Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting
Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH)...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 7; pp. 2843 - 2850 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co–Bi), in 1 M Na2CO3, reaching 10 mA/cm2 at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h. |
---|---|
AbstractList | Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co-Bi), in 1 M Na2CO3, reaching 10 mA/cm(2) at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h. Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co-Bi), in 1 M Na2CO3, reaching 10 mA/cm(2) at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h.Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co-Bi), in 1 M Na2CO3, reaching 10 mA/cm(2) at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h. Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co–Bᵢ), in 1 M Na₂CO₃, reaching 10 mA/cm² at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h. Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co–Bi), in 1 M Na2CO3, reaching 10 mA/cm2 at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h. |
Author | Lin, Jung-Fu Mullins, C. Buddie Chemelewski, William D Bard, Allen J Lee, Heung-Chan |
AuthorAffiliation | Department of Chemistry Department of Geological Sciences, Jackson School of Geosciences Department of Chemical Engineering Texas Materials Institute Center for Electrochemistry University of Texas at Austin |
AuthorAffiliation_xml | – name: Texas Materials Institute – name: Department of Chemical Engineering – name: Department of Chemistry – name: Department of Geological Sciences, Jackson School of Geosciences – name: University of Texas at Austin – name: Center for Electrochemistry |
Author_xml | – sequence: 1 givenname: William D surname: Chemelewski fullname: Chemelewski, William D – sequence: 2 givenname: Heung-Chan surname: Lee fullname: Lee, Heung-Chan – sequence: 3 givenname: Jung-Fu surname: Lin fullname: Lin, Jung-Fu – sequence: 4 givenname: Allen J surname: Bard fullname: Bard, Allen J – sequence: 5 givenname: C. Buddie surname: Mullins fullname: Mullins, C. Buddie email: mullins@che.utexas.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24475949$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9LwzAUB_Agim7Tg_-A9CLooS5JkzQ7ylAnCBV_4MFDiemr60ibmqTi_ns7Nz2I4CnJ4_MC7_uGaLuxDSB0SPAZwZSMF4oRIhOuttCAcIpjTqjYRgOMMY1TKZI9NPR-0T8ZlWQX7VHGUj5hkwF6Pq-ta-e289ElZNksyj6Wr9BEF-_WdKGyTXQHSn9dpioos_QhKq2Lbuc2WDCgg7N6DnWllYmeVAAX3bemCqFqXvfRTqmMh4PNOUKPlxcP01l8k11dT89vYsUYCbEgQqdAC0kLjftSqiWnaSEZFSUvC0ppQpkQissklRLzUqS6YAKXHLhUIJIROln_2zr71oEPeV15DcaoBvrBctoPnkhBcfIvJRxjIdmEsJ4ebWj3UkORt66qlVvm39n14HQNtLPeOyh_CMH5ai_5z156O_5ldRXUKtbgVGX-7Dhedyjt84XtXNNH-If7BGl4mZs |
CitedBy_id | crossref_primary_10_1039_C7SE00043J crossref_primary_10_1016_j_jelechem_2023_117705 crossref_primary_10_1002_asia_201700964 crossref_primary_10_1002_cctc_202300926 crossref_primary_10_1016_j_jallcom_2022_165496 crossref_primary_10_1039_C7CC09105B crossref_primary_10_1002_celc_202400047 crossref_primary_10_1039_C6DT02292H crossref_primary_10_20964_2019_05_24 crossref_primary_10_1021_acs_jpcc_9b01974 crossref_primary_10_1002_adfm_201601581 crossref_primary_10_1002_ange_201503407 crossref_primary_10_1016_j_colsurfa_2017_02_017 crossref_primary_10_1002_cplu_201900512 crossref_primary_10_1002_adsu_201700044 crossref_primary_10_1002_ente_201600166 crossref_primary_10_1016_j_ceramint_2024_03_183 crossref_primary_10_1002_smll_202207999 crossref_primary_10_1039_C5CC02626A crossref_primary_10_1002_smll_202306274 crossref_primary_10_3390_catal12060594 crossref_primary_10_1002_smll_201600382 crossref_primary_10_1021_jacs_8b05294 crossref_primary_10_1039_C9TA04442F crossref_primary_10_1016_j_electacta_2021_138795 crossref_primary_10_3389_fchem_2021_742459 crossref_primary_10_1002_smtd_202301474 crossref_primary_10_1002_anie_201813440 crossref_primary_10_1021_jacs_8b13701 crossref_primary_10_1039_D0TA03470C crossref_primary_10_1007_s10854_017_6335_6 crossref_primary_10_1016_j_jechem_2020_11_038 crossref_primary_10_1016_j_jpowsour_2015_07_071 crossref_primary_10_1021_acsaem_8b01345 crossref_primary_10_1063_5_0061729 crossref_primary_10_1002_adfm_202111180 crossref_primary_10_1016_j_apcata_2022_118810 crossref_primary_10_1039_C8CY00656C crossref_primary_10_1021_acscatal_9b00492 crossref_primary_10_1016_j_ijhydene_2020_04_135 crossref_primary_10_1002_asia_202401190 crossref_primary_10_1016_j_electacta_2022_140835 crossref_primary_10_1039_D0NR02697B crossref_primary_10_1007_s12274_021_3451_7 crossref_primary_10_1016_j_jelechem_2020_114844 crossref_primary_10_1039_D1TA01014J crossref_primary_10_1002_chem_202404391 crossref_primary_10_1016_j_apsusc_2022_156247 crossref_primary_10_1039_D2DT01111E crossref_primary_10_1002_aenm_201600621 crossref_primary_10_1007_s10800_016_0948_y crossref_primary_10_1016_j_ijhydene_2019_09_004 crossref_primary_10_1021_cr300459q crossref_primary_10_1038_s41467_019_13092_7 crossref_primary_10_1039_C8TA07343K crossref_primary_10_1039_D1NR02074A crossref_primary_10_1039_C7CY00035A crossref_primary_10_3390_molecules25122802 crossref_primary_10_1007_s10008_017_3774_1 crossref_primary_10_1021_acs_jpclett_4c02493 crossref_primary_10_1002_adma_202305685 crossref_primary_10_2139_ssrn_4143275 crossref_primary_10_1016_j_jcis_2022_05_051 crossref_primary_10_1016_j_jallcom_2018_05_305 crossref_primary_10_1002_cssc_201700522 crossref_primary_10_1002_cssc_201800256 crossref_primary_10_1016_j_ijhydene_2015_11_165 crossref_primary_10_1016_j_cattod_2018_03_041 crossref_primary_10_1246_cl_230240 crossref_primary_10_1515_zpch_2019_1479 crossref_primary_10_1002_aenm_201700659 crossref_primary_10_1021_acs_chemmater_5b03404 crossref_primary_10_1039_C6TA08719A crossref_primary_10_1016_j_nanoen_2015_12_029 crossref_primary_10_1002_ange_201813440 crossref_primary_10_1016_j_apcatb_2021_120203 crossref_primary_10_1016_j_jmst_2016_11_017 crossref_primary_10_1039_C6TA08273D crossref_primary_10_1063_1_4890650 crossref_primary_10_1002_cssc_201801351 crossref_primary_10_1016_j_ceramint_2022_08_187 crossref_primary_10_1016_j_cej_2020_126134 crossref_primary_10_1016_j_apsusc_2019_144123 crossref_primary_10_1039_C4NR05245E crossref_primary_10_1021_acsami_8b07835 crossref_primary_10_1002_slct_201800646 crossref_primary_10_1039_D2TA05391H crossref_primary_10_1039_C8DT04974B crossref_primary_10_1016_S1872_2067_20_63647_6 crossref_primary_10_1002_adma_201700404 crossref_primary_10_1002_aenm_201402307 crossref_primary_10_1002_slct_201700081 crossref_primary_10_1002_advs_201902590 crossref_primary_10_1002_adfm_201807418 crossref_primary_10_1021_acsami_7b10385 crossref_primary_10_1016_j_solmat_2024_113386 crossref_primary_10_1016_j_apcatb_2023_123563 crossref_primary_10_1039_C5CP04212G crossref_primary_10_1002_celc_201700956 crossref_primary_10_1021_acsenergylett_6b00303 crossref_primary_10_1002_admi_201600368 crossref_primary_10_1021_acsomega_8b01206 crossref_primary_10_1021_acsami_1c15051 crossref_primary_10_1039_D3SE00527E crossref_primary_10_1039_D1CY00902H crossref_primary_10_1021_acs_inorgchem_4c03660 crossref_primary_10_1021_acsaem_2c03656 crossref_primary_10_1002_admi_202001310 crossref_primary_10_1016_j_apsusc_2021_151492 crossref_primary_10_1039_C6CC00766J crossref_primary_10_1002_adfm_202214069 crossref_primary_10_1039_D1TA00072A crossref_primary_10_1016_j_carbon_2015_06_070 crossref_primary_10_1016_j_coelec_2022_100982 crossref_primary_10_1016_j_electacta_2016_10_068 crossref_primary_10_1007_s11164_017_3052_y crossref_primary_10_1039_C6CP06821A crossref_primary_10_1039_C5SC02417J crossref_primary_10_1021_acsaem_8b00209 crossref_primary_10_1039_C4FD00059E crossref_primary_10_1039_D0NR00607F crossref_primary_10_1002_adfm_202300557 crossref_primary_10_1002_celc_201801233 crossref_primary_10_1021_acsami_7b10609 crossref_primary_10_1039_C7TA06081E crossref_primary_10_1016_j_cej_2020_125537 crossref_primary_10_1016_j_jcis_2022_04_080 crossref_primary_10_1016_j_ijhydene_2020_04_073 crossref_primary_10_1039_D3SE00942D crossref_primary_10_1039_C4RA05047A crossref_primary_10_1002_admi_202200251 crossref_primary_10_1021_acsaem_9b02140 crossref_primary_10_1021_jacs_7b03507 crossref_primary_10_7498_aps_65_226801 crossref_primary_10_1002_cctc_201801959 crossref_primary_10_1016_j_ijhydene_2022_03_017 crossref_primary_10_1016_j_envpol_2020_114739 crossref_primary_10_1016_j_jssc_2021_122156 crossref_primary_10_1038_s41598_017_09283_1 crossref_primary_10_1016_j_cej_2020_124551 crossref_primary_10_1016_j_ces_2025_121330 crossref_primary_10_1021_acs_jpcc_6b00769 crossref_primary_10_1002_chem_201503777 crossref_primary_10_1016_j_solidstatesciences_2021_106803 crossref_primary_10_1039_D4TA02785J crossref_primary_10_1021_acscatal_5b02429 crossref_primary_10_1016_j_chemosphere_2022_134227 crossref_primary_10_1016_S1872_2067_17_62921_8 crossref_primary_10_1002_aenm_201401660 crossref_primary_10_1016_j_jechem_2024_09_066 crossref_primary_10_1021_acs_accounts_8b00542 crossref_primary_10_1016_j_mtener_2022_101036 crossref_primary_10_1016_j_apcatb_2021_120256 crossref_primary_10_1016_j_jallcom_2020_155067 crossref_primary_10_1016_j_electacta_2020_136038 crossref_primary_10_1063_1_5017661 crossref_primary_10_1002_cctc_201901421 crossref_primary_10_1039_D4QI01574F crossref_primary_10_1039_D4TA07082H crossref_primary_10_1002_admi_201800970 crossref_primary_10_1002_chem_201504512 crossref_primary_10_1002_adfm_201504019 crossref_primary_10_1016_j_electacta_2015_02_099 crossref_primary_10_1016_j_apcatb_2023_122403 crossref_primary_10_1007_s11426_021_1079_5 crossref_primary_10_1002_asia_202000668 crossref_primary_10_1039_D0NR02350G crossref_primary_10_1002_celc_201700991 crossref_primary_10_1002_anie_201412389 crossref_primary_10_1002_smll_201704179 crossref_primary_10_1038_s41598_019_54940_2 crossref_primary_10_1016_j_fuel_2020_117104 crossref_primary_10_1039_C7TA03582A crossref_primary_10_1016_j_snb_2018_06_081 crossref_primary_10_1002_anie_201611767 crossref_primary_10_1039_C8CS00638E crossref_primary_10_1002_ange_201511447 crossref_primary_10_1016_j_molcata_2016_07_032 crossref_primary_10_1016_j_nxmate_2024_100279 crossref_primary_10_1016_j_jechem_2017_08_014 crossref_primary_10_1016_j_nanoen_2015_02_013 crossref_primary_10_1039_C6EE03088B crossref_primary_10_1021_acscatal_1c02824 crossref_primary_10_1016_j_electacta_2017_01_150 crossref_primary_10_1088_1361_6528_aad3f4 crossref_primary_10_1039_C8TA04721A crossref_primary_10_1002_adma_201905739 crossref_primary_10_1002_cnma_201900436 crossref_primary_10_1016_j_apsusc_2020_147173 crossref_primary_10_1039_C4SC00565A crossref_primary_10_1016_j_molliq_2022_118960 crossref_primary_10_1021_acs_chemmater_7b01611 crossref_primary_10_1016_j_jallcom_2023_172583 crossref_primary_10_1016_j_nanoen_2016_10_020 crossref_primary_10_1021_acsami_0c19948 crossref_primary_10_1021_acsaem_8b01289 crossref_primary_10_1002_eom2_12199 crossref_primary_10_1038_srep43590 crossref_primary_10_1016_j_apcatb_2017_04_075 crossref_primary_10_1039_C6EE01092J crossref_primary_10_1016_j_cej_2020_126304 crossref_primary_10_1016_j_molstruc_2022_134639 crossref_primary_10_1021_acs_energyfuels_0c00953 crossref_primary_10_1016_j_apsusc_2021_151975 crossref_primary_10_1002_pssa_201533025 crossref_primary_10_1016_j_electacta_2018_11_150 crossref_primary_10_1016_j_ijhydene_2022_10_145 crossref_primary_10_1021_acs_iecr_8b00358 crossref_primary_10_1021_acsami_5b06195 crossref_primary_10_1002_adma_202005389 crossref_primary_10_1016_j_ccr_2024_216265 crossref_primary_10_1016_j_materresbull_2021_111539 crossref_primary_10_1016_j_jece_2022_107691 crossref_primary_10_1016_j_jpowsour_2016_07_104 crossref_primary_10_1016_j_jcis_2023_02_025 crossref_primary_10_1002_cptc_201700200 crossref_primary_10_2109_jcersj2_21175 crossref_primary_10_1002_smll_201801226 crossref_primary_10_1021_acsami_2c19906 crossref_primary_10_1109_JSEN_2021_3074647 crossref_primary_10_1039_C9CY00973F crossref_primary_10_1021_acsaem_8b01266 crossref_primary_10_1021_acs_iecr_7b04812 crossref_primary_10_1002_anie_201916507 crossref_primary_10_3390_ma17010006 crossref_primary_10_3390_chemengineering8010024 crossref_primary_10_1016_j_jechem_2024_02_061 crossref_primary_10_1016_j_jechem_2017_07_021 crossref_primary_10_1021_acsaem_1c00776 crossref_primary_10_1021_acs_chemmater_5b00878 crossref_primary_10_1039_C9EE02388G crossref_primary_10_1021_acs_chemmater_1c03017 crossref_primary_10_1149_2_0241611jes crossref_primary_10_1039_C6CS00015K crossref_primary_10_1007_s12274_017_1750_9 crossref_primary_10_1002_admi_201900586 crossref_primary_10_1039_C8CC07900E crossref_primary_10_1002_cctc_201800606 crossref_primary_10_1021_acsaem_9b01597 crossref_primary_10_1021_acsami_8b06388 crossref_primary_10_1016_j_jallcom_2017_04_076 crossref_primary_10_1016_j_jechem_2020_03_020 crossref_primary_10_1021_acsami_5b09684 crossref_primary_10_1016_S1872_2067_20_63618_X crossref_primary_10_1021_acsenergylett_9b02075 crossref_primary_10_1021_acssuschemeng_9b01095 crossref_primary_10_1016_j_nanoen_2025_110662 crossref_primary_10_1016_j_pmatsci_2019_03_001 crossref_primary_10_1016_j_apcatb_2018_11_079 crossref_primary_10_1016_j_apcata_2016_06_007 crossref_primary_10_1016_S1872_2067_23_64486_9 crossref_primary_10_1039_C6EE01304J crossref_primary_10_1016_j_jcis_2023_03_162 crossref_primary_10_1039_C6NR09790A crossref_primary_10_1039_D0TA04977H crossref_primary_10_1039_C4CY00974F crossref_primary_10_1016_j_cej_2024_149903 crossref_primary_10_1007_s10562_015_1561_0 crossref_primary_10_1021_acs_jpcc_6b02432 crossref_primary_10_1016_j_cej_2021_130204 crossref_primary_10_1021_acsami_8b18261 crossref_primary_10_1039_C8QI00163D crossref_primary_10_1002_ange_201404697 crossref_primary_10_1021_acsaenm_2c00257 crossref_primary_10_1039_C5EE02863A crossref_primary_10_1002_celc_202400600 crossref_primary_10_1039_C7CY00515F crossref_primary_10_1016_j_ijhydene_2021_11_145 crossref_primary_10_1002_anie_201605924 crossref_primary_10_1021_acsami_1c22294 crossref_primary_10_1016_S1872_2067_17_62760_8 crossref_primary_10_1038_s41578_024_00754_2 crossref_primary_10_1007_s10854_022_09120_w crossref_primary_10_1016_j_jaap_2019_03_009 crossref_primary_10_1016_j_jphotochemrev_2017_10_001 crossref_primary_10_1016_j_jcis_2024_05_033 crossref_primary_10_1039_C4TA04461D crossref_primary_10_1002_smll_202203710 crossref_primary_10_1039_C9TA00561G crossref_primary_10_1021_acsnano_5c00099 crossref_primary_10_1016_j_apcatb_2020_118600 crossref_primary_10_3389_fchem_2020_00334 crossref_primary_10_1016_j_jallcom_2023_172763 crossref_primary_10_1002_adfm_201902180 crossref_primary_10_1016_j_ijhydene_2025_03_262 crossref_primary_10_1016_j_jelechem_2019_113621 crossref_primary_10_1002_anie_201705772 crossref_primary_10_1021_acs_jpcc_3c02321 crossref_primary_10_1021_acs_analchem_7b04728 crossref_primary_10_1021_acsaem_4c01069 crossref_primary_10_1002_aenm_202101181 crossref_primary_10_1016_j_colsurfa_2022_130682 crossref_primary_10_1016_j_coco_2021_100780 crossref_primary_10_1016_j_jcis_2023_03_133 crossref_primary_10_1039_C5TA03430B crossref_primary_10_1016_j_apcatb_2019_01_082 crossref_primary_10_1016_j_apcatb_2020_119707 crossref_primary_10_1039_C5NR06212H crossref_primary_10_1002_ange_201703326 crossref_primary_10_1016_j_jcis_2022_02_096 crossref_primary_10_1016_j_nanoen_2016_11_047 crossref_primary_10_1007_s40820_015_0063_3 crossref_primary_10_1021_acscatal_8b02215 crossref_primary_10_1021_acsmaterialslett_9b00422 crossref_primary_10_1016_j_seppur_2023_123792 crossref_primary_10_1016_j_electacta_2017_07_075 crossref_primary_10_1016_j_ijhydene_2023_05_207 crossref_primary_10_1002_anie_201701280 crossref_primary_10_1039_D0DT03200J crossref_primary_10_1016_S1872_2067_20_63741_X crossref_primary_10_1021_acs_inorgchem_1c03143 crossref_primary_10_1021_acssuschemeng_9b07709 crossref_primary_10_1007_s12598_022_02239_z crossref_primary_10_1016_j_jsamd_2017_08_006 crossref_primary_10_1021_am405628r crossref_primary_10_1039_D4NJ04690K crossref_primary_10_1016_j_electacta_2016_05_194 crossref_primary_10_1039_C6CC04151E crossref_primary_10_1016_j_apcatb_2019_118135 crossref_primary_10_1002_anie_201703326 crossref_primary_10_1002_celc_201402268 crossref_primary_10_1002_smtd_201700080 crossref_primary_10_1039_C8DT00061A crossref_primary_10_2139_ssrn_4060467 crossref_primary_10_1016_j_electacta_2022_140269 crossref_primary_10_1016_j_electacta_2018_07_148 crossref_primary_10_1039_D2EE01478E crossref_primary_10_1016_j_carbon_2016_12_043 crossref_primary_10_1039_C5RA00995B crossref_primary_10_1111_jmi_12683 crossref_primary_10_1002_adsu_202000242 crossref_primary_10_1016_j_jpowsour_2017_06_065 crossref_primary_10_1002_adma_202306097 crossref_primary_10_1002_ange_201701280 crossref_primary_10_1002_smll_202303303 crossref_primary_10_1016_j_electacta_2016_04_038 crossref_primary_10_1021_acs_langmuir_1c00638 crossref_primary_10_1016_j_ijhydene_2021_03_224 crossref_primary_10_1016_j_surfin_2018_12_011 crossref_primary_10_1016_j_renene_2020_10_084 crossref_primary_10_1016_j_surfin_2024_104776 crossref_primary_10_1016_j_apcatb_2019_118100 crossref_primary_10_1016_j_jallcom_2022_165855 crossref_primary_10_1002_ange_201611767 crossref_primary_10_1021_acscatal_8b03566 crossref_primary_10_1021_acsami_4c11902 crossref_primary_10_1002_adma_201602270 crossref_primary_10_1039_C4TA03078H crossref_primary_10_1016_j_electacta_2015_02_076 crossref_primary_10_1021_acscatal_2c04946 crossref_primary_10_1039_C8CC03112F crossref_primary_10_1016_j_cclet_2018_04_009 crossref_primary_10_1021_acs_jpcc_0c04820 crossref_primary_10_1007_s40843_017_9122_4 crossref_primary_10_1016_j_mtener_2017_07_016 crossref_primary_10_1016_j_jcat_2017_02_001 crossref_primary_10_1021_acssuschemeng_8b06269 crossref_primary_10_1063_1674_0068_cjcp2104071 crossref_primary_10_1007_s11120_022_00965_0 crossref_primary_10_1007_s13738_019_01611_8 crossref_primary_10_1039_C6TA05917A crossref_primary_10_1016_j_bios_2020_112089 crossref_primary_10_1039_D4CY00779D crossref_primary_10_1016_j_jcat_2016_05_007 crossref_primary_10_1039_C6TA00313C crossref_primary_10_1002_advs_202103714 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1039_C7NR00460E crossref_primary_10_1016_j_electacta_2020_136847 crossref_primary_10_1016_j_jallcom_2022_163898 crossref_primary_10_1016_j_jechem_2015_12_004 crossref_primary_10_1002_ange_202116934 crossref_primary_10_1039_C6TA03088B crossref_primary_10_1016_j_jallcom_2024_174911 crossref_primary_10_3390_ma17122922 crossref_primary_10_3390_cryst15010085 crossref_primary_10_1007_s10563_021_09329_5 crossref_primary_10_1016_j_electacta_2016_02_137 crossref_primary_10_1021_acsaem_9b00785 crossref_primary_10_1016_j_solidstatesciences_2023_107111 crossref_primary_10_1021_acsami_5b04270 crossref_primary_10_1007_s12274_016_1067_0 crossref_primary_10_1039_C8EE00927A crossref_primary_10_1016_j_materresbull_2017_03_063 crossref_primary_10_3365_KJMM_2022_60_1_35 crossref_primary_10_1016_j_apcatb_2019_118213 crossref_primary_10_1088_1361_6463_aa562b crossref_primary_10_1002_celc_201500091 crossref_primary_10_6000_1929_6002_2014_03_01_2 crossref_primary_10_1002_anie_201404697 crossref_primary_10_1002_anie_202116934 crossref_primary_10_1021_cs500713d crossref_primary_10_1016_j_apcatb_2019_118338 crossref_primary_10_1088_1674_1056_ac5c36 crossref_primary_10_1002_advs_201801505 crossref_primary_10_1016_j_ijhydene_2023_07_105 crossref_primary_10_1021_acsnano_8b06312 crossref_primary_10_1021_acs_jpcc_0c01401 crossref_primary_10_1038_s41467_018_06687_z crossref_primary_10_1002_smll_201503542 crossref_primary_10_1021_acscatal_6b03126 crossref_primary_10_1016_j_carbon_2022_08_067 crossref_primary_10_1016_j_mssp_2019_104857 crossref_primary_10_1021_acsami_7b04841 crossref_primary_10_1021_jacs_9b00549 crossref_primary_10_1016_j_ijhydene_2016_08_106 crossref_primary_10_1016_j_jallcom_2023_169979 crossref_primary_10_1002_cssc_201800059 crossref_primary_10_1039_C7CC09416G crossref_primary_10_1002_adma_201606793 crossref_primary_10_1021_acscatal_8b03489 crossref_primary_10_1039_C6RA01877G crossref_primary_10_1039_C5TA04747A crossref_primary_10_1016_j_ijhydene_2022_09_200 crossref_primary_10_1039_C9CY02345C crossref_primary_10_1016_j_ijhydene_2015_06_105 crossref_primary_10_1021_acsenergylett_6b00084 crossref_primary_10_1021_acs_jpcc_0c10088 crossref_primary_10_1016_j_surfcoat_2018_12_040 crossref_primary_10_9713_kcer_2016_54_6_854 crossref_primary_10_1016_j_jallcom_2020_153790 crossref_primary_10_1016_j_ijhydene_2020_11_271 crossref_primary_10_1016_j_jelechem_2022_116725 crossref_primary_10_1021_acsami_5b10099 crossref_primary_10_1021_acssuschemeng_1c03285 crossref_primary_10_1016_j_ensm_2017_07_002 crossref_primary_10_1021_acscatal_8b04565 crossref_primary_10_1039_C5TA04637H crossref_primary_10_1039_C8DT00285A crossref_primary_10_1039_C6EE03442J crossref_primary_10_1039_D2DT01860H crossref_primary_10_1016_j_electacta_2024_144324 crossref_primary_10_1088_1361_6528_ad0c73 crossref_primary_10_1002_adfm_201807857 crossref_primary_10_1002_aenm_202101324 crossref_primary_10_1016_j_isci_2020_101540 crossref_primary_10_1016_j_apcatb_2018_12_019 crossref_primary_10_3390_chemistry6020017 crossref_primary_10_1039_D2TA09479G crossref_primary_10_1016_j_apcatb_2018_12_014 crossref_primary_10_1080_14686996_2024_2351354 crossref_primary_10_1039_C6NR07676A crossref_primary_10_1016_j_nanoen_2017_03_035 crossref_primary_10_1021_acsomega_1c04251 crossref_primary_10_1007_s11164_016_2570_3 crossref_primary_10_1007_s12274_019_2600_8 crossref_primary_10_1002_adma_201606893 crossref_primary_10_1002_anie_201503407 crossref_primary_10_1016_j_ijhydene_2016_12_113 crossref_primary_10_1021_acs_nanolett_5b05200 crossref_primary_10_1039_C9TA13637A crossref_primary_10_1002_chem_201903642 crossref_primary_10_1007_s12274_014_0645_2 crossref_primary_10_1002_smll_202309932 crossref_primary_10_1039_C6CS00306K crossref_primary_10_1002_aenm_201501840 crossref_primary_10_1016_j_apsusc_2018_06_253 crossref_primary_10_1002_aenm_201903571 crossref_primary_10_1016_j_synthmet_2019_116226 crossref_primary_10_1021_acs_analchem_3c03287 crossref_primary_10_1021_acs_energyfuels_0c01101 crossref_primary_10_1002_chem_201704041 crossref_primary_10_1002_cssc_202101061 crossref_primary_10_1016_j_cej_2022_136105 crossref_primary_10_1039_D2EE00936F crossref_primary_10_1016_j_cej_2019_03_190 crossref_primary_10_1016_j_jelechem_2024_118377 crossref_primary_10_1016_j_jcis_2022_10_130 crossref_primary_10_1039_D2CC02795J crossref_primary_10_1007_s10854_022_09555_1 crossref_primary_10_1039_C8TA12012A crossref_primary_10_1039_C5EE01601K crossref_primary_10_1021_acsami_6b11023 crossref_primary_10_1016_j_apsusc_2022_154697 crossref_primary_10_1016_j_jallcom_2019_153542 crossref_primary_10_1021_acsami_6b15980 crossref_primary_10_1039_C8EE03208D crossref_primary_10_1021_acs_inorgchem_6b03171 crossref_primary_10_1021_acs_chemmater_8b01699 crossref_primary_10_1039_C8CE01639A crossref_primary_10_1002_anie_201511447 crossref_primary_10_1016_j_electacta_2024_145109 crossref_primary_10_1021_acs_energyfuels_2c01391 crossref_primary_10_2139_ssrn_4156311 crossref_primary_10_1002_ente_201800899 crossref_primary_10_1016_j_sse_2020_107868 crossref_primary_10_1021_acsenergylett_8b00584 crossref_primary_10_1002_advs_202201678 crossref_primary_10_1016_j_cej_2022_140855 crossref_primary_10_1002_ange_201705772 crossref_primary_10_1016_j_cej_2020_127195 crossref_primary_10_1002_celc_202300761 crossref_primary_10_1021_acsami_9b08194 crossref_primary_10_1021_acsaem_9b01944 crossref_primary_10_1021_la501246e crossref_primary_10_1073_pnas_1701562114 crossref_primary_10_1016_j_cej_2022_135272 crossref_primary_10_1039_C6TA07482K crossref_primary_10_1002_ange_201412389 crossref_primary_10_1002_ange_201605924 crossref_primary_10_1021_acsanm_3c03519 crossref_primary_10_1021_acscatal_9b05445 crossref_primary_10_1039_C4TA05315J crossref_primary_10_1039_C4RA09599E crossref_primary_10_1002_cey2_48 crossref_primary_10_1002_slct_201601356 crossref_primary_10_1002_adma_202306844 crossref_primary_10_1016_j_jece_2023_109341 crossref_primary_10_1149_2_1451707jes crossref_primary_10_1021_acs_jpcb_7b06960 crossref_primary_10_1002_adfm_201500383 crossref_primary_10_1002_smll_202106012 crossref_primary_10_1016_j_cej_2020_124819 crossref_primary_10_1002_adma_202108619 crossref_primary_10_1016_j_jcat_2015_11_003 crossref_primary_10_1021_acsaem_1c03126 crossref_primary_10_1016_j_apsusc_2022_153698 crossref_primary_10_1016_j_apcatb_2021_120862 crossref_primary_10_1016_j_jcat_2019_10_033 crossref_primary_10_1016_j_ijhydene_2017_08_214 crossref_primary_10_1021_acs_inorgchem_1c03982 crossref_primary_10_1016_j_apcatb_2019_118291 crossref_primary_10_1039_D3TA03769J crossref_primary_10_1039_D0CY00011F crossref_primary_10_1039_D3NR01948A crossref_primary_10_1016_j_jechem_2024_12_053 crossref_primary_10_1002_ange_201916507 crossref_primary_10_1016_j_electacta_2019_01_157 crossref_primary_10_1016_j_infrared_2024_105240 crossref_primary_10_1246_bcsj_20170426 crossref_primary_10_1016_j_elecom_2017_08_013 crossref_primary_10_1016_j_jpowsour_2022_232444 crossref_primary_10_1016_j_jcis_2025_02_047 crossref_primary_10_1039_C7SE00447H crossref_primary_10_1002_adma_201803144 crossref_primary_10_1039_D2NJ01385A |
Cites_doi | 10.1039/B800489G 10.1021/ja3126432 10.1021/ar00051a007 10.2172/764485 10.1016/S0927-0248(99)00139-7 10.1126/science.1209816 10.1103/PhysRevB.40.6386 10.1016/S1452-3981(23)15533-7 10.1039/b815338h 10.1039/C2CS35266D 10.1039/c2ee03250c 10.1021/cr1002326 10.1016/j.ijhydene.2011.07.029 10.1002/cctc.201000126 10.1021/ja908730h 10.1039/C0EE00518E 10.1021/cm803099k 10.1021/ja205325v 10.1021/ja064380l 10.1021/ja306427f 10.1021/ac50019a016 10.1016/j.ijhydene.2007.05.027 10.1016/j.ijhydene.2003.09.007 10.1021/ja209001d 10.1073/pnas.1118326109 10.1063/1.1736034 10.1016/j.jcis.2006.05.011 10.1039/c1cp22470k 10.1016/j.electacta.2004.01.048 10.1038/316495a0 10.1021/ja106102b 10.1016/j.jelechem.2010.10.004 10.1002/cssc.201000416 10.1103/PhysRevB.11.2271 10.1021/cm7024203 10.1021/cr1001645 10.1126/science.1233638 10.1039/b718969a 10.1017/S1431927699000021 10.1021/ac00294a004 10.1016/S0022-0728(80)80084-2 10.1002/anie.201003110 10.1016/S1388-2481(03)00019-5 10.1021/ja407115p 10.1149/1.2115797 10.1039/C1SC00516B 10.1016/j.enpol.2006.10.014 10.1002/cctc.201000397 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja411835a |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 2850 |
ExternalDocumentID | 24475949 10_1021_ja411835a c960572024 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a441t-616c7e2d82dc0a447c8527d8426f5fd22232466a58378805f67cd460f5e58ae63 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 05:35:45 EDT 2025 Fri Jul 11 03:05:50 EDT 2025 Mon Jul 21 06:05:30 EDT 2025 Tue Jul 01 04:32:56 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-616c7e2d82dc0a447c8527d8426f5fd22232466a58378805f67cd460f5e58ae63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24475949 |
PQID | 1500684914 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000386203 proquest_miscellaneous_1500684914 pubmed_primary_24475949 crossref_primary_10_1021_ja411835a crossref_citationtrail_10_1021_ja411835a acs_journals_10_1021_ja411835a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-19 |
PublicationDateYYYYMMDD | 2014-02-19 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kudo A. (ref5/cit5) 2008; 38 Peulon S. (ref39/cit39) 2003; 5 McIntyre N. S. (ref45/cit45) 1977; 49 Shockley W. (ref24/cit24) 1961; 32 He P. (ref42/cit42) 1986; 58 Denholm P. (ref1/cit1) 2007; 35 ref8/cit8 ref31/cit31 Trasatti S. (ref21/cit21) 1980; 111 Lyons M. E. G. (ref33/cit33) 2011; 13 Esswein A. J. (ref40/cit40) 2011; 4 Koper M. T. M. (ref14/cit14) 2011; 660 Kumar M. (ref34/cit34) 2011; 36 Osterloh F. E. (ref4/cit4) 2013; 42 Tilley S. D. (ref12/cit12) 2010; 49 Dau H. (ref15/cit15) 2010; 2 Smith R. D. L. (ref35/cit35) 2013; 340 Lyons M. E. G. (ref32/cit32) 2009; 11 Deng X. (ref37/cit37) 2000; 62 van de Krol R. (ref9/cit9) 2008; 18 Hu J.-M. (ref20/cit20) 2004; 29 Klahr B. (ref18/cit18) 2012; 134 McCrory C. C. L. (ref22/cit22) 2013; 135 Walter M. G. (ref2/cit2) 2010; 110 Seabold J. A. (ref10/cit10) 2012; 134 Du P. (ref28/cit28) 2012; 5 Peulon S. (ref38/cit38) 2004; 49 Mueller-Langer F. (ref7/cit7) 2007; 32 Bolton J. R. (ref26/cit26) 1985; 316 Welsh I. D. (ref44/cit44) 1989; 40 Man I. C. (ref16/cit16) 2011; 3 Sivula K. (ref30/cit30) 2011; 4 Lyons M. (ref27/cit27) 2008; 3 Osterloh F. E. (ref3/cit3) 2007; 20 Malac M. (ref43/cit43) 1999; 5 Spray R. L. (ref36/cit36) 2009; 21 Kay A. (ref13/cit13) 2006; 128 Bard A. J. (ref23/cit23) 1995; 28 Barroso M. (ref11/cit11) 2011; 133 Zhong D. K. (ref29/cit29) 2010; 132 Bediako D. K. (ref17/cit17) 2013; 135 Alben R. (ref46/cit46) 1975; 11 Wiesner A. D. (ref41/cit41) 2006; 301 Surendranath Y. (ref49/cit49) 2010; 132 Chen X. (ref6/cit6) 2010; 110 Barroso M. (ref19/cit19) 2012; 109 Reece S. Y. (ref47/cit47) 2011; 334 Minguzzi A. (ref48/cit48) 2012; 3 Weber M. F. (ref25/cit25) 1984; 131 |
References_xml | – volume: 38 start-page: 253 year: 2008 ident: ref5/cit5 publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 135 start-page: 3662 year: 2013 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3126432 – volume: 28 start-page: 141 year: 1995 ident: ref23/cit23 publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – ident: ref8/cit8 doi: 10.2172/764485 – volume: 62 start-page: 89 year: 2000 ident: ref37/cit37 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(99)00139-7 – ident: ref31/cit31 – volume: 334 start-page: 645 year: 2011 ident: ref47/cit47 publication-title: Science doi: 10.1126/science.1209816 – volume: 40 start-page: 6386 year: 1989 ident: ref44/cit44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.6386 – volume: 3 start-page: 1463 year: 2008 ident: ref27/cit27 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15533-7 – volume: 11 start-page: 2203 year: 2009 ident: ref32/cit32 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b815338h – volume: 42 start-page: 2294 year: 2013 ident: ref4/cit4 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35266D – volume: 5 start-page: 6012 year: 2012 ident: ref28/cit28 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03250c – volume: 110 start-page: 6446 year: 2010 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 36 start-page: 12698 year: 2011 ident: ref34/cit34 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.029 – volume: 2 start-page: 724 year: 2010 ident: ref15/cit15 publication-title: ChemCatChem doi: 10.1002/cctc.201000126 – volume: 132 start-page: 4202 year: 2010 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908730h – volume: 4 start-page: 499 year: 2011 ident: ref40/cit40 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00518E – volume: 21 start-page: 3701 year: 2009 ident: ref36/cit36 publication-title: Chem. Mater. doi: 10.1021/cm803099k – volume: 133 start-page: 14868 year: 2011 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205325v – volume: 128 start-page: 15714 year: 2006 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064380l – volume: 134 start-page: 16693 year: 2012 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306427f – volume: 49 start-page: 1521 year: 1977 ident: ref45/cit45 publication-title: Anal. Chem. doi: 10.1021/ac50019a016 – volume: 32 start-page: 3797 year: 2007 ident: ref7/cit7 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2007.05.027 – volume: 29 start-page: 791 year: 2004 ident: ref20/cit20 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2003.09.007 – volume: 134 start-page: 2186 year: 2012 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209001d – volume: 109 start-page: 15640 year: 2012 ident: ref19/cit19 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1118326109 – volume: 32 start-page: 510 year: 1961 ident: ref24/cit24 publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 301 start-page: 329 year: 2006 ident: ref41/cit41 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.05.011 – volume: 13 start-page: 21530 year: 2011 ident: ref33/cit33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22470k – volume: 49 start-page: 2891 year: 2004 ident: ref38/cit38 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.01.048 – volume: 316 start-page: 495 year: 1985 ident: ref26/cit26 publication-title: Nature doi: 10.1038/316495a0 – volume: 132 start-page: 16501 year: 2010 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106102b – volume: 660 start-page: 254 year: 2011 ident: ref14/cit14 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2010.10.004 – volume: 4 start-page: 432 year: 2011 ident: ref30/cit30 publication-title: ChemSusChem doi: 10.1002/cssc.201000416 – volume: 11 start-page: 2271 year: 1975 ident: ref46/cit46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.11.2271 – volume: 20 start-page: 35 year: 2007 ident: ref3/cit3 publication-title: Chem. Mater. doi: 10.1021/cm7024203 – volume: 110 start-page: 6503 year: 2010 ident: ref6/cit6 publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 340 start-page: 60 year: 2013 ident: ref35/cit35 publication-title: Science doi: 10.1126/science.1233638 – volume: 18 start-page: 2311 year: 2008 ident: ref9/cit9 publication-title: J. Mater. Chem. doi: 10.1039/b718969a – volume: 5 start-page: 29 year: 1999 ident: ref43/cit43 publication-title: Microsc. Microanal. doi: 10.1017/S1431927699000021 – volume: 58 start-page: 517 year: 1986 ident: ref42/cit42 publication-title: Anal. Chem. doi: 10.1021/ac00294a004 – volume: 111 start-page: 125 year: 1980 ident: ref21/cit21 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(80)80084-2 – volume: 49 start-page: 6405 year: 2010 ident: ref12/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003110 – volume: 5 start-page: 208 year: 2003 ident: ref39/cit39 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(03)00019-5 – volume: 135 start-page: 16977 year: 2013 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 131 start-page: 1258 year: 1984 ident: ref25/cit25 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115797 – volume: 3 start-page: 217 year: 2012 ident: ref48/cit48 publication-title: Chem. Sci. doi: 10.1039/C1SC00516B – volume: 35 start-page: 2852 year: 2007 ident: ref1/cit1 publication-title: Energy Policy doi: 10.1016/j.enpol.2006.10.014 – volume: 3 start-page: 1159 year: 2011 ident: ref16/cit16 publication-title: ChemCatChem doi: 10.1002/cctc.201000397 |
SSID | ssj0004281 |
Score | 2.612002 |
Snippet | Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2843 |
SubjectTerms | catalysts energy hydrogen iron oxyhydroxides oxygen production photons photovoltaic cells silicon sodium carbonate |
Title | Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting |
URI | http://dx.doi.org/10.1021/ja411835a https://www.ncbi.nlm.nih.gov/pubmed/24475949 https://www.proquest.com/docview/1500684914 https://www.proquest.com/docview/2000386203 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gHvTi-4EPsj4OXjBl291ujwQhxEQxIpHEQ9Nud2OigoFixF_vbB-oEfTWNLNpOzub-aYz8w3AKbe1pTlneNJCDFC0CPFK2RVmuElCZrNAmObkq2ve6jqXPdYrwMmcDD41_EAOgmBctACLlAvXRFi1euer-ZGKao5xXcHtnD7o-1LjeuTop-uZgycTv9JchYu8OyctJ3k6H8fhufz4Tdb41yuvwUqGK0ktNYR1KKj-BizV83Fum_BQexmgTjHQJ03VbrdI-32CxkMab5nxkVuVNjmQuvmlMxnFBAEtuXkcxINsWI7M2AXIPSLUIekggE3Kpreg22zc1VuVbLJCJUD4E2O8yKWraCRoJC285UrBqBsJdNea6chgBupwHrCEbt5imrsycrilmWIiUNzehmJ_0Fe7QLTQkWSqqkMRmK5cz5IsiJgX2a4K3FCVoIyq97OTMfKTpDfFoCPXUQnO8l3xZcZLbsZjPM8SPZ6KvqZkHLOEjvKt9VHFJv8R9BVq10fsa3HheFVnvgxNcqWcWnYJdlK7mD6KJuSIjrf33yftwzLiKscUd1e9AyjGw7E6ROwSh-XEdj8Bet7mpw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HMaF92M8RkAcuAy1aZOmx2liGrAHYptA4lC1aSIkYENrQcCvx0nbDRAIblXltKnjyJ_r-DNCR8xRlmKMwk6LIEBRPIIr6VSp5iaJqENDrouT2x3WHLjnN_Qmp8nRtTAwiQSelJgk_pRdQNMEuYCFYewsmgcQQnSgVav3pjWQhNsF1PU4cwoWoc9DtQcSyVcP9AusNO6lsZT1KTITM6dK7k-e0-hEvH_jbPzfzJfRYo4ycS0zixU0I4erqFQvmrutodva4wg0DGE_bshut4m7r29gSvj0JTdFfCWzkgdc1z943pIUA7zFl3ejdJS3zhE51wC-Brw6xj2As-YQ9ToaNE779WY177NQDQEMpRA9MuFJEnMSCwtueYKDfmMOzltRFWsEQVzGQmrI5y2qmCdil1mKSspDyZwNNDccDeUWwoqrWFBpq4iHukbXtwQNY-rHjidDL5JlVAEVBfk-SQKTAicQghQ6KqPjYnECkbOU62YZDz-JHk5EnzJqjp-EDooVDkDFOhsSDiVoNwAkbDHu-rb7uwwxmVNGLKeMNjPzmLyKGKpE19_-65P2UanZb7eC1lnnYgctAOJy9bFv299Fc-n4We4BqkmjijHnD86C7wg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4trLRwgeXdhS1mxYFLUerEjnOsSqvui6ItCCQOUeKHkIAWkYBgfz1j1-nCqghuUTROnPFY803G8w3ALg9NYDhnuNNyDFCMyPFKhw1muUlyFrJM2OLk34e8dxL9OGNnPlC0tTA4iQKfVLgkvt3VN8p4hgFLFRQhHsbxM_DRputssNVqD_7VQVLRrOBuLHhYMQk9H2q9kCxeeqFXoKVzMd1F6E8m506WXO7flfm-_Psfb-P7Z_8ZFjzaJK2xeSzBBz1chrl21eRtBc5b1yPUNIb_pKv7_R7pPzyiSZHOvTdJ8kePSx9I2_7oeSxKgjCXHF2MypFvoSM95wA5Rdx6SwYIa91h6lU46XaO272G77fQyBAUlRhFchlrqgRVMsBbsRSMxkqgEzfMKIskaMR5xhwJfcAMj6WKeGCYZiLTPFyD2eFoqDeAGGGUZLppcpHZWt0kkCxTLFFhrLM41zWoo5pSv1-K1KXCKYYilY5qsFctUCo9W7ltmnE1TfTbRPRmTNExTWinWuUUVWyzItlQo3ZTRMQBF1HSjF6XoS6DymkQ1mB9bCKTV1FHmRglX976pG34dHTQTX99P_y5CfMIvCJ7-ruZbMFseXunvyK4KfO6s-gnreXxiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amorphous+FeOOH+oxygen+evolution+reaction+catalyst+for+photoelectrochemical+water+splitting&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chemelewski%2C+William+D&rft.au=Lee%2C+Heung-Chan&rft.au=Lin%2C+Jung-Fu&rft.au=Bard%2C+Allen+J&rft.date=2014-02-19&rft.eissn=1520-5126&rft.volume=136&rft.issue=7&rft.spage=2843&rft_id=info:doi/10.1021%2Fja411835a&rft_id=info%3Apmid%2F24475949&rft.externalDocID=24475949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |