary_10_7566_JPSJ_85_094606 crossref_primary_10_1039_D0QM00042F crossref_primary_10_1039_C7CP06527B crossref_primary_10_1021_acsami_0c08241 crossref_primary_10_1088_1361_6528_ad7144 crossref_primary_10_1016_j_talanta_2017_08_005 crossref_primary_10_1016_j_cocis_2019_01_014 crossref_primary_10_1016_j_cej_2021_129668 crossref_primary_10_1016_j_electacta_2018_05_052 crossref_primary_10_1002_pssb_202200312 crossref_primary_10_1016_j_cclet_2021_07_059 crossref_primary_10_1039_C5CS00448A crossref_primary_10_1016_j_nanoen_2018_04_048 crossref_primary_10_1002_adfm_201906744 crossref_primary_10_1088_1361_6463_abfb18 crossref_primary_10_1021_acs_jpcc_5c01200 crossref_primary_10_1039_C7NR02951A crossref_primary_10_1039_D2CP04582F crossref_primary_10_1021_acsanm_9b01678 crossref_primary_10_1002_solr_202100611 crossref_primary_10_1016_j_cattod_2018_04_022 crossref_primary_10_1021_acs_jpcc_1c07575 crossref_primary_10_1039_D0NA00641F crossref_primary_10_1063_5_0161292 crossref_primary_10_1002_adfm_202503186 crossref_primary_10_1021_acs_chemmater_9b00275 crossref_primary_10_1016_j_ijhydene_2024_02_002 crossref_primary_10_1016_j_mssp_2015_07_026 crossref_primary_10_1016_j_jece_2023_110209 crossref_primary_10_1021_acs_chemrev_9b00187 crossref_primary_10_1016_j_apcatb_2018_05_094 crossref_primary_10_1021_acs_jpcc_6b09731 crossref_primary_10_1021_acs_langmuir_8b00642 crossref_primary_10_1021_acs_nanolett_3c00697 crossref_primary_10_1016_j_jallcom_2019_01_223 crossref_primary_10_1016_j_surfin_2021_101367 crossref_primary_10_1002_cssc_202000905 crossref_primary_10_1021_acsomega_0c03743 crossref_primary_10_1039_C5CE01125F crossref_primary_10_1002_ange_201502892 crossref_primary_10_1039_C6EE02265K crossref_primary_10_1002_adfm_201901825 crossref_primary_10_1016_j_nanoen_2017_07_036 crossref_primary_10_3390_nano14141214 crossref_primary_10_1021_acsnano_6b01840 crossref_primary_10_1016_j_jphotochem_2018_03_016 crossref_primary_10_1016_j_susc_2019_04_007 crossref_primary_10_3389_fchem_2021_742794 crossref_primary_10_1039_C5NJ01882J crossref_primary_10_1016_j_jmat_2016_11_005 crossref_primary_10_1021_jacsau_3c00600 crossref_primary_10_1016_j_cej_2021_133256 crossref_primary_10_1039_D4CY00345D crossref_primary_10_1002_aenm_201501250 crossref_primary_10_1016_j_jcis_2017_12_003 crossref_primary_10_1002_admi_202101241 crossref_primary_10_1021_acsami_7b06265 crossref_primary_10_1016_j_apcatb_2023_123383 crossref_primary_10_3390_catal8040161 crossref_primary_10_1002_chem_201605473 crossref_primary_10_1063_5_0163354 crossref_primary_10_3390_ma8063128 crossref_primary_10_1002_anie_201502892 crossref_primary_10_1021_acs_jpcc_8b00205 |
Cites_doi | 10.1021/nn203457a 10.1002/anie.201301652 10.1039/c1cp21194c 10.1038/nnano.2013.18 10.1039/c3cc46832a 10.1038/nmat3151 10.1088/0034-4885/76/4/046401 10.1021/nl4018385 10.1038/238037a0 10.1021/ja200086g 10.1021/ar3002393 10.1021/ja410230u 10.1016/j.jcat.2009.11.006 10.1021/nl1022354 10.1002/anie.200806116 10.1126/science.1203056 10.1021/nl8023164 10.1039/c3ee40656c 10.1039/C2CY20481A 10.1021/nn101994t 10.1038/277637a0 10.1021/cr00033a003 10.1038/nchem.1048 10.1021/nn102555u 10.1021/jp410049j 10.1021/ja309392x 10.1002/adma.201104241 10.1002/anie.201404259 10.1021/ja305225s 10.1021/ja104482t 10.1021/ja2072737 10.1016/j.jcat.2007.02.010 10.1021/ar300302z 10.1002/anie.201306504 10.1039/C1EE02875H 10.1021/ja310501y 10.1021/ja2011498 10.1126/science.1061051 10.1021/ja1086358 10.1021/nl2022459 10.1021/ar200331z 10.1021/jp209006n 10.1039/C0CP00917B 10.1021/ja410994f 10.1021/cr00033a004 10.1021/ja0315199 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja504097v |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9845 |
ExternalDocumentID | 24972055 10_1021_ja504097v c465466068 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a441t-8457c9d84903a0a90f3bc4278b3be72678f86d46c7c065e663a30e79d5d1472a3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 04:02:39 EDT 2025 Fri Jul 11 06:05:44 EDT 2025 Mon Jul 21 05:59:52 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Tue Jul 01 04:33:01 EDT 2025 Thu Aug 27 13:42:20 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-8457c9d84903a0a90f3bc4278b3be72678f86d46c7c065e663a30e79d5d1472a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24972055 |
PQID | 1545777345 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2986643064 proquest_miscellaneous_1545777345 pubmed_primary_24972055 crossref_primary_10_1021_ja504097v crossref_citationtrail_10_1021_ja504097v acs_journals_10_1021_ja504097v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-16 |
PublicationDateYYYYMMDD | 2014-07-16 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Seh Z. W. (ref2/cit2i) 2012; 24 Knight M. W. (ref12/cit12b) 2011; 332 Asahi R. (ref1/cit1b) 2001; 293 Thimsen E. (ref2/cit2e) 2011; 11 ref2/cit2r Wang F. (ref2/cit2m) 2013; 135 Linic S. (ref9/cit9b) 2013; 46 Tanaka A. (ref2/cit2k) 2014; 136 Gao H. W. (ref2/cit2c) 2012; 6 Warren S. C. (ref2/cit2q) 2012; 5 Sastre F. (ref2/cit2p) 2013; 6 Zhang X. M. (ref2/cit2j) 2013; 76 Qiu J. J. (ref10/cit10) 2013; 135 Hagfeldt A. (ref15/cit15b) 1995; 95 Bian Z. F. (ref2/cit2a) 2014; 136 Fuku K. (ref2/cit2l) 2013; 52 Carim A. I. (ref11/cit11b) 2011; 5 Ingram D. B. (ref9/cit9a) 2011; 133 Primo A. (ref2/cit2g) 2011; 13 Wei W. (ref11/cit11c) 2008; 8 Mayer M. T. (ref1/cit1c) 2013; 46 Qian K. (ref3/cit3a) 2013; 3 Priebe J. B. (ref2/cit2h) 2013; 52 Rosseler O. (ref15/cit15d) 2010; 269 Pu Y. C. (ref6/cit6b) 2013; 13 Hoffmann M. R. (ref15/cit15c) 1995; 95 Sabio E. M. (ref7/cit7b) 2012; 116 Wei W. (ref11/cit11d) 2009; 48 Stevanovic A. (ref8/cit8) 2012; 134 Linic S. (ref2/cit2d) 2011; 10 Qian H. F. (ref2/cit2o) 2012; 45 Subramanian V. (ref7/cit7a) 2004; 126 Lee C. (ref1/cit1d) 2014; 118 Primo A. (ref2/cit2f) 2011; 133 Tanaka A. (ref4/cit4) 2012; 134 Murdoch M. (ref6/cit6a) 2011; 3 Bukasov R. (ref11/cit11a) 2010; 4 Lee Y. K. (ref13/cit13) 2011; 11 Qian K. (ref3/cit3b) 2007; 248 Mubeen S. (ref12/cit12a) 2013; 8 Inoue T. (ref15/cit15a) 1979; 277 Huss A. S. (ref14/cit14) 2010; 132 Fujishima A. (ref1/cit1a) 1972; 238 Silva C. G. (ref2/cit2b) 2011; 133 Awate S. V. (ref5/cit5) 2011; 13 Yan J. Q. (ref2/cit2n) 2013; 49 |
References_xml | – volume: 6 start-page: 234 year: 2012 ident: ref2/cit2c publication-title: ACS Nano doi: 10.1021/nn203457a – volume: 52 start-page: 7446 year: 2013 ident: ref2/cit2l publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301652 – volume: 13 start-page: 11329 year: 2011 ident: ref5/cit5 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21194c – volume: 8 start-page: 247 year: 2013 ident: ref12/cit12a publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.18 – volume: 49 start-page: 11767 year: 2013 ident: ref2/cit2n publication-title: Chem. Commun. doi: 10.1039/c3cc46832a – volume: 10 start-page: 911 year: 2011 ident: ref2/cit2d publication-title: Nat. Mater. doi: 10.1038/nmat3151 – volume: 76 start-page: 046401 year: 2013 ident: ref2/cit2j publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/4/046401 – volume: 13 start-page: 3817 year: 2013 ident: ref6/cit6b publication-title: Nano Lett. doi: 10.1021/nl4018385 – volume: 238 start-page: 37 year: 1972 ident: ref1/cit1a publication-title: Nature doi: 10.1038/238037a0 – volume: 133 start-page: 5202 year: 2011 ident: ref9/cit9a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200086g – volume: 46 start-page: 1890 year: 2013 ident: ref9/cit9b publication-title: Acc. Chem. Res. doi: 10.1021/ar3002393 – volume: 136 start-page: 586 year: 2014 ident: ref2/cit2k publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410230u – volume: 269 start-page: 179 year: 2010 ident: ref15/cit15d publication-title: J. Catal. doi: 10.1016/j.jcat.2009.11.006 – volume: 11 start-page: 35 year: 2011 ident: ref2/cit2e publication-title: Nano Lett. doi: 10.1021/nl1022354 – volume: 48 start-page: 4210 year: 2009 ident: ref11/cit11d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200806116 – volume: 332 start-page: 702 year: 2011 ident: ref12/cit12b publication-title: Science doi: 10.1126/science.1203056 – volume: 8 start-page: 3446 year: 2008 ident: ref11/cit11c publication-title: Nano Lett. doi: 10.1021/nl8023164 – volume: 6 start-page: 2211 year: 2013 ident: ref2/cit2p publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40656c – volume: 3 start-page: 679 year: 2013 ident: ref3/cit3a publication-title: Catal. Sci. Technol. doi: 10.1039/C2CY20481A – volume: 4 start-page: 6639 year: 2010 ident: ref11/cit11a publication-title: ACS Nano doi: 10.1021/nn101994t – volume: 277 start-page: 637 year: 1979 ident: ref15/cit15a publication-title: Nature doi: 10.1038/277637a0 – volume: 95 start-page: 49 year: 1995 ident: ref15/cit15b publication-title: Chem. Rev. doi: 10.1021/cr00033a003 – volume: 3 start-page: 489 year: 2011 ident: ref6/cit6a publication-title: Nat. Chem. doi: 10.1038/nchem.1048 – volume: 5 start-page: 1818 year: 2011 ident: ref11/cit11b publication-title: ACS Nano doi: 10.1021/nn102555u – volume: 118 start-page: 598 year: 2014 ident: ref1/cit1d publication-title: J. Phys. Chem. A doi: 10.1021/jp410049j – volume: 135 start-page: 38 year: 2013 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309392x – volume: 24 start-page: 2310 year: 2012 ident: ref2/cit2i publication-title: Adv. Mater. doi: 10.1002/adma.201104241 – ident: ref2/cit2r doi: 10.1002/anie.201404259 – volume: 134 start-page: 14526 year: 2012 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305225s – volume: 132 start-page: 13963 year: 2010 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104482t – volume: 134 start-page: 324 year: 2012 ident: ref8/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2072737 – volume: 248 start-page: 137 year: 2007 ident: ref3/cit3b publication-title: J. Catal. doi: 10.1016/j.jcat.2007.02.010 – volume: 46 start-page: 1558 year: 2013 ident: ref1/cit1c publication-title: Acc. Chem. Res. doi: 10.1021/ar300302z – volume: 52 start-page: 11420 year: 2013 ident: ref2/cit2h publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201306504 – volume: 5 start-page: 5133 year: 2012 ident: ref2/cit2q publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02875H – volume: 135 start-page: 5588 year: 2013 ident: ref2/cit2m publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310501y – volume: 133 start-page: 6930 year: 2011 ident: ref2/cit2f publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2011498 – volume: 293 start-page: 269 year: 2001 ident: ref1/cit1b publication-title: Science doi: 10.1126/science.1061051 – volume: 133 start-page: 595 year: 2011 ident: ref2/cit2b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1086358 – volume: 11 start-page: 4251 year: 2011 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl2022459 – volume: 45 start-page: 1470 year: 2012 ident: ref2/cit2o publication-title: Acc. Chem. Res. doi: 10.1021/ar200331z – volume: 116 start-page: 3161 year: 2012 ident: ref7/cit7b publication-title: J. Phys. Chem. C doi: 10.1021/jp209006n – volume: 13 start-page: 886 year: 2011 ident: ref2/cit2g publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C0CP00917B – volume: 136 start-page: 458 year: 2014 ident: ref2/cit2a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410994f – volume: 95 start-page: 69 year: 1995 ident: ref15/cit15c publication-title: Chem. Rev. doi: 10.1021/cr00033a004 – volume: 126 start-page: 4943 year: 2004 ident: ref7/cit7a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0315199 |
SSID | ssj0004281 |
Score | 2.587953 |
Snippet | Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO2)... Water reduction under two different visible-light ranges (λ > 400 nm and λ > 435 nm) was investigated in gold-loaded titanium dioxide (Au-TiO₂)... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9842 |
SubjectTerms | electron transfer energy conversion gold nanogold photocatalysis photocatalysts titanium dioxide |
Title | Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters |
URI | http://dx.doi.org/10.1021/ja504097v https://www.ncbi.nlm.nih.gov/pubmed/24972055 https://www.proquest.com/docview/1545777345 https://www.proquest.com/docview/2986643064 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ07T8MwEMdPUAZYeD_KS-YxsAQ5jh3HbFVLQUhFiFLRrbIdR0KgFpWWoZ-ec9MUEBS2DJc4sS--38Xx_wBOlctCJ3kcGCltwFOGR1zQgEc2Qx5RLEv8BufGbXzd4jdt0Z6Dkxkr-MzrAwnqRZne52GBxYn0GVal2vzc_MiSsGBcmcRRIR_09VQfeuzb99AzgyfHcaW-ArVid07-O8nz-XBgzu3op1jjX7e8CssTriSV3BHWYM5112GxWpRz24B6c9jPtHXkDnkZfS-o9f1ERx4RNvvk3iu4-jG6IFe9l5TgpIvZdH4x0nwaOdLIhTg3oVW_fKheB5MiCoFG0hkECRfSqjThikaaakWzyFhfX8NExkmGsSpL4pTHVlqkEYcAoiPqpEpFGnLJdLQFpW6v63aAGPQ6gTgQZkhRqVCaG5lhgqVCE1JtaRkOsZc7k5fgrTNe32aYXxTdUYazYgA6diJB7ithvPxmejw1fc11N34zOipGsYO96Zc6dNf1htg0gqGUMuJitg1TSYw8hkxWhu3cBaZNYVIqGRVi979H2oMlRCjuv_aG8T6UBv2hO0BMGZjDsZt-AI2v3qU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ05T8MwFMctKAMs3Ec5DWJgCXIcO47ZUKGUowhREGyR7TgSompRD4Z-ep5zUEBUsGV4sR37xf69OP4_hA6lTX0rWOhpIYzHEgpXjBOPBSYFHpE0jdwB5-Zt2HhkV8_8uZDJcWdhoBF9KKmfbeKP1QWcTBAnTpvpfRrNAIRQF2id1lrjM5A08kvUFVEYlCpCX291K5Dpf1-BJmBltrzUF_I8RVnDsr9KXo-HA31sRj80G__X8kU0X1AmPs3dYglN2c4ymq2Vyd1WUL017KXKWHwH9Aye6J313LSHnwA9e_je6bm6ETvBF912gmEKhtg6Lwy3XkYWN3NZzlX0WD9_qDW8IqWCp4B7Bl7EuDAyiZgkgSJKkjTQxmXb0IG2gsLKlUZhwkIjDLCJBRxRAbFCJjzxmaAqWEOVTrdjNxDW4IMc4MBPgakSLhXTIoVwS_raJ8qQKtqF3oiLV6IfZ7vdFKKNsjuq6Kgch9gUguQuL0b7N9ODT9O3XIXjN6P9cjBj6E238aE6tjuEqgEThRAB45NtqIxCoDMgtCpazz3hsyoIUQUlnG_-9Uh7aLbx0LyJby5vr7fQHMAVc9-B_XAbVQa9od0BgBno3cxzPwAV-ucG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JT-QwEEZLLBJwYRtmaLYxiMNcgpzEjmNuqKFh2EUPGm6R7dgSAnWjXjjw6ylnaRaB4JaDYzt2OfUqjr8C2JbWhVawJNBCmIDlEV4xTgMWG4c8IiOX-gPOZ-fJ0TU7vuE3VaDoz8JgJ_pYU7_YxPer-iF3lcKAlwri1OszPY7DpN-u88HWXrP9cg4ySsMad0WaxLWS0OtbvRcy_bde6BO0LFxMaw4uRp0r_iy52xkO9I55eqfb-P3ez8NsRZtkrzSPBRiznUWYbtZJ3n5Aqz3sOWUsuUSKRosM9nv-9Uf-I4L2yJXXdfUzt0sOu_c5wVcxxthlZaR9-2TJWSnPuQTXrYN_zaOgSq0QKOSfQZAyLozMUyZprKiS1MXa-KwbOtZWROjBXJrkLDHCIKNYxBIVUytkzvOQiUjFP2Gi0-3YZSAabZEjJIQO2SrnUjEtHIZdMtQhVYY2YANHJKuWRj8rdr0jjDrq4WjAn3ouMlMJk_v8GPcfFd0aFX0o1Tg-KrRZT2iGo-k3QFTHdofYNOKiECJm_PMykUwTpDQktQb8Kq1h1BSGqiKinK989Ui_Yepyv5Wd_j0_WYUZZCzmPweHyRpMDHpDu44cM9AbhfE-A8Vf6Yk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Plasmon-Driven+Water+Reduction%3A+Gold+Nanoparticle+Size+Matters&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Qian%2C+Kun&rft.au=Sweeny%2C+Brendan+C&rft.au=Johnston-Peck%2C+Aaron+C&rft.au=Niu%2C+Wenxin&rft.date=2014-07-16&rft.issn=1520-5126&rft.volume=136&rft.issue=28+p.9842-9845&rft.spage=9842&rft.epage=9845&rft_id=info:doi/10.1021%2Fja504097v&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |