Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties
Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric...
Saved in:
Published in | Marine and petroleum geology Vol. 59; pp. 56 - 71 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0264-8172 1873-4073 1873-4073 |
DOI | 10.1016/j.marpetgeo.2014.07.017 |
Cover
Loading…
Abstract | Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric due to syn-depositional precipitation of authigenic dolomite and anhydrite. Conventional petrographic analysis coupled with quantitative mineralogy, electron micro probe analyses, X-ray Texture goniometry (XTG) and cathodoluminescence spectroscopy of core samples were used to decipher the post-depositional evolution of marine and supratidal facies in the Goldwyer and Bongabinni formations, respectively. Differences in diagenesis are strongly reflected in the orientation of clay minerals as quantified by XTG: in both cases the c-axes of illite diffract strongest normal to the bedding plane but the measurements clearly illustrate that shale in the Goldwyer Formation has a stronger preferred orientation relative to the Bongabinni Formation, with multiple of random distributions (m.r.d.) values of 5.77 and 2.54, respectively.
Laboratory measurements conducted at 10 MPa effective stress also indicate distinct rock physics signatures: the Bongabinni Formation shows very low anisotropy, whereas the Goldwyer Formation displays a higher degree of elastic anisotropy in terms of both P- and S- waves. The crystallographic preferred orientation of illite, highlighted by the XTG, is likely to contribute to the significant difference in elastic anisotropy observed in the two units. Therefore, the Bongabinni Formation is mechanically stronger and stiffer than the Goldwyer Formation, likely due to the early dolomite and anhydrite cementation of the former providing a rigid microstructure framework.
•Microstructural analysis of Ordovician shales from the Canning Basin.•Deposition environment affects alignement of clay particles and the diagenesis.•Marine facies show strong alignement of illite and late quartz cementation.•Supratidal facies show weak alignement of illite and early dolomite cementation.•Macroscopic behaviour of the rocks strongly reflects their microstructure. |
---|---|
AbstractList | Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic-Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric due to syn-depositional precipitation of authigenic dolomite and anhydrite. Conventional petrographic analysis coupled with quantitative mineralogy, electron micro probe analyses, X-ray Texture goniometry (XTG) and cathodoluminescence spectroscopy of core samples were used to decipher the post-depositional evolution of marine and supratidal facies in the Goldwyer and Bongabinni formations, respectively. Differences in diagenesis are strongly reflected in the orientation of clay minerals as quantified by XTG: in both cases the c-axes of illite diffract strongest normal to the bedding plane but the measurements clearly illustrate that shale in the Goldwyer Formation has a stronger preferred orientation relative to the Bongabinni Formation, with multiple of random distributions (m.r.d.) values of 5.77 and 2.54, respectively. Laboratory measurements conducted at 10 MPa effective stress also indicate distinct rock physics signatures: the Bongabinni Formation shows very low anisotropy, whereas the Goldwyer Formation displays a higher degree of elastic anisotropy in terms of both P- and S- waves. The crystallographic preferred orientation of illite, highlighted by the XTG, is likely to contribute to the significant difference in elastic anisotropy observed in the two units. Therefore, the Bongabinni Formation is mechanically stronger and stiffer than the Goldwyer Formation, likely due to the early dolomite and anhydrite cementation of the former providing a rigid microstructure framework. Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin indicate that the former unit was affected by mechanical compaction and clay mineral transformation whereas the latter preserves an early fabric due to syn-depositional precipitation of authigenic dolomite and anhydrite. Conventional petrographic analysis coupled with quantitative mineralogy, electron micro probe analyses, X-ray Texture goniometry (XTG) and cathodoluminescence spectroscopy of core samples were used to decipher the post-depositional evolution of marine and supratidal facies in the Goldwyer and Bongabinni formations, respectively. Differences in diagenesis are strongly reflected in the orientation of clay minerals as quantified by XTG: in both cases the c-axes of illite diffract strongest normal to the bedding plane but the measurements clearly illustrate that shale in the Goldwyer Formation has a stronger preferred orientation relative to the Bongabinni Formation, with multiple of random distributions (m.r.d.) values of 5.77 and 2.54, respectively. Laboratory measurements conducted at 10 MPa effective stress also indicate distinct rock physics signatures: the Bongabinni Formation shows very low anisotropy, whereas the Goldwyer Formation displays a higher degree of elastic anisotropy in terms of both P- and S- waves. The crystallographic preferred orientation of illite, highlighted by the XTG, is likely to contribute to the significant difference in elastic anisotropy observed in the two units. Therefore, the Bongabinni Formation is mechanically stronger and stiffer than the Goldwyer Formation, likely due to the early dolomite and anhydrite cementation of the former providing a rigid microstructure framework. •Microstructural analysis of Ordovician shales from the Canning Basin.•Deposition environment affects alignement of clay particles and the diagenesis.•Marine facies show strong alignement of illite and late quartz cementation.•Supratidal facies show weak alignement of illite and early dolomite cementation.•Macroscopic behaviour of the rocks strongly reflects their microstructure. |
Author | MacRae, Colin M. Torpy, Aaron Almqvist, Bjarne S.G. Mory, Arthur J. Delle Piane, Claudio Dewhurst, David N. |
Author_xml | – sequence: 1 givenname: Claudio surname: Delle Piane fullname: Delle Piane, Claudio email: claudio.dellepiane@csiro.au organization: CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington 6151, Australia – sequence: 2 givenname: Bjarne S.G. orcidid: 0000-0002-9385-7614 surname: Almqvist fullname: Almqvist, Bjarne S.G. organization: Geological Department ETH Zurich, Switzerland – sequence: 3 givenname: Colin M. surname: MacRae fullname: MacRae, Colin M. organization: CSIRO Microbeam Laboratory, Process Science and Engineering, Bayview Avenue, Clayton 3168, Australia – sequence: 4 givenname: Aaron surname: Torpy fullname: Torpy, Aaron organization: CSIRO Microbeam Laboratory, Process Science and Engineering, Bayview Avenue, Clayton 3168, Australia – sequence: 5 givenname: Arthur J. surname: Mory fullname: Mory, Arthur J. organization: Geological Survey of Western Australia, Department of Mines and Petroleum, Mineral House, 100 Plain Street, East Perth, WA 6004, Australia – sequence: 6 givenname: David N. surname: Dewhurst fullname: Dewhurst, David N. organization: CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington 6151, Australia |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-228803$$DView record from Swedish Publication Index |
BookMark | eNqNkc1u1DAUhS1UJKaFZ8BLFp1gJ06cILEYhr9KlbopsLQc-2bmjhI72E5LX4Tnxe0ACzZldaWr79yfc07JifMOCHnJWcEZb14fikmHGdIOfFEyLgomC8blE7LirazWgsnqhKxY2Yh1y2X5jJzGeGCMyY7xFfl5DT_SEoBqZ6lFvQMHESP1A70K1t-gQe1o3OsR6BD8RNMe6FY7h25H3-mI7px-g5ggOLpZYgp6RP2GXkzziEYn9C7SwQcKo44JTV6D0afg57uHjfnoCcw-d40e6Zz7EBJCfE6eDnqM8OJ3PSNfPn643n5eX159uthuLtdaCJ7WNav6_GUDQyeYHZi1coCu6fXADedNC1obaCSvoBe9qGwtaj5UfQs9Bwt1X52R8-PceAvz0qs5YHbzTnmN6j1-3SgfdmpZVFm2Lasy_uqI50u_L_ltNWE0MI7agV-i4k3DWFOJWv4HKmRmO9ll9O0RNcHHGGBQBtODd9lOHBVn6j5pdVB_k1b3SSsmVU466-U_-j9vPK7cHJWQPb5BCCoaBGfAYgCTlPX46IxfWxPPXQ |
CitedBy_id | crossref_primary_10_1016_j_jngse_2022_104727 crossref_primary_10_3390_min9100620 crossref_primary_10_1016_j_ijrmms_2019_104176 crossref_primary_10_1111_1365_2478_13564 crossref_primary_10_1016_j_coal_2024_104629 crossref_primary_10_1080_08120099_2021_1879265 crossref_primary_10_1017_S143192762000135X crossref_primary_10_1016_j_marpetgeo_2019_08_054 crossref_primary_10_1016_j_petrol_2019_06_002 crossref_primary_10_5194_se_13_1513_2022 crossref_primary_10_1007_s13369_021_05396_y crossref_primary_10_1002_2016RG000552 crossref_primary_10_1007_s00603_022_02936_2 crossref_primary_10_1002_2016JB013540 crossref_primary_10_1016_j_jappgeo_2022_104700 crossref_primary_10_1016_j_jngse_2021_103888 crossref_primary_10_1016_j_marpetgeo_2019_01_002 crossref_primary_10_1016_j_petrol_2021_109115 crossref_primary_10_1016_j_ijsolstr_2018_01_007 crossref_primary_10_1016_j_jngse_2020_103761 crossref_primary_10_1016_j_earscirev_2023_104670 crossref_primary_10_1051_geotech_2017001 crossref_primary_10_1016_j_marpetgeo_2020_104869 crossref_primary_10_1007_s00603_023_03437_6 crossref_primary_10_3389_feart_2021_617831 crossref_primary_10_1190_geo2022_0543_1 crossref_primary_10_3390_en15041464 crossref_primary_10_1016_j_marpetgeo_2016_09_030 crossref_primary_10_3390_en14175519 crossref_primary_10_1007_s00603_024_03802_z crossref_primary_10_1016_j_petrol_2021_109347 crossref_primary_10_1016_j_fuel_2016_06_056 crossref_primary_10_1007_s00603_020_02146_8 crossref_primary_10_1007_s40948_024_00858_7 crossref_primary_10_1016_j_ijrmms_2020_104513 crossref_primary_10_3390_en15010216 crossref_primary_10_1016_j_jngse_2021_104363 crossref_primary_10_1111_sed_12624 crossref_primary_10_1088_1361_6501_aa8cf3 crossref_primary_10_1016_j_coal_2022_104079 crossref_primary_10_1007_s12517_022_09963_x |
Cites_doi | 10.1016/j.pce.2006.01.007 10.1093/gji/ggu148 10.1016/j.clay.2011.02.003 10.1016/j.chemgeo.2003.12.017 10.1346/CCMN.2008.0560301 10.1346/CCMN.2006.0540411 10.1007/s00710-012-0256-0 10.1346/CCMN.1999.0470412 10.1007/s00410-006-0132-1 10.1190/1.2432263 10.1306/12010404078 10.1111/j.1365-246X.2010.04885.x 10.1016/j.marpetgeo.2007.03.006 10.1111/j.1365-246X.2006.02987.x 10.1111/j.1365-3091.1994.tb01447.x 10.1346/CCMN.2008.0560109 10.1190/1.1442051 10.1111/j.1365-2478.2010.00942.x 10.1017/S1431927612013426 10.1016/0191-8141(94)90084-1 10.1190/1.2435966 10.1017/S1431927612013578 10.1016/j.sedgeo.2008.04.007 |
ContentType | Journal Article |
Copyright | 2014 |
Copyright_xml | – notice: 2014 |
DBID | AAYXX CITATION 7TN F1W H96 L.G 8FD FR3 KR7 ADTPV AOWAS DF2 |
DOI | 10.1016/j.marpetgeo.2014.07.017 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1873-4073 |
EndPage | 71 |
ExternalDocumentID | oai_DiVA_org_uu_228803 10_1016_j_marpetgeo_2014_07_017 S0264817214002426 |
GeographicLocations | Australia, Western Australia ISW, Australia, Western Australia, Canning Basin |
GeographicLocations_xml | – name: ISW, Australia, Western Australia, Canning Basin – name: Australia, Western Australia |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TN F1W H96 L.G 8FD EFKBS FR3 KR7 ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-a441t-503b1876ef940df0dd7fe96baf1c1168eaace6713eb4b43d5451f3b8eb1ede5b3 |
IEDL.DBID | .~1 |
ISSN | 0264-8172 1873-4073 |
IngestDate | Thu Aug 21 06:52:26 EDT 2025 Sun Aug 24 03:56:42 EDT 2025 Fri Jul 11 09:08:18 EDT 2025 Tue Jul 01 02:11:00 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Fri Feb 23 02:23:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Canning Basin Diagenesis Crystallographic preferred orientation Anisotropy Shale |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-503b1876ef940df0dd7fe96baf1c1168eaace6713eb4b43d5451f3b8eb1ede5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9385-7614 |
PQID | 1647006979 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_228803 proquest_miscellaneous_1660063457 proquest_miscellaneous_1647006979 crossref_citationtrail_10_1016_j_marpetgeo_2014_07_017 crossref_primary_10_1016_j_marpetgeo_2014_07_017 elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2014_07_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | Marine and petroleum geology |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Delle Piane, Sarout, Madonna, Saenger, Dewhurst, Raven (bib7) 2014; 198 Thomsen (bib27) 1986; 51 Leeman, MacRae, Wilson, Torpy, Lee, Student, Vicenzi (bib19) 2012; 18 Wenk (bib31) 1985 Sintubin (bib26) 1994; 41 van der Pluijm, Ho, Peacor (bib29) 1994; 16 Mondol, Bjørlykke, Jahren, Høeg (bib24) 2007; 24 Lyons, Plisga (bib21) 1984 Kanitpanyacharoen, Wenk, Kets, Lehr, Wirth (bib15) 2011; 59 Lash, Blood (bib18) 2004; 206 Jones, Xiao (bib14) 2005; 89 Zhan, Mory (bib35) 2013 Ghori, Haines (bib9) 2006 Keller, Holzer, Wepf, Gasser (bib16) 2011; 52 Wilson, MacRae, Torpy, Davidson, Vicenzi (bib34) 2012; 18 Bjorlykke (bib2) 2013 Boles, Franks (bib3) 1979; 49 Mavko, Mukerji, Dvorkin (bib23) 2009 Sarout, Molez, Guéguen, Hoteit (bib25) 2007; 32 Ho, Peacor, van der Pluijm (bib13) 1999; 47 Day-Stirrat, Aplin, Środoń, van der Pluijm (bib4) 2008; 56 Lonardelli, Wenk, Ren (bib20) 2007; 72 Day-Stirrat, Loucks, Milliken, Hillier, van der Pluijm (bib5) 2008; 208 Matenaar (bib22) 2002 Haines (bib12) 2009 Delle Piane, Dewhurst, Siggins, Raven (bib6) 2011; 184 Valcke, Casey, Lloyd, Kendall, Fisher (bib28) August 1 2006; 166 Wenk, Voltolini, Mazurek, Van Loon, Vinsot (bib32) 2008; 56 Duddy, Moore, O'Brien (bib8) 2005 Wenk, Lonardelli, Franz, Nihei, Nakagawa (bib33) 2007; 72 Kocks, Tome, Wenk (bib17) 2000 Götze, Schertl, Neuser, Kempe, Hanchar (bib10) 2013; 107 Aplin, Matenaar, McCarty, van der Pluijm (bib1) 2006; 54 Haines (bib11) 2004 Wark, Watson (bib30) 2006; 152 Delle Piane (10.1016/j.marpetgeo.2014.07.017_bib6) 2011; 184 Thomsen (10.1016/j.marpetgeo.2014.07.017_bib27) 1986; 51 Duddy (10.1016/j.marpetgeo.2014.07.017_bib8) 2005 Zhan (10.1016/j.marpetgeo.2014.07.017_bib35) 2013 Matenaar (10.1016/j.marpetgeo.2014.07.017_bib22) 2002 Mavko (10.1016/j.marpetgeo.2014.07.017_bib23) 2009 Sintubin (10.1016/j.marpetgeo.2014.07.017_bib26) 1994; 41 Ho (10.1016/j.marpetgeo.2014.07.017_bib13) 1999; 47 Keller (10.1016/j.marpetgeo.2014.07.017_bib16) 2011; 52 Lonardelli (10.1016/j.marpetgeo.2014.07.017_bib20) 2007; 72 van der Pluijm (10.1016/j.marpetgeo.2014.07.017_bib29) 1994; 16 Wark (10.1016/j.marpetgeo.2014.07.017_bib30) 2006; 152 Aplin (10.1016/j.marpetgeo.2014.07.017_bib1) 2006; 54 Ghori (10.1016/j.marpetgeo.2014.07.017_bib9) 2006 Leeman (10.1016/j.marpetgeo.2014.07.017_bib19) 2012; 18 Kocks (10.1016/j.marpetgeo.2014.07.017_bib17) 2000 Day-Stirrat (10.1016/j.marpetgeo.2014.07.017_bib4) 2008; 56 Jones (10.1016/j.marpetgeo.2014.07.017_bib14) 2005; 89 Sarout (10.1016/j.marpetgeo.2014.07.017_bib25) 2007; 32 Day-Stirrat (10.1016/j.marpetgeo.2014.07.017_bib5) 2008; 208 Haines (10.1016/j.marpetgeo.2014.07.017_bib11) 2004 Wenk (10.1016/j.marpetgeo.2014.07.017_bib32) 2008; 56 Götze (10.1016/j.marpetgeo.2014.07.017_bib10) 2013; 107 Lash (10.1016/j.marpetgeo.2014.07.017_bib18) 2004; 206 Wilson (10.1016/j.marpetgeo.2014.07.017_bib34) 2012; 18 Wenk (10.1016/j.marpetgeo.2014.07.017_bib31) 1985 Boles (10.1016/j.marpetgeo.2014.07.017_bib3) 1979; 49 Valcke (10.1016/j.marpetgeo.2014.07.017_bib28) 2006; 166 Bjorlykke (10.1016/j.marpetgeo.2014.07.017_bib2) 2013 Delle Piane (10.1016/j.marpetgeo.2014.07.017_bib7) 2014; 198 Mondol (10.1016/j.marpetgeo.2014.07.017_bib24) 2007; 24 Kanitpanyacharoen (10.1016/j.marpetgeo.2014.07.017_bib15) 2011; 59 Haines (10.1016/j.marpetgeo.2014.07.017_bib12) 2009 Lyons (10.1016/j.marpetgeo.2014.07.017_bib21) 1984 Wenk (10.1016/j.marpetgeo.2014.07.017_bib33) 2007; 72 |
References_xml | – volume: 72 start-page: D33 year: 2007 ident: bib20 article-title: Preferred orientation and elastic anisotropy in shales publication-title: Geophysics – volume: 51 start-page: 1954 year: 1986 end-page: 1966 ident: bib27 article-title: Weak elastic anisotropy publication-title: Geophysics – start-page: 692 year: 2000 ident: bib17 article-title: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties – start-page: 304 year: 2009 ident: bib23 article-title: The Rock Physics Handbook. Tools for Seismic Analysis of Porous Media – volume: 56 start-page: 100 year: 2008 end-page: 111 ident: bib4 article-title: Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, Southern Poland publication-title: Clays Clay Miner. – volume: 184 start-page: 897 year: 2011 end-page: 906 ident: bib6 article-title: Stress-induced anisotropy in brine saturated shale publication-title: Geophys. J. Int. – year: 2006 ident: bib9 article-title: Petroleum Geochemistry of the Canning Basin, Western Australia: Basic Analytical Data 2004–05 – year: 2002 ident: bib22 article-title: Compaction and Microfabric Rearrangement of Fine-grained Siliciclastic Sediments – volume: 166 start-page: 652 year: August 1 2006 end-page: 666 ident: bib28 article-title: Lattice preferred orientation and seismic anisotropy in sedimentary rocks publication-title: Geophys. J. Int. – volume: 152 start-page: 743 year: 2006 end-page: 754 ident: bib30 article-title: TitaniQ: a Titanium-in-quartz Geothermometer publication-title: Contrib. Mineral. Petrol. – start-page: 11 year: 1985 end-page: 48 ident: bib31 article-title: Measurement of pole figures publication-title: Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis – volume: 107 start-page: 373 year: 2013 end-page: 392 ident: bib10 article-title: Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals publication-title: Mineral. Petrol. – year: 1984 ident: bib21 article-title: Standard Handbook of Petroleum and Natural Gas Engineering – volume: 41 start-page: 1161 year: 1994 end-page: 1169 ident: bib26 article-title: Clay fabrics in relation to the burial history of shales publication-title: Sedimentology – year: 2005 ident: bib8 article-title: Thermal History Reconstruction in Five Canning Basin Wells: Acacia-1, Acacia-2, Kidson-1, Willara-1 & Yulleroo-1, Based on Apatite Fission Track Analysis (AFTA – volume: 89 start-page: 577 year: 2005 end-page: 601 ident: bib14 article-title: Dolomitization, anhydrite cementation, and porosity evolution in a reflux System: insights from reactive transport models publication-title: AAPG Bull. – year: 2013 ident: bib35 article-title: Structural interpretation of the northern Canning Basin, western Australia publication-title: West Australian Basins Symposium Perth, 18–21 August 2013 – volume: 52 start-page: 85 year: 2011 end-page: 95 ident: bib16 article-title: 3D geometry and topology of pore pathways in opalinus clay: implications for mass transport publication-title: Appl. Clay Sci. – volume: 49 start-page: 55 year: 1979 end-page: 70 ident: bib3 article-title: Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on Sandstone cementation publication-title: J. Sediment. Res. – start-page: 60 year: 2009 ident: bib12 article-title: The Carribuddy Group and Worral Formation, Canning Basin, Western Australia: Stratigraphy, Sedimentology, and Petroleum Potential – volume: 198 start-page: 504 year: 2014 end-page: 515 ident: bib7 article-title: Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis publication-title: Geophys. J. Int. – volume: 24 start-page: 289 year: 2007 end-page: 311 ident: bib24 article-title: Experimental mechanical compaction of Clay Mineral aggregates—Changes in physical properties of mudstones during burial publication-title: Mar. Pet. Geol. – volume: 18 start-page: 1303 year: 2012 end-page: 1312 ident: bib34 article-title: Hyperspectral cathodoluminescence examination of defects in a Carbonado diamond publication-title: Microsc. Microanal. – volume: 47 start-page: 495 year: 1999 end-page: 504 ident: bib13 article-title: Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition publication-title: Clays Clay Miner. – volume: 32 start-page: 896 year: 2007 end-page: 906 ident: bib25 article-title: Shale dynamic properties and anisotropy under triaxial loading. Experimental and theoretical investigations publication-title: Phys. Chem. Earth – volume: 56 start-page: 285 year: 2008 end-page: 306 ident: bib32 article-title: Preferred orientations and anisotropy in shales: Callovo-oxfordian shale (France) and opalinus clay (Switzerland) publication-title: Clays Clay Miner. – volume: 72 start-page: E69 year: 2007 end-page: E75 ident: bib33 article-title: Preferred orientation and elastic anisotropy of illite-rich shale publication-title: Geophysics – volume: 54 start-page: 500 year: 2006 end-page: 514 ident: bib1 article-title: Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones publication-title: Clays Clay Miner. – volume: 16 start-page: 1029 year: 1994 end-page: 1032 ident: bib29 article-title: High-resolution X-ray texture goniometry publication-title: J. Struct. Geol. – start-page: 45 year: 2004 ident: bib11 article-title: Depositional Facies and Regional Correlations of the Ordovician Goldwyer and Nita Formations, Canning Basin, Western Australia, with Implications for Petroleum Exploration – start-page: 508 year: 2013 ident: bib2 article-title: Petroleum Geoscience – from Sedimentary Environments to Rock Physics – volume: 18 start-page: 1322 year: 2012 end-page: 1341 ident: bib19 article-title: A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz publication-title: Microsc. Microanal. – volume: 208 start-page: 27 year: 2008 end-page: 35 ident: bib5 article-title: Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the barnett shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) publication-title: Sediment. Geol. – volume: 59 start-page: 536 year: 2011 end-page: 556 ident: bib15 article-title: Texture and anisotropy analysis of Qusaiba shales publication-title: Geophys. Prospect. – volume: 206 start-page: 407 year: 2004 end-page: 424 ident: bib18 article-title: Geochemical and textural evidence for Early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York publication-title: Chem. Geol. – volume: 32 start-page: 896 issue: 8–14 year: 2007 ident: 10.1016/j.marpetgeo.2014.07.017_bib25 article-title: Shale dynamic properties and anisotropy under triaxial loading. Experimental and theoretical investigations publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2006.01.007 – start-page: 11 year: 1985 ident: 10.1016/j.marpetgeo.2014.07.017_bib31 article-title: Measurement of pole figures – year: 2013 ident: 10.1016/j.marpetgeo.2014.07.017_bib35 article-title: Structural interpretation of the northern Canning Basin, western Australia – volume: 198 start-page: 504 issue: 1 year: 2014 ident: 10.1016/j.marpetgeo.2014.07.017_bib7 article-title: Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu148 – volume: 52 start-page: 85 issue: 1–2 year: 2011 ident: 10.1016/j.marpetgeo.2014.07.017_bib16 article-title: 3D geometry and topology of pore pathways in opalinus clay: implications for mass transport publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.02.003 – volume: 206 start-page: 407 issue: 3–4 year: 2004 ident: 10.1016/j.marpetgeo.2014.07.017_bib18 article-title: Geochemical and textural evidence for Early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2003.12.017 – volume: 56 start-page: 285 issue: 3 year: 2008 ident: 10.1016/j.marpetgeo.2014.07.017_bib32 article-title: Preferred orientations and anisotropy in shales: Callovo-oxfordian shale (France) and opalinus clay (Switzerland) publication-title: Clays Clay Miner. doi: 10.1346/CCMN.2008.0560301 – volume: 49 start-page: 55 issue: 1 year: 1979 ident: 10.1016/j.marpetgeo.2014.07.017_bib3 article-title: Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on Sandstone cementation publication-title: J. Sediment. Res. – start-page: 60 year: 2009 ident: 10.1016/j.marpetgeo.2014.07.017_bib12 – year: 2005 ident: 10.1016/j.marpetgeo.2014.07.017_bib8 – volume: 54 start-page: 500 issue: 4 year: 2006 ident: 10.1016/j.marpetgeo.2014.07.017_bib1 article-title: Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones publication-title: Clays Clay Miner. doi: 10.1346/CCMN.2006.0540411 – year: 2006 ident: 10.1016/j.marpetgeo.2014.07.017_bib9 – volume: 107 start-page: 373 issue: 3 year: 2013 ident: 10.1016/j.marpetgeo.2014.07.017_bib10 article-title: Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals publication-title: Mineral. Petrol. doi: 10.1007/s00710-012-0256-0 – volume: 47 start-page: 495 issue: 4 year: 1999 ident: 10.1016/j.marpetgeo.2014.07.017_bib13 article-title: Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1999.0470412 – volume: 152 start-page: 743 issue: 6 year: 2006 ident: 10.1016/j.marpetgeo.2014.07.017_bib30 article-title: TitaniQ: a Titanium-in-quartz Geothermometer publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s00410-006-0132-1 – volume: 72 start-page: E69 issue: 2 year: 2007 ident: 10.1016/j.marpetgeo.2014.07.017_bib33 article-title: Preferred orientation and elastic anisotropy of illite-rich shale publication-title: Geophysics doi: 10.1190/1.2432263 – volume: 89 start-page: 577 issue: 5 year: 2005 ident: 10.1016/j.marpetgeo.2014.07.017_bib14 article-title: Dolomitization, anhydrite cementation, and porosity evolution in a reflux System: insights from reactive transport models publication-title: AAPG Bull. doi: 10.1306/12010404078 – volume: 184 start-page: 897 issue: 2 year: 2011 ident: 10.1016/j.marpetgeo.2014.07.017_bib6 article-title: Stress-induced anisotropy in brine saturated shale publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2010.04885.x – volume: 24 start-page: 289 issue: 5 year: 2007 ident: 10.1016/j.marpetgeo.2014.07.017_bib24 article-title: Experimental mechanical compaction of Clay Mineral aggregates—Changes in physical properties of mudstones during burial publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2007.03.006 – start-page: 45 year: 2004 ident: 10.1016/j.marpetgeo.2014.07.017_bib11 – volume: 166 start-page: 652 issue: 2 year: 2006 ident: 10.1016/j.marpetgeo.2014.07.017_bib28 article-title: Lattice preferred orientation and seismic anisotropy in sedimentary rocks publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.02987.x – start-page: 304 year: 2009 ident: 10.1016/j.marpetgeo.2014.07.017_bib23 – volume: 41 start-page: 1161 issue: 6 year: 1994 ident: 10.1016/j.marpetgeo.2014.07.017_bib26 article-title: Clay fabrics in relation to the burial history of shales publication-title: Sedimentology doi: 10.1111/j.1365-3091.1994.tb01447.x – volume: 56 start-page: 100 issue: 1 year: 2008 ident: 10.1016/j.marpetgeo.2014.07.017_bib4 article-title: Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, Southern Poland publication-title: Clays Clay Miner. doi: 10.1346/CCMN.2008.0560109 – year: 1984 ident: 10.1016/j.marpetgeo.2014.07.017_bib21 – volume: 51 start-page: 1954 issue: 10 year: 1986 ident: 10.1016/j.marpetgeo.2014.07.017_bib27 article-title: Weak elastic anisotropy publication-title: Geophysics doi: 10.1190/1.1442051 – volume: 59 start-page: 536 issue: 3 year: 2011 ident: 10.1016/j.marpetgeo.2014.07.017_bib15 article-title: Texture and anisotropy analysis of Qusaiba shales publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2010.00942.x – volume: 18 start-page: 1322 issue: 06 year: 2012 ident: 10.1016/j.marpetgeo.2014.07.017_bib19 article-title: A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz publication-title: Microsc. Microanal. doi: 10.1017/S1431927612013426 – volume: 16 start-page: 1029 issue: 7 year: 1994 ident: 10.1016/j.marpetgeo.2014.07.017_bib29 article-title: High-resolution X-ray texture goniometry publication-title: J. Struct. Geol. doi: 10.1016/0191-8141(94)90084-1 – volume: 72 start-page: D33 issue: 2 year: 2007 ident: 10.1016/j.marpetgeo.2014.07.017_bib20 article-title: Preferred orientation and elastic anisotropy in shales publication-title: Geophysics doi: 10.1190/1.2435966 – volume: 18 start-page: 1303 issue: 06 year: 2012 ident: 10.1016/j.marpetgeo.2014.07.017_bib34 article-title: Hyperspectral cathodoluminescence examination of defects in a Carbonado diamond publication-title: Microsc. Microanal. doi: 10.1017/S1431927612013578 – volume: 208 start-page: 27 issue: 1–2 year: 2008 ident: 10.1016/j.marpetgeo.2014.07.017_bib5 article-title: Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the barnett shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) publication-title: Sediment. Geol. doi: 10.1016/j.sedgeo.2008.04.007 – start-page: 692 year: 2000 ident: 10.1016/j.marpetgeo.2014.07.017_bib17 – year: 2002 ident: 10.1016/j.marpetgeo.2014.07.017_bib22 – start-page: 508 year: 2013 ident: 10.1016/j.marpetgeo.2014.07.017_bib2 |
SSID | ssj0007901 |
Score | 2.2912838 |
Snippet | Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic–Mesozoic Canning Basin... Microstructural and textural measurements from two Ordovician shale units (Goldwyer and Bongabinni formations) within the Palaeozoic-Mesozoic Canning Basin... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 56 |
SubjectTerms | Anisotropy Canning Canning Basin Clay minerals Crystallographic preferred orientation Diagenesis Elastic anisotropy Formations Marine Microstructure Shale Surface layer Texture |
Title | Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties |
URI | https://dx.doi.org/10.1016/j.marpetgeo.2014.07.017 https://www.proquest.com/docview/1647006979 https://www.proquest.com/docview/1660063457 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-228803 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIiQ4VFBAtEBlJLgRNtk49qa37ULZglQOtNCbZcf2Nogmq3xU6qU_g9_bGSdZthKiB46J7NixxzPP9swbQt4kTMHGJ4sCGwoTMJ2KIM2UDjQIC-dgcbTzDrLHfH7KPp8lZxtkNsTCoFtlr_s7ne61df9m1I_maJnno28hOmfhDoZ1hgYj2JlAKX9__cfNQ6Q-BTIWDrD0LR-vC7zjaBY-CjBinsXTZy77q4VaR6DrrKLeEh0-Ils9hKTTrpePyYYttsnDNWLBbXL_k0_Ye_WE_D4B7dtWlqrCUJCFBeq2vKalo18rU176Uw1an4OdoBhqQgEQ0lmXyIgeqDov3tEfHZsCXZ2L7NOjNUd0CriXWkDh0B9oJq_LpiqXV75F-OkLi8HFKAt0iSf_FVK4PiWnhx9PZvOgz8UQKABMTZCEsY5Ac1qXstC40BjhbMq1clEWRXxilcoshx2v1Uyz2AAwi1ysJ2AKrLGJjp-RzaIs7HNCVRQ7rkQWmQlngjk1TiYOdpVC67HRLtshfBh_mfVE5Zgv45ccPNJ-ytXESZw4GQoJE7dDwlXFZcfVcXeV_WGC5S2xk2BR7q78ehAJCYsSb1pUYcu2lkjShhzQIv1XGY74kCXwnbedPK16jZzfH_LvU1lWC9m2cjwGNRvv_k9nX5AH8JR0p0cvyWZTtfYV4KlG7_kFs0fuTY--zI9vAAiMJdA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGJwQ8IBhMbHwZCd6ImjSO0-ytFEbLRnmgg71ZdmyXoC2p8oG0f4S_lzsnqToJsQdeEzt27PPdz-fz7wh5HTEJG5808Iwfa4-pJPaSVCpPgbBwDhZHWRcgu-CzM_bpPDrfIdP-LgyGVXa6v9XpTlt3T4bdaA7XWTb86mNwFu5gWGtobpFdZKeKBmR3Mj-ZLTYKOU5cFmQs72GFa2Fel3jMUa_cRcCAOSJPl7zsr0ZqG4RuE4s6Y3T8gNzvUCSdtB19SHZMvkfubXEL7pHbH13O3qtH5PcSFHBTGipzTUEcVqjesooWln4pdfHLOTZo9QNMBcXbJhQwIZ22uYzoO1ll-Vv6vSVUoBvXyBGdb8WiU4C-1AAQh_5AM1lV1GWxvnItwk9fGrxfjOJA1-j8L5HF9TE5O_6wnM68Lh2DJwEz1V7khyoA5Wlswnxtfa1jaxKupA3SIOBjI2VqOGx6jWKKhRqwWWBDNQZrYLSJVLhPBnmRmyeEyiC0XMZpoMecxczKUTS2sLGMlRppZdMDwvvxF2nHVY4pMy5EH5T2U2wmTuDECT8WMHEHxN9UXLd0HTdXOeonWFyTPAFG5ebKr3qRELAu8bBF5qZoKoE8bUgDHSf_KsMRIrIIvvOmladNr5H2-332bSKKciWaRoxGoGnDw__p7EtyZ7b8fCpO54uTp-QuvIlaZ9IzMqjLxjwHeFWrF93y-QP0ASiB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+and+diagenesis+of+Ordovician+shale+from+the+Canning+Basin%2C+Western+Australia&rft.jtitle=Marine+and+petroleum+geology&rft.au=Delle+Piane%2C+Claudio&rft.au=Almqvist%2C+Bjarne&rft.au=MacRae%2C+Colin&rft.au=Torpy%2C+Aaron&rft.date=2015&rft.issn=0264-8172&rft.volume=59&rft.spage=56&rft_id=info:doi/10.1016%2Fj.marpetgeo.2014.07.017&rft.externalDocID=oai_DiVA_org_uu_228803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon |