Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties

Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric...

Full description

Saved in:
Bibliographic Details
Published inMarine and petroleum geology Vol. 59; pp. 56 - 71
Main Authors Delle Piane, Claudio, Almqvist, Bjarne S.G., MacRae, Colin M., Torpy, Aaron, Mory, Arthur J., Dewhurst, David N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0264-8172
1873-4073
1873-4073
DOI10.1016/j.marpetgeo.2014.07.017

Cover

Loading…
Abstract Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric due to syn-depositional precipitation of authigenic dolomite and anhydrite. Conventional petrographic analysis coupled with quantitative mineralogy, electron micro probe analyses, X-ray Texture goniometry (XTG) and cathodoluminescence spectroscopy of core samples were used to decipher the post-depositional evolution of marine and supratidal facies in the Goldwyer and Bongabinni formations, respectively. Differences in diagenesis are strongly reflected in the orientation of clay minerals as quantified by XTG: in both cases the c-axes of illite diffract strongest normal to the bedding plane but the measurements clearly illustrate that shale in the Goldwyer Formation has a stronger preferred orientation relative to the Bongabinni Formation, with multiple of random distributions (m.r.d.) values of 5.77 and 2.54, respectively. Laboratory measurements conducted at 10 MPa effective stress also indicate distinct rock physics signatures: the Bongabinni Formation shows very low anisotropy, whereas the Goldwyer Formation displays a higher degree of elastic anisotropy in terms of both P- and S- waves. The crystallographic preferred orientation of illite, highlighted by the XTG, is likely to contribute to the significant difference in elastic anisotropy observed in the two units. Therefore, the Bongabinni Formation is mechanically stronger and stiffer than the Goldwyer Formation, likely due to the early dolomite and anhydrite cementation of the former providing a rigid microstructure framework. •Microstructural analysis of Ordovician shales from the Canning Basin.•Deposition environment affects alignement of clay particles and the diagenesis.•Marine facies show strong alignement of illite and late quartz cementation.•Supratidal facies show weak alignement of illite and early dolomite cementation.•Macroscopic behaviour of the rocks strongly reflects their microstructure.
AbstractList Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic-Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric due to syn-depositional precipitation of authigenic dolomite and anhydrite. Conventional petrographic analysis coupled with quantitative mineralogy, electron micro probe analyses, X-ray Texture goniometry (XTG) and cathodoluminescence spectroscopy of core samples were used to decipher the post-depositional evolution of marine and supratidal facies in the Goldwyer and Bongabinni formations, respectively. Differences in diagenesis are strongly reflected in the orientation of clay minerals as quantified by XTG: in both cases the c-axes of illite diffract strongest normal to the bedding plane but the measurements clearly illustrate that shale in the Goldwyer Formation has a stronger preferred orientation relative to the Bongabinni Formation, with multiple of random distributions (m.r.d.) values of 5.77 and 2.54, respectively. Laboratory measurements conducted at 10 MPa effective stress also indicate distinct rock physics signatures: the Bongabinni Formation shows very low anisotropy, whereas the Goldwyer Formation displays a higher degree of elastic anisotropy in terms of both P- and S- waves. The crystallographic preferred orientation of illite, highlighted by the XTG, is likely to contribute to the significant difference in elastic anisotropy observed in the two units. Therefore, the Bongabinni Formation is mechanically stronger and stiffer than the Goldwyer Formation, likely due to the early dolomite and anhydrite cementation of the former providing a rigid microstructure framework.
Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric due to syn-depositional precipitation of authigenic dolomite and anhydrite. Conventional petrographic analysis coupled with quantitative mineralogy, electron micro probe analyses, X-ray Texture goniometry (XTG) and cathodoluminescence spectroscopy of core samples were used to decipher the post-depositional evolution of marine and supratidal facies in the Goldwyer and Bongabinni formations, respectively. Differences in diagenesis are strongly reflected in the orientation of clay minerals as quantified by XTG: in both cases the c-axes of illite diffract strongest normal to the bedding plane but the measurements clearly illustrate that shale in the Goldwyer Formation has a stronger preferred orientation relative to the Bongabinni Formation, with multiple of random distributions (m.r.d.) values of 5.77 and 2.54, respectively. Laboratory measurements conducted at 10 MPa effective stress also indicate distinct rock physics signatures: the Bongabinni Formation shows very low anisotropy, whereas the Goldwyer Formation displays a higher degree of elastic anisotropy in terms of both P- and S- waves. The crystallographic preferred orientation of illite, highlighted by the XTG, is likely to contribute to the significant difference in elastic anisotropy observed in the two units. Therefore, the Bongabinni Formation is mechanically stronger and stiffer than the Goldwyer Formation, likely due to the early dolomite and anhydrite cementation of the former providing a rigid microstructure framework. •Microstructural analysis of Ordovician shales from the Canning Basin.•Deposition environment affects alignement of clay particles and the diagenesis.•Marine facies show strong alignement of illite and late quartz cementation.•Supratidal facies show weak alignement of illite and early dolomite cementation.•Macroscopic behaviour of the rocks strongly reflects their microstructure.
Author MacRae, Colin M.
Torpy, Aaron
Almqvist, Bjarne S.G.
Mory, Arthur J.
Delle Piane, Claudio
Dewhurst, David N.
Author_xml – sequence: 1
  givenname: Claudio
  surname: Delle Piane
  fullname: Delle Piane, Claudio
  email: claudio.dellepiane@csiro.au
  organization: CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington 6151, Australia
– sequence: 2
  givenname: Bjarne S.G.
  orcidid: 0000-0002-9385-7614
  surname: Almqvist
  fullname: Almqvist, Bjarne S.G.
  organization: Geological Department ETH Zurich, Switzerland
– sequence: 3
  givenname: Colin M.
  surname: MacRae
  fullname: MacRae, Colin M.
  organization: CSIRO Microbeam Laboratory, Process Science and Engineering, Bayview Avenue, Clayton 3168, Australia
– sequence: 4
  givenname: Aaron
  surname: Torpy
  fullname: Torpy, Aaron
  organization: CSIRO Microbeam Laboratory, Process Science and Engineering, Bayview Avenue, Clayton 3168, Australia
– sequence: 5
  givenname: Arthur J.
  surname: Mory
  fullname: Mory, Arthur J.
  organization: Geological Survey of Western Australia, Department of Mines and Petroleum, Mineral House, 100 Plain Street, East Perth, WA 6004, Australia
– sequence: 6
  givenname: David N.
  surname: Dewhurst
  fullname: Dewhurst, David N.
  organization: CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington 6151, Australia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-228803$$DView record from Swedish Publication Index
BookMark eNqNkc1u1DAUhS1UJKaFZ8BLFp1gJ06cILEYhr9KlbopsLQc-2bmjhI72E5LX4Tnxe0ACzZldaWr79yfc07JifMOCHnJWcEZb14fikmHGdIOfFEyLgomC8blE7LirazWgsnqhKxY2Yh1y2X5jJzGeGCMyY7xFfl5DT_SEoBqZ6lFvQMHESP1A70K1t-gQe1o3OsR6BD8RNMe6FY7h25H3-mI7px-g5ggOLpZYgp6RP2GXkzziEYn9C7SwQcKo44JTV6D0afg57uHjfnoCcw-d40e6Zz7EBJCfE6eDnqM8OJ3PSNfPn643n5eX159uthuLtdaCJ7WNav6_GUDQyeYHZi1coCu6fXADedNC1obaCSvoBe9qGwtaj5UfQs9Bwt1X52R8-PceAvz0qs5YHbzTnmN6j1-3SgfdmpZVFm2Lasy_uqI50u_L_ltNWE0MI7agV-i4k3DWFOJWv4HKmRmO9ll9O0RNcHHGGBQBtODd9lOHBVn6j5pdVB_k1b3SSsmVU466-U_-j9vPK7cHJWQPb5BCCoaBGfAYgCTlPX46IxfWxPPXQ
CitedBy_id crossref_primary_10_1016_j_jngse_2022_104727
crossref_primary_10_3390_min9100620
crossref_primary_10_1016_j_ijrmms_2019_104176
crossref_primary_10_1111_1365_2478_13564
crossref_primary_10_1016_j_coal_2024_104629
crossref_primary_10_1080_08120099_2021_1879265
crossref_primary_10_1017_S143192762000135X
crossref_primary_10_1016_j_marpetgeo_2019_08_054
crossref_primary_10_1016_j_petrol_2019_06_002
crossref_primary_10_5194_se_13_1513_2022
crossref_primary_10_1007_s13369_021_05396_y
crossref_primary_10_1002_2016RG000552
crossref_primary_10_1007_s00603_022_02936_2
crossref_primary_10_1002_2016JB013540
crossref_primary_10_1016_j_jappgeo_2022_104700
crossref_primary_10_1016_j_jngse_2021_103888
crossref_primary_10_1016_j_marpetgeo_2019_01_002
crossref_primary_10_1016_j_petrol_2021_109115
crossref_primary_10_1016_j_ijsolstr_2018_01_007
crossref_primary_10_1016_j_jngse_2020_103761
crossref_primary_10_1016_j_earscirev_2023_104670
crossref_primary_10_1051_geotech_2017001
crossref_primary_10_1016_j_marpetgeo_2020_104869
crossref_primary_10_1007_s00603_023_03437_6
crossref_primary_10_3389_feart_2021_617831
crossref_primary_10_1190_geo2022_0543_1
crossref_primary_10_3390_en15041464
crossref_primary_10_1016_j_marpetgeo_2016_09_030
crossref_primary_10_3390_en14175519
crossref_primary_10_1007_s00603_024_03802_z
crossref_primary_10_1016_j_petrol_2021_109347
crossref_primary_10_1016_j_fuel_2016_06_056
crossref_primary_10_1007_s00603_020_02146_8
crossref_primary_10_1007_s40948_024_00858_7
crossref_primary_10_1016_j_ijrmms_2020_104513
crossref_primary_10_3390_en15010216
crossref_primary_10_1016_j_jngse_2021_104363
crossref_primary_10_1111_sed_12624
crossref_primary_10_1088_1361_6501_aa8cf3
crossref_primary_10_1016_j_coal_2022_104079
crossref_primary_10_1007_s12517_022_09963_x
Cites_doi 10.1016/j.pce.2006.01.007
10.1093/gji/ggu148
10.1016/j.clay.2011.02.003
10.1016/j.chemgeo.2003.12.017
10.1346/CCMN.2008.0560301
10.1346/CCMN.2006.0540411
10.1007/s00710-012-0256-0
10.1346/CCMN.1999.0470412
10.1007/s00410-006-0132-1
10.1190/1.2432263
10.1306/12010404078
10.1111/j.1365-246X.2010.04885.x
10.1016/j.marpetgeo.2007.03.006
10.1111/j.1365-246X.2006.02987.x
10.1111/j.1365-3091.1994.tb01447.x
10.1346/CCMN.2008.0560109
10.1190/1.1442051
10.1111/j.1365-2478.2010.00942.x
10.1017/S1431927612013426
10.1016/0191-8141(94)90084-1
10.1190/1.2435966
10.1017/S1431927612013578
10.1016/j.sedgeo.2008.04.007
ContentType Journal Article
Copyright 2014
Copyright_xml – notice: 2014
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
8FD
FR3
KR7
ADTPV
AOWAS
DF2
DOI 10.1016/j.marpetgeo.2014.07.017
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4073
EndPage 71
ExternalDocumentID oai_DiVA_org_uu_228803
10_1016_j_marpetgeo_2014_07_017
S0264817214002426
GeographicLocations Australia, Western Australia
ISW, Australia, Western Australia, Canning Basin
GeographicLocations_xml – name: ISW, Australia, Western Australia, Canning Basin
– name: Australia, Western Australia
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TN
F1W
H96
L.G
8FD
EFKBS
FR3
KR7
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-a441t-503b1876ef940df0dd7fe96baf1c1168eaace6713eb4b43d5451f3b8eb1ede5b3
IEDL.DBID .~1
ISSN 0264-8172
1873-4073
IngestDate Thu Aug 21 06:52:26 EDT 2025
Sun Aug 24 03:56:42 EDT 2025
Fri Jul 11 09:08:18 EDT 2025
Tue Jul 01 02:11:00 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Fri Feb 23 02:23:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Canning Basin
Diagenesis
Crystallographic preferred orientation
Anisotropy
Shale
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a441t-503b1876ef940df0dd7fe96baf1c1168eaace6713eb4b43d5451f3b8eb1ede5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9385-7614
PQID 1647006979
PQPubID 23462
PageCount 16
ParticipantIDs swepub_primary_oai_DiVA_org_uu_228803
proquest_miscellaneous_1660063457
proquest_miscellaneous_1647006979
crossref_citationtrail_10_1016_j_marpetgeo_2014_07_017
crossref_primary_10_1016_j_marpetgeo_2014_07_017
elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2014_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Marine and petroleum geology
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Delle Piane, Sarout, Madonna, Saenger, Dewhurst, Raven (bib7) 2014; 198
Thomsen (bib27) 1986; 51
Leeman, MacRae, Wilson, Torpy, Lee, Student, Vicenzi (bib19) 2012; 18
Wenk (bib31) 1985
Sintubin (bib26) 1994; 41
van der Pluijm, Ho, Peacor (bib29) 1994; 16
Mondol, Bjørlykke, Jahren, Høeg (bib24) 2007; 24
Lyons, Plisga (bib21) 1984
Kanitpanyacharoen, Wenk, Kets, Lehr, Wirth (bib15) 2011; 59
Lash, Blood (bib18) 2004; 206
Jones, Xiao (bib14) 2005; 89
Zhan, Mory (bib35) 2013
Ghori, Haines (bib9) 2006
Keller, Holzer, Wepf, Gasser (bib16) 2011; 52
Wilson, MacRae, Torpy, Davidson, Vicenzi (bib34) 2012; 18
Bjorlykke (bib2) 2013
Boles, Franks (bib3) 1979; 49
Mavko, Mukerji, Dvorkin (bib23) 2009
Sarout, Molez, Guéguen, Hoteit (bib25) 2007; 32
Ho, Peacor, van der Pluijm (bib13) 1999; 47
Day-Stirrat, Aplin, Środoń, van der Pluijm (bib4) 2008; 56
Lonardelli, Wenk, Ren (bib20) 2007; 72
Day-Stirrat, Loucks, Milliken, Hillier, van der Pluijm (bib5) 2008; 208
Matenaar (bib22) 2002
Haines (bib12) 2009
Delle Piane, Dewhurst, Siggins, Raven (bib6) 2011; 184
Valcke, Casey, Lloyd, Kendall, Fisher (bib28) August 1 2006; 166
Wenk, Voltolini, Mazurek, Van Loon, Vinsot (bib32) 2008; 56
Duddy, Moore, O'Brien (bib8) 2005
Wenk, Lonardelli, Franz, Nihei, Nakagawa (bib33) 2007; 72
Kocks, Tome, Wenk (bib17) 2000
Götze, Schertl, Neuser, Kempe, Hanchar (bib10) 2013; 107
Aplin, Matenaar, McCarty, van der Pluijm (bib1) 2006; 54
Haines (bib11) 2004
Wark, Watson (bib30) 2006; 152
Delle Piane (10.1016/j.marpetgeo.2014.07.017_bib6) 2011; 184
Thomsen (10.1016/j.marpetgeo.2014.07.017_bib27) 1986; 51
Duddy (10.1016/j.marpetgeo.2014.07.017_bib8) 2005
Zhan (10.1016/j.marpetgeo.2014.07.017_bib35) 2013
Matenaar (10.1016/j.marpetgeo.2014.07.017_bib22) 2002
Mavko (10.1016/j.marpetgeo.2014.07.017_bib23) 2009
Sintubin (10.1016/j.marpetgeo.2014.07.017_bib26) 1994; 41
Ho (10.1016/j.marpetgeo.2014.07.017_bib13) 1999; 47
Keller (10.1016/j.marpetgeo.2014.07.017_bib16) 2011; 52
Lonardelli (10.1016/j.marpetgeo.2014.07.017_bib20) 2007; 72
van der Pluijm (10.1016/j.marpetgeo.2014.07.017_bib29) 1994; 16
Wark (10.1016/j.marpetgeo.2014.07.017_bib30) 2006; 152
Aplin (10.1016/j.marpetgeo.2014.07.017_bib1) 2006; 54
Ghori (10.1016/j.marpetgeo.2014.07.017_bib9) 2006
Leeman (10.1016/j.marpetgeo.2014.07.017_bib19) 2012; 18
Kocks (10.1016/j.marpetgeo.2014.07.017_bib17) 2000
Day-Stirrat (10.1016/j.marpetgeo.2014.07.017_bib4) 2008; 56
Jones (10.1016/j.marpetgeo.2014.07.017_bib14) 2005; 89
Sarout (10.1016/j.marpetgeo.2014.07.017_bib25) 2007; 32
Day-Stirrat (10.1016/j.marpetgeo.2014.07.017_bib5) 2008; 208
Haines (10.1016/j.marpetgeo.2014.07.017_bib11) 2004
Wenk (10.1016/j.marpetgeo.2014.07.017_bib32) 2008; 56
Götze (10.1016/j.marpetgeo.2014.07.017_bib10) 2013; 107
Lash (10.1016/j.marpetgeo.2014.07.017_bib18) 2004; 206
Wilson (10.1016/j.marpetgeo.2014.07.017_bib34) 2012; 18
Wenk (10.1016/j.marpetgeo.2014.07.017_bib31) 1985
Boles (10.1016/j.marpetgeo.2014.07.017_bib3) 1979; 49
Valcke (10.1016/j.marpetgeo.2014.07.017_bib28) 2006; 166
Bjorlykke (10.1016/j.marpetgeo.2014.07.017_bib2) 2013
Delle Piane (10.1016/j.marpetgeo.2014.07.017_bib7) 2014; 198
Mondol (10.1016/j.marpetgeo.2014.07.017_bib24) 2007; 24
Kanitpanyacharoen (10.1016/j.marpetgeo.2014.07.017_bib15) 2011; 59
Haines (10.1016/j.marpetgeo.2014.07.017_bib12) 2009
Lyons (10.1016/j.marpetgeo.2014.07.017_bib21) 1984
Wenk (10.1016/j.marpetgeo.2014.07.017_bib33) 2007; 72
References_xml – volume: 72
  start-page: D33
  year: 2007
  ident: bib20
  article-title: Preferred orientation and elastic anisotropy in shales
  publication-title: Geophysics
– volume: 51
  start-page: 1954
  year: 1986
  end-page: 1966
  ident: bib27
  article-title: Weak elastic anisotropy
  publication-title: Geophysics
– start-page: 692
  year: 2000
  ident: bib17
  article-title: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
– start-page: 304
  year: 2009
  ident: bib23
  article-title: The Rock Physics Handbook. Tools for Seismic Analysis of Porous Media
– volume: 56
  start-page: 100
  year: 2008
  end-page: 111
  ident: bib4
  article-title: Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, Southern Poland
  publication-title: Clays Clay Miner.
– volume: 184
  start-page: 897
  year: 2011
  end-page: 906
  ident: bib6
  article-title: Stress-induced anisotropy in brine saturated shale
  publication-title: Geophys. J. Int.
– year: 2006
  ident: bib9
  article-title: Petroleum Geochemistry of the Canning Basin, Western Australia: Basic Analytical Data 2004–05
– year: 2002
  ident: bib22
  article-title: Compaction and Microfabric Rearrangement of Fine-grained Siliciclastic Sediments
– volume: 166
  start-page: 652
  year: August 1 2006
  end-page: 666
  ident: bib28
  article-title: Lattice preferred orientation and seismic anisotropy in sedimentary rocks
  publication-title: Geophys. J. Int.
– volume: 152
  start-page: 743
  year: 2006
  end-page: 754
  ident: bib30
  article-title: TitaniQ: a Titanium-in-quartz Geothermometer
  publication-title: Contrib. Mineral. Petrol.
– start-page: 11
  year: 1985
  end-page: 48
  ident: bib31
  article-title: Measurement of pole figures
  publication-title: Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis
– volume: 107
  start-page: 373
  year: 2013
  end-page: 392
  ident: bib10
  article-title: Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals
  publication-title: Mineral. Petrol.
– year: 1984
  ident: bib21
  article-title: Standard Handbook of Petroleum and Natural Gas Engineering
– volume: 41
  start-page: 1161
  year: 1994
  end-page: 1169
  ident: bib26
  article-title: Clay fabrics in relation to the burial history of shales
  publication-title: Sedimentology
– year: 2005
  ident: bib8
  article-title: Thermal History Reconstruction in Five Canning Basin Wells: Acacia-1, Acacia-2, Kidson-1, Willara-1 & Yulleroo-1, Based on Apatite Fission Track Analysis (AFTA
– volume: 89
  start-page: 577
  year: 2005
  end-page: 601
  ident: bib14
  article-title: Dolomitization, anhydrite cementation, and porosity evolution in a reflux System: insights from reactive transport models
  publication-title: AAPG Bull.
– year: 2013
  ident: bib35
  article-title: Structural interpretation of the northern Canning Basin, western Australia
  publication-title: West Australian Basins Symposium Perth, 18–21 August 2013
– volume: 52
  start-page: 85
  year: 2011
  end-page: 95
  ident: bib16
  article-title: 3D geometry and topology of pore pathways in opalinus clay: implications for mass transport
  publication-title: Appl. Clay Sci.
– volume: 49
  start-page: 55
  year: 1979
  end-page: 70
  ident: bib3
  article-title: Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on Sandstone cementation
  publication-title: J. Sediment. Res.
– start-page: 60
  year: 2009
  ident: bib12
  article-title: The Carribuddy Group and Worral Formation, Canning Basin, Western Australia: Stratigraphy, Sedimentology, and Petroleum Potential
– volume: 198
  start-page: 504
  year: 2014
  end-page: 515
  ident: bib7
  article-title: Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis
  publication-title: Geophys. J. Int.
– volume: 24
  start-page: 289
  year: 2007
  end-page: 311
  ident: bib24
  article-title: Experimental mechanical compaction of Clay Mineral aggregates—Changes in physical properties of mudstones during burial
  publication-title: Mar. Pet. Geol.
– volume: 18
  start-page: 1303
  year: 2012
  end-page: 1312
  ident: bib34
  article-title: Hyperspectral cathodoluminescence examination of defects in a Carbonado diamond
  publication-title: Microsc. Microanal.
– volume: 47
  start-page: 495
  year: 1999
  end-page: 504
  ident: bib13
  article-title: Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition
  publication-title: Clays Clay Miner.
– volume: 32
  start-page: 896
  year: 2007
  end-page: 906
  ident: bib25
  article-title: Shale dynamic properties and anisotropy under triaxial loading. Experimental and theoretical investigations
  publication-title: Phys. Chem. Earth
– volume: 56
  start-page: 285
  year: 2008
  end-page: 306
  ident: bib32
  article-title: Preferred orientations and anisotropy in shales: Callovo-oxfordian shale (France) and opalinus clay (Switzerland)
  publication-title: Clays Clay Miner.
– volume: 72
  start-page: E69
  year: 2007
  end-page: E75
  ident: bib33
  article-title: Preferred orientation and elastic anisotropy of illite-rich shale
  publication-title: Geophysics
– volume: 54
  start-page: 500
  year: 2006
  end-page: 514
  ident: bib1
  article-title: Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones
  publication-title: Clays Clay Miner.
– volume: 16
  start-page: 1029
  year: 1994
  end-page: 1032
  ident: bib29
  article-title: High-resolution X-ray texture goniometry
  publication-title: J. Struct. Geol.
– start-page: 45
  year: 2004
  ident: bib11
  article-title: Depositional Facies and Regional Correlations of the Ordovician Goldwyer and Nita Formations, Canning Basin, Western Australia, with Implications for Petroleum Exploration
– start-page: 508
  year: 2013
  ident: bib2
  article-title: Petroleum Geoscience – from Sedimentary Environments to Rock Physics
– volume: 18
  start-page: 1322
  year: 2012
  end-page: 1341
  ident: bib19
  article-title: A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz
  publication-title: Microsc. Microanal.
– volume: 208
  start-page: 27
  year: 2008
  end-page: 35
  ident: bib5
  article-title: Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the barnett shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A)
  publication-title: Sediment. Geol.
– volume: 59
  start-page: 536
  year: 2011
  end-page: 556
  ident: bib15
  article-title: Texture and anisotropy analysis of Qusaiba shales
  publication-title: Geophys. Prospect.
– volume: 206
  start-page: 407
  year: 2004
  end-page: 424
  ident: bib18
  article-title: Geochemical and textural evidence for Early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York
  publication-title: Chem. Geol.
– volume: 32
  start-page: 896
  issue: 8–14
  year: 2007
  ident: 10.1016/j.marpetgeo.2014.07.017_bib25
  article-title: Shale dynamic properties and anisotropy under triaxial loading. Experimental and theoretical investigations
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2006.01.007
– start-page: 11
  year: 1985
  ident: 10.1016/j.marpetgeo.2014.07.017_bib31
  article-title: Measurement of pole figures
– year: 2013
  ident: 10.1016/j.marpetgeo.2014.07.017_bib35
  article-title: Structural interpretation of the northern Canning Basin, western Australia
– volume: 198
  start-page: 504
  issue: 1
  year: 2014
  ident: 10.1016/j.marpetgeo.2014.07.017_bib7
  article-title: Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu148
– volume: 52
  start-page: 85
  issue: 1–2
  year: 2011
  ident: 10.1016/j.marpetgeo.2014.07.017_bib16
  article-title: 3D geometry and topology of pore pathways in opalinus clay: implications for mass transport
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.02.003
– volume: 206
  start-page: 407
  issue: 3–4
  year: 2004
  ident: 10.1016/j.marpetgeo.2014.07.017_bib18
  article-title: Geochemical and textural evidence for Early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2003.12.017
– volume: 56
  start-page: 285
  issue: 3
  year: 2008
  ident: 10.1016/j.marpetgeo.2014.07.017_bib32
  article-title: Preferred orientations and anisotropy in shales: Callovo-oxfordian shale (France) and opalinus clay (Switzerland)
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2008.0560301
– volume: 49
  start-page: 55
  issue: 1
  year: 1979
  ident: 10.1016/j.marpetgeo.2014.07.017_bib3
  article-title: Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on Sandstone cementation
  publication-title: J. Sediment. Res.
– start-page: 60
  year: 2009
  ident: 10.1016/j.marpetgeo.2014.07.017_bib12
– year: 2005
  ident: 10.1016/j.marpetgeo.2014.07.017_bib8
– volume: 54
  start-page: 500
  issue: 4
  year: 2006
  ident: 10.1016/j.marpetgeo.2014.07.017_bib1
  article-title: Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2006.0540411
– year: 2006
  ident: 10.1016/j.marpetgeo.2014.07.017_bib9
– volume: 107
  start-page: 373
  issue: 3
  year: 2013
  ident: 10.1016/j.marpetgeo.2014.07.017_bib10
  article-title: Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals
  publication-title: Mineral. Petrol.
  doi: 10.1007/s00710-012-0256-0
– volume: 47
  start-page: 495
  issue: 4
  year: 1999
  ident: 10.1016/j.marpetgeo.2014.07.017_bib13
  article-title: Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1999.0470412
– volume: 152
  start-page: 743
  issue: 6
  year: 2006
  ident: 10.1016/j.marpetgeo.2014.07.017_bib30
  article-title: TitaniQ: a Titanium-in-quartz Geothermometer
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s00410-006-0132-1
– volume: 72
  start-page: E69
  issue: 2
  year: 2007
  ident: 10.1016/j.marpetgeo.2014.07.017_bib33
  article-title: Preferred orientation and elastic anisotropy of illite-rich shale
  publication-title: Geophysics
  doi: 10.1190/1.2432263
– volume: 89
  start-page: 577
  issue: 5
  year: 2005
  ident: 10.1016/j.marpetgeo.2014.07.017_bib14
  article-title: Dolomitization, anhydrite cementation, and porosity evolution in a reflux System: insights from reactive transport models
  publication-title: AAPG Bull.
  doi: 10.1306/12010404078
– volume: 184
  start-page: 897
  issue: 2
  year: 2011
  ident: 10.1016/j.marpetgeo.2014.07.017_bib6
  article-title: Stress-induced anisotropy in brine saturated shale
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2010.04885.x
– volume: 24
  start-page: 289
  issue: 5
  year: 2007
  ident: 10.1016/j.marpetgeo.2014.07.017_bib24
  article-title: Experimental mechanical compaction of Clay Mineral aggregates—Changes in physical properties of mudstones during burial
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2007.03.006
– start-page: 45
  year: 2004
  ident: 10.1016/j.marpetgeo.2014.07.017_bib11
– volume: 166
  start-page: 652
  issue: 2
  year: 2006
  ident: 10.1016/j.marpetgeo.2014.07.017_bib28
  article-title: Lattice preferred orientation and seismic anisotropy in sedimentary rocks
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.02987.x
– start-page: 304
  year: 2009
  ident: 10.1016/j.marpetgeo.2014.07.017_bib23
– volume: 41
  start-page: 1161
  issue: 6
  year: 1994
  ident: 10.1016/j.marpetgeo.2014.07.017_bib26
  article-title: Clay fabrics in relation to the burial history of shales
  publication-title: Sedimentology
  doi: 10.1111/j.1365-3091.1994.tb01447.x
– volume: 56
  start-page: 100
  issue: 1
  year: 2008
  ident: 10.1016/j.marpetgeo.2014.07.017_bib4
  article-title: Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, Southern Poland
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2008.0560109
– year: 1984
  ident: 10.1016/j.marpetgeo.2014.07.017_bib21
– volume: 51
  start-page: 1954
  issue: 10
  year: 1986
  ident: 10.1016/j.marpetgeo.2014.07.017_bib27
  article-title: Weak elastic anisotropy
  publication-title: Geophysics
  doi: 10.1190/1.1442051
– volume: 59
  start-page: 536
  issue: 3
  year: 2011
  ident: 10.1016/j.marpetgeo.2014.07.017_bib15
  article-title: Texture and anisotropy analysis of Qusaiba shales
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2010.00942.x
– volume: 18
  start-page: 1322
  issue: 06
  year: 2012
  ident: 10.1016/j.marpetgeo.2014.07.017_bib19
  article-title: A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927612013426
– volume: 16
  start-page: 1029
  issue: 7
  year: 1994
  ident: 10.1016/j.marpetgeo.2014.07.017_bib29
  article-title: High-resolution X-ray texture goniometry
  publication-title: J. Struct. Geol.
  doi: 10.1016/0191-8141(94)90084-1
– volume: 72
  start-page: D33
  issue: 2
  year: 2007
  ident: 10.1016/j.marpetgeo.2014.07.017_bib20
  article-title: Preferred orientation and elastic anisotropy in shales
  publication-title: Geophysics
  doi: 10.1190/1.2435966
– volume: 18
  start-page: 1303
  issue: 06
  year: 2012
  ident: 10.1016/j.marpetgeo.2014.07.017_bib34
  article-title: Hyperspectral cathodoluminescence examination of defects in a Carbonado diamond
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927612013578
– volume: 208
  start-page: 27
  issue: 1–2
  year: 2008
  ident: 10.1016/j.marpetgeo.2014.07.017_bib5
  article-title: Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the barnett shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A)
  publication-title: Sediment. Geol.
  doi: 10.1016/j.sedgeo.2008.04.007
– start-page: 692
  year: 2000
  ident: 10.1016/j.marpetgeo.2014.07.017_bib17
– year: 2002
  ident: 10.1016/j.marpetgeo.2014.07.017_bib22
– start-page: 508
  year: 2013
  ident: 10.1016/j.marpetgeo.2014.07.017_bib2
SSID ssj0007901
Score 2.2912838
Snippet Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin...
Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic-Mesozoic Canning Basin...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Anisotropy
Canning
Canning Basin
Clay minerals
Crystallographic preferred orientation
Diagenesis
Elastic anisotropy
Formations
Marine
Microstructure
Shale
Surface layer
Texture
Title Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties
URI https://dx.doi.org/10.1016/j.marpetgeo.2014.07.017
https://www.proquest.com/docview/1647006979
https://www.proquest.com/docview/1660063457
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-228803
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIiQ4VFBAtEBlJLgRNtk49qa37ULZglQOtNCbZcf2Nogmq3xU6qU_g9_bGSdZthKiB46J7NixxzPP9swbQt4kTMHGJ4sCGwoTMJ2KIM2UDjQIC-dgcbTzDrLHfH7KPp8lZxtkNsTCoFtlr_s7ne61df9m1I_maJnno28hOmfhDoZ1hgYj2JlAKX9__cfNQ6Q-BTIWDrD0LR-vC7zjaBY-CjBinsXTZy77q4VaR6DrrKLeEh0-Ils9hKTTrpePyYYttsnDNWLBbXL_k0_Ye_WE_D4B7dtWlqrCUJCFBeq2vKalo18rU176Uw1an4OdoBhqQgEQ0lmXyIgeqDov3tEfHZsCXZ2L7NOjNUd0CriXWkDh0B9oJq_LpiqXV75F-OkLi8HFKAt0iSf_FVK4PiWnhx9PZvOgz8UQKABMTZCEsY5Ac1qXstC40BjhbMq1clEWRXxilcoshx2v1Uyz2AAwi1ysJ2AKrLGJjp-RzaIs7HNCVRQ7rkQWmQlngjk1TiYOdpVC67HRLtshfBh_mfVE5Zgv45ccPNJ-ytXESZw4GQoJE7dDwlXFZcfVcXeV_WGC5S2xk2BR7q78ehAJCYsSb1pUYcu2lkjShhzQIv1XGY74kCXwnbedPK16jZzfH_LvU1lWC9m2cjwGNRvv_k9nX5AH8JR0p0cvyWZTtfYV4KlG7_kFs0fuTY--zI9vAAiMJdA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGJwQ8IBhMbHwZCd6ImjSO0-ytFEbLRnmgg71ZdmyXoC2p8oG0f4S_lzsnqToJsQdeEzt27PPdz-fz7wh5HTEJG5808Iwfa4-pJPaSVCpPgbBwDhZHWRcgu-CzM_bpPDrfIdP-LgyGVXa6v9XpTlt3T4bdaA7XWTb86mNwFu5gWGtobpFdZKeKBmR3Mj-ZLTYKOU5cFmQs72GFa2Fel3jMUa_cRcCAOSJPl7zsr0ZqG4RuE4s6Y3T8gNzvUCSdtB19SHZMvkfubXEL7pHbH13O3qtH5PcSFHBTGipzTUEcVqjesooWln4pdfHLOTZo9QNMBcXbJhQwIZ22uYzoO1ll-Vv6vSVUoBvXyBGdb8WiU4C-1AAQh_5AM1lV1GWxvnItwk9fGrxfjOJA1-j8L5HF9TE5O_6wnM68Lh2DJwEz1V7khyoA5Wlswnxtfa1jaxKupA3SIOBjI2VqOGx6jWKKhRqwWWBDNQZrYLSJVLhPBnmRmyeEyiC0XMZpoMecxczKUTS2sLGMlRppZdMDwvvxF2nHVY4pMy5EH5T2U2wmTuDECT8WMHEHxN9UXLd0HTdXOeonWFyTPAFG5ebKr3qRELAu8bBF5qZoKoE8bUgDHSf_KsMRIrIIvvOmladNr5H2-332bSKKciWaRoxGoGnDw__p7EtyZ7b8fCpO54uTp-QuvIlaZ9IzMqjLxjwHeFWrF93y-QP0ASiB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+and+diagenesis+of+Ordovician+shale+from+the+Canning+Basin%2C+Western+Australia&rft.jtitle=Marine+and+petroleum+geology&rft.au=Delle+Piane%2C+Claudio&rft.au=Almqvist%2C+Bjarne&rft.au=MacRae%2C+Colin&rft.au=Torpy%2C+Aaron&rft.date=2015&rft.issn=0264-8172&rft.volume=59&rft.spage=56&rft_id=info:doi/10.1016%2Fj.marpetgeo.2014.07.017&rft.externalDocID=oai_DiVA_org_uu_228803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon