Advancement in Biopolymer Assisted Cancer Theranostics
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world’s fatal diseases, has drawn scientists’ attention for its mult...
Saved in:
Published in | ACS APPLIED BIO MATERIALS Vol. 6; no. 10; pp. 3959 - 3983 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Publication |
Language | English |
Published |
American Chemical Society
16.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world’s fatal diseases, has drawn scientists’ attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood–brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity. |
---|---|
AbstractList | Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world’s fatal diseases, has drawn scientists’ attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood–brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity. Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world’s fatal diseases, has drawn scientists’ attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood–brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo , which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity. Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity. |
Author | Bhattacharya, Tanima Chakrabarti, Prasun Ghosh, Basab Preetam, Subham Thorat, Nanasaheb Chakrabarti, Tulika Samal, Shailesh Kumar |
AuthorAffiliation | Department of Chemistry Section of Immunology and Chronic Disease, Institute of Environmental Medicine John Radcliffe Hospital University of Oxford Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre (LDCRC) Department of Food and Nutrition, College of Human Ecology Siksha O Anusandhan (Deemed to be University) Nuffield Department of Women’s & Reproductive Health, Medical Science Division Nondestructive Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering, College of Agriculture and Life Science Chungnam National University KIIT School of Biotechnology Centre for Biotechnology Daegu Gyeongbuk Institute of Science & Technology (DGIST) |
AuthorAffiliation_xml | – name: John Radcliffe Hospital University of Oxford – name: Department of Chemistry – name: Section of Immunology and Chronic Disease, Institute of Environmental Medicine – name: Nuffield Department of Women’s & Reproductive Health, Medical Science Division – name: Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre (LDCRC) – name: Department of Food and Nutrition, College of Human Ecology – name: Centre for Biotechnology – name: Nondestructive Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering, College of Agriculture and Life Science – name: KIIT School of Biotechnology – name: Daegu Gyeongbuk Institute of Science & Technology (DGIST) – name: Siksha O Anusandhan (Deemed to be University) – name: Chungnam National University |
Author_xml | – sequence: 1 givenname: Tanima surname: Bhattacharya fullname: Bhattacharya, Tanima email: btanima1987@gmail.com organization: Chungnam National University – sequence: 2 givenname: Subham surname: Preetam fullname: Preetam, Subham organization: Daegu Gyeongbuk Institute of Science & Technology (DGIST) – sequence: 3 givenname: Basab surname: Ghosh fullname: Ghosh, Basab organization: KIIT School of Biotechnology – sequence: 4 givenname: Tulika surname: Chakrabarti fullname: Chakrabarti, Tulika organization: Department of Chemistry – sequence: 5 givenname: Prasun surname: Chakrabarti fullname: Chakrabarti, Prasun – sequence: 6 givenname: Shailesh Kumar surname: Samal fullname: Samal, Shailesh Kumar organization: Section of Immunology and Chronic Disease, Institute of Environmental Medicine – sequence: 7 givenname: Nanasaheb orcidid: 0000-0001-6343-527X surname: Thorat fullname: Thorat, Nanasaheb email: thoratnd@gmail.com organization: Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre (LDCRC) |
BackLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index |
BookMark | eNp1kU1rGzEQhkVwqV3X15z3WArr6nu1p-KapAkEenHPQqudTeTuSq60Tsi_j8ya0BSCDpp553lHH_MJzXzwgNAlwWuCKflmbDLNsGYWYy7UBVpQUclSckpn_8RztEppjzGmGDOi6o9ozipZ10KoBZKb9tF4CwP4sXC--OHCIfTPA8Rik5JLI7TF9gTEYvcA0fiQRmfTZ_ShM32C1Xlfot_XV7vtTXn36-ftdnNXGs7JWHIjjCXK1AJ3ihEru6ZhTLQ5k7ZhAKwiLa0MbTrCKwUUE0mz1IERvGXAlqic-qYnOBwbfYhuMPFZB-P0WfqTI9CKCixJ5r9PfK4M0Nr8qmj6N7a3Fe8e9H141AQLxWheS_Tl3CGGv0dIox5cstD3xkM4Jk2V5JLUStYZXU-ojSGlCN3rOQTr04D0NCB9HlA28P8M1o1mdOF0F9e_b_s62bKu9-EYff7y9-AXKwel1A |
CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_118393 crossref_primary_10_1016_j_ijbiomac_2024_130746 crossref_primary_10_3389_fnano_2024_1384605 crossref_primary_10_1016_j_eurpolymj_2024_113338 crossref_primary_10_1039_D4TB00599F crossref_primary_10_1039_D4DT02516D crossref_primary_10_1002_bip_23637 crossref_primary_10_1016_j_ntm_2024_100040 crossref_primary_10_3390_ijms242317099 crossref_primary_10_1016_j_jcou_2025_103040 crossref_primary_10_1016_j_ccr_2025_216489 crossref_primary_10_3390_gels10080535 crossref_primary_10_1021_acsabm_4c01793 crossref_primary_10_1016_j_cca_2024_119687 crossref_primary_10_1016_j_ijpharm_2024_124687 crossref_primary_10_1186_s11671_024_04069_7 crossref_primary_10_1039_D4ME00090K crossref_primary_10_1039_D4MA00511B crossref_primary_10_2174_0115701794298435240324175513 crossref_primary_10_1016_j_bioadv_2024_213903 crossref_primary_10_1021_acs_molpharmaceut_4c00548 crossref_primary_10_1021_acsbiomaterials_3c01540 crossref_primary_10_1039_D3NA01106B crossref_primary_10_1016_j_jddst_2025_106810 |
Cites_doi | 10.1016/j.addr.2013.04.016 10.1186/s12951-017-0308-z 10.1016/j.bioactmat.2021.01.035 10.1002/pi.4721 10.3390/pharmaceutics9040046 10.1016/j.apsb.2021.03.033 10.3390/pharmaceutics12030264 10.1021/bm801033f 10.2174/092986710794183024 10.1016/j.addr.2019.01.010 10.7150/thno.21674 10.1038/ncomms6426 10.1038/s41392-020-0196-9 10.3322/caac.21660 10.1016/j.jsamd.2018.05.003 10.3390/pharmaceutics13060770 10.1002/ijch.201800051 10.2147/IJN.S146315 10.1038/s41392-017-0004-3 10.1155/2019/7361695 10.1016/j.bbadis.2020.165715 10.1007/BF03353743 10.1080/21655979.2021.2012907 10.1021/la400605v 10.1016/j.addr.2013.11.009 10.1002/adma.201803926 10.1021/acsabm.2c00041 10.1002/mabi.201100244 10.7150/thno.45990 10.5772/intechopen.70419 10.2147/IJN.S191837 10.1007/s00253-017-8250-4 10.1111/jphp.12017 10.1016/j.ijpharm.2019.03.011 10.1016/j.addr.2019.01.002 10.3389/fmolb.2020.587997 10.1021/acs.biomac.5b00336 10.3389/fonc.2021.749970 10.1049/iet-nbt.2015.0001 10.15406/jabb.2018.05.00116 10.1177/1559325820936161 10.1016/j.scp.2020.100247 10.1186/s12951-018-0392-8 10.1002/pi.5702 10.30574/wjbphs.2022.11.1.0100 10.1038/s12276-021-00599-7 10.1021/acs.chemrev.5b00346 10.1002/anie.201502398 10.1016/j.jphotobiol.2016.12.013 10.1021/nn301633m 10.1002/adma.201502201 10.1016/j.actbio.2013.08.016 10.1021/mp5008629 10.3390/nano10091649 10.1016/j.biomaterials.2019.119328 10.1016/j.msec.2018.04.085 10.5958/2231-5713.2019.00043.6 10.2174/156720110791011783 10.1002/anie.201311227 10.1016/j.addr.2019.04.008 10.1016/j.addr.2018.07.012 10.2217/nnm.14.89 10.1016/j.addr.2009.07.013 10.1016/j.addr.2017.03.001 10.1016/j.biopha.2018.07.049 10.1016/j.eurpolymj.2013.01.019 10.1002/masy.201800114 10.1155/2014/180549 10.1016/j.biomaterials.2019.119299 10.1021/acsami.6b07583 10.1002/mabi.201700240 10.1016/j.biomaterials.2019.119707 10.1002/macp.201800475 10.1021/mp200662f 10.1016/j.colsurfb.2014.02.052 10.1021/acsnano.6b08043 10.1186/s40824-019-0166-x 10.1007/s40242-019-0033-2 10.3390/cancers13112818 10.3390/polym13244307 10.1080/10717544.2022.2058648 10.1007/978-981-19-3979-2_3 10.1016/j.biomaterials.2014.10.052 10.1038/nrc.2016.138 10.22159/ajpcr.2018.v11i5.24119 10.1002/ijch.201800166 10.1097/00019606-200109000-00001 10.1021/la300691n 10.1016/j.nano.2018.09.004 10.1016/j.nantod.2014.04.008 10.2174/22123970MTE0eMDY90 10.4103/0250-474X.59540 10.1002/adhm.201801002 10.1080/10717544.2017.1410256 10.20892/j.issn.2095-3941.2020.0072 10.3389/fmolb.2020.00122 10.1039/C8TX00323H 10.1016/j.jconrel.2019.05.022 10.1101/cshperspect.a035907 10.1016/j.addr.2017.04.006 10.3390/cancers13143484 10.1016/j.ces.2014.08.046 10.1016/j.addr.2018.05.002 10.2174/1381612821666150302151959 10.1021/acsami.6b06099 10.3390/cancers12040855 10.1016/j.phrs.2010.03.005 10.1016/j.colsurfb.2016.06.053 10.1002/star.201400226 10.1016/j.coche.2020.02.002 10.2147/DDDT.S142337 10.1021/acs.langmuir.5b03081 10.1016/j.jconrel.2017.12.016 10.1002/mabi.200600129 10.2147/IJN.S132780 10.1016/j.arr.2023.101965 10.17265/2161-6213/2016.5-6.005 10.1021/acssuschemeng.0c01603 10.2147/IJN.S99882 10.3390/ijms21093233 10.1002/wnan.1551 10.1016/j.fct.2013.03.046 10.1186/s13045-021-01096-0 10.1038/s41467-018-03705-y 10.1016/j.jconrel.2019.04.036 10.1016/j.nano.2016.06.012 10.1021/ja505412p 10.1016/j.carbpol.2019.01.010 10.3390/jfb10010004 10.1021/acs.jafc.6b04409 10.1016/j.ijbiomac.2023.125826 10.1021/acs.bioconjchem.6b00437 10.1016/j.saa.2014.10.043 10.1016/j.biopha.2022.113658 10.1111/cas.14404 10.3390/nano6020026 10.1002/adma.201403562 10.1021/acsomega.8b01488 10.1021/bm401526d 10.1016/j.addr.2015.11.015 10.1021/acsami.8b14001 10.1111/cbdd.12447 10.3390/nano12030576 10.1016/j.biosx.2022.100106 10.5101/nbe.v7i3.p128-133 10.1016/j.biopha.2019.109341 10.1002/bip.21328 10.1002/adma.201606628 10.21873/anticanres.14622 10.1007/978-981-16-2516-9_14 10.1002/jbm.b.34015 10.3389/fchem.2019.00387 10.7150/thno.22872 10.15171/apb.2017.041 10.1016/j.eurpolymj.2019.109319 10.1038/s41568-022-00496-9 10.1021/acs.molpharmaceut.1c00455 10.1016/j.carbpol.2018.10.062 10.7150/thno.44668 10.3390/nano12234187 10.1021/am5019989 10.1021/acsnano.5b00147 10.1016/j.indcrop.2014.01.042 10.1038/s42003-020-01539-3 10.3390/md20070460 10.1021/acsomega.8b01772 10.1002/jps.21270 10.3322/caac.20107 10.1002/VIW.20200042 10.3389/fchem.2021.691697 10.1002/smtd.201700358 10.1016/j.addr.2012.08.011 10.2217/nnm-2016-0279 10.3390/md12126038 10.19080/GJN.2017.02.555590 10.1126/science.1147241 10.1039/c2jm16447g 10.3390/jpm11080771 10.1021/acs.biomac.5b00511 10.1016/j.arabjc.2015.11.002 10.3390/nano10071403 10.1049/iet-nbt.2017.0120 10.22077/jhpr.2021.3812.1177 10.1002/adhm.201300034 10.2174/1574892813666180226121819 10.1016/j.biomaterials.2011.05.007 10.3390/pharmaceutics12010065 10.3390/pharmaceutics14010106 10.1080/17518253.2017.1385856 10.1002/jemt.23213 10.1002/star.201500307 10.1016/j.jconrel.2012.07.013 10.1016/j.addr.2017.06.003 10.2147/DDDT.S165440 10.1021/acs.jmedchem.5b01571 10.1155/2012/940585 10.1002/jbm.a.31775 10.1007/s00210-023-02612-4 10.1016/j.jconrel.2013.02.020 10.1016/j.bioorg.2019.01.019 10.1016/j.jconrel.2020.06.015 10.3390/biomedicines5040070 10.1016/j.actbio.2015.11.031 10.1021/bm301894z 10.1002/mame.201700505 10.1002/psc.2633 10.3390/gels7040153 |
ContentType | Journal Article Publication |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION 7X8 5PM ADTPV BZJLE D8T STUKM |
DOI | 10.1021/acsabm.3c00458 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Other SWEPUB Freely available online SwePub Other full text |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 3983 |
ExternalDocumentID | oai_swepub_ki_se_825061 PMC10583232 10_1021_acsabm_3c00458 b383841019 |
GroupedDBID | 53G ABFRP ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ 7X8 5PM ADTPV BZJLE D8T EJD STUKM |
ID | FETCH-LOGICAL-a441t-4a5ac18a950f831c6fbb335d0f86cb3ee371d27a2bf1478e2016271dfea54d3e3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Mon Aug 25 03:38:34 EDT 2025 Thu Aug 21 18:36:03 EDT 2025 Fri Jul 11 02:10:12 EDT 2025 Tue Jul 01 04:25:49 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Tue Oct 17 03:10:47 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Nanotherapeutics Drug Delivery Theranostic Nanomedicines Antitumor |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-4a5ac18a950f831c6fbb335d0f86cb3ee371d27a2bf1478e2016271dfea54d3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6343-527X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10583232 |
PMID | 37699558 |
PQID | 2864619869 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_825061 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10583232 proquest_miscellaneous_2864619869 crossref_primary_10_1021_acsabm_3c00458 crossref_citationtrail_10_1021_acsabm_3c00458 acs_journals_10_1021_acsabm_3c00458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-16 |
PublicationDateYYYYMMDD | 2023-10-16 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | ACS APPLIED BIO MATERIALS |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref210/cit210 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 Bhattacharya T. (ref165/cit165) 2020; 9 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref96/cit96 doi: 10.1016/j.addr.2013.04.016 – ident: ref50/cit50 doi: 10.1186/s12951-017-0308-z – ident: ref41/cit41 doi: 10.1016/j.bioactmat.2021.01.035 – ident: ref127/cit127 doi: 10.1002/pi.4721 – ident: ref172/cit172 doi: 10.3390/pharmaceutics9040046 – ident: ref162/cit162 doi: 10.1016/j.apsb.2021.03.033 – ident: ref69/cit69 doi: 10.3390/pharmaceutics12030264 – ident: ref109/cit109 doi: 10.1021/bm801033f – ident: ref61/cit61 doi: 10.2174/092986710794183024 – ident: ref177/cit177 doi: 10.1016/j.addr.2019.01.010 – ident: ref60/cit60 doi: 10.7150/thno.21674 – ident: ref117/cit117 doi: 10.1038/ncomms6426 – ident: ref47/cit47 doi: 10.1038/s41392-020-0196-9 – ident: ref1/cit1 doi: 10.3322/caac.21660 – ident: ref21/cit21 doi: 10.1016/j.jsamd.2018.05.003 – ident: ref138/cit138 doi: 10.3390/pharmaceutics13060770 – ident: ref26/cit26 doi: 10.1002/ijch.201800051 – ident: ref140/cit140 doi: 10.2147/IJN.S146315 – ident: ref113/cit113 doi: 10.1038/s41392-017-0004-3 – ident: ref2/cit2 doi: 10.1155/2019/7361695 – ident: ref43/cit43 doi: 10.1016/j.bbadis.2020.165715 – ident: ref186/cit186 doi: 10.1007/BF03353743 – ident: ref152/cit152 doi: 10.1080/21655979.2021.2012907 – ident: ref83/cit83 doi: 10.1021/la400605v – ident: ref173/cit173 doi: 10.1016/j.addr.2013.11.009 – ident: ref174/cit174 doi: 10.1002/adma.201803926 – ident: ref11/cit11 doi: 10.1021/acsabm.2c00041 – ident: ref150/cit150 doi: 10.1002/mabi.201100244 – ident: ref188/cit188 doi: 10.7150/thno.45990 – ident: ref105/cit105 doi: 10.5772/intechopen.70419 – ident: ref123/cit123 doi: 10.2147/IJN.S191837 – ident: ref24/cit24 doi: 10.1007/s00253-017-8250-4 – ident: ref31/cit31 doi: 10.1111/jphp.12017 – ident: ref122/cit122 doi: 10.1016/j.ijpharm.2019.03.011 – ident: ref208/cit208 doi: 10.1016/j.addr.2019.01.002 – ident: ref74/cit74 doi: 10.3389/fmolb.2020.587997 – ident: ref80/cit80 doi: 10.1021/acs.biomac.5b00336 – ident: ref197/cit197 doi: 10.3389/fonc.2021.749970 – ident: ref17/cit17 doi: 10.1049/iet-nbt.2015.0001 – ident: ref33/cit33 doi: 10.15406/jabb.2018.05.00116 – ident: ref134/cit134 doi: 10.1177/1559325820936161 – ident: ref18/cit18 doi: 10.1016/j.scp.2020.100247 – ident: ref63/cit63 doi: 10.1186/s12951-018-0392-8 – ident: ref102/cit102 doi: 10.1002/pi.5702 – ident: ref56/cit56 doi: 10.30574/wjbphs.2022.11.1.0100 – ident: ref182/cit182 doi: 10.1038/s12276-021-00599-7 – ident: ref79/cit79 doi: 10.1021/acs.chemrev.5b00346 – ident: ref81/cit81 doi: 10.1002/anie.201502398 – ident: ref67/cit67 doi: 10.1016/j.jphotobiol.2016.12.013 – ident: ref154/cit154 doi: 10.1021/nn301633m – ident: ref205/cit205 doi: 10.1002/adma.201502201 – ident: ref25/cit25 doi: 10.1016/j.actbio.2013.08.016 – ident: ref166/cit166 doi: 10.1021/mp5008629 – ident: ref121/cit121 doi: 10.3390/nano10091649 – ident: ref195/cit195 doi: 10.1016/j.biomaterials.2019.119328 – ident: ref86/cit86 doi: 10.1016/j.msec.2018.04.085 – ident: ref84/cit84 doi: 10.5958/2231-5713.2019.00043.6 – ident: ref23/cit23 doi: 10.2174/156720110791011783 – ident: ref107/cit107 doi: 10.1002/anie.201311227 – ident: ref203/cit203 doi: 10.1016/j.addr.2019.04.008 – ident: ref71/cit71 doi: 10.1016/j.addr.2018.07.012 – ident: ref5/cit5 doi: 10.2217/nnm.14.89 – ident: ref114/cit114 doi: 10.1016/j.addr.2009.07.013 – ident: ref171/cit171 doi: 10.1016/j.addr.2017.03.001 – ident: ref181/cit181 doi: 10.1016/j.biopha.2018.07.049 – ident: ref148/cit148 doi: 10.1016/j.eurpolymj.2013.01.019 – ident: ref27/cit27 doi: 10.1002/masy.201800114 – ident: ref153/cit153 doi: 10.1155/2014/180549 – ident: ref175/cit175 doi: 10.1016/j.biomaterials.2019.119299 – ident: ref89/cit89 doi: 10.1021/acsami.6b07583 – ident: ref70/cit70 doi: 10.1002/mabi.201700240 – ident: ref183/cit183 doi: 10.1016/j.biomaterials.2019.119707 – ident: ref34/cit34 doi: 10.1002/macp.201800475 – ident: ref72/cit72 doi: 10.1021/mp200662f – ident: ref16/cit16 doi: 10.1016/j.colsurfb.2014.02.052 – ident: ref90/cit90 doi: 10.1021/acsnano.6b08043 – ident: ref149/cit149 doi: 10.1186/s40824-019-0166-x – ident: ref14/cit14 doi: 10.1007/s40242-019-0033-2 – ident: ref35/cit35 doi: 10.3390/cancers13112818 – ident: ref58/cit58 doi: 10.3390/polym13244307 – ident: ref206/cit206 doi: 10.1080/10717544.2022.2058648 – ident: ref64/cit64 doi: 10.1007/978-981-19-3979-2_3 – ident: ref204/cit204 doi: 10.1016/j.biomaterials.2014.10.052 – ident: ref42/cit42 doi: 10.1038/nrc.2016.138 – ident: ref59/cit59 doi: 10.22159/ajpcr.2018.v11i5.24119 – ident: ref131/cit131 doi: 10.1002/ijch.201800166 – ident: ref46/cit46 doi: 10.1097/00019606-200109000-00001 – ident: ref125/cit125 doi: 10.1021/la300691n – ident: ref143/cit143 doi: 10.1016/j.nano.2018.09.004 – ident: ref36/cit36 doi: 10.1016/j.nantod.2014.04.008 – ident: ref28/cit28 doi: 10.2174/22123970MTE0eMDY90 – ident: ref137/cit137 doi: 10.4103/0250-474X.59540 – ident: ref136/cit136 doi: 10.1002/adhm.201801002 – ident: ref92/cit92 doi: 10.1080/10717544.2017.1410256 – ident: ref39/cit39 doi: 10.20892/j.issn.2095-3941.2020.0072 – ident: ref145/cit145 doi: 10.3389/fmolb.2020.00122 – ident: ref104/cit104 doi: 10.1039/C8TX00323H – ident: ref176/cit176 doi: 10.1016/j.jconrel.2019.05.022 – volume: 9 start-page: 1 issue: 8 year: 2020 ident: ref165/cit165 publication-title: International Journal of Engineering Inventions – ident: ref45/cit45 doi: 10.1101/cshperspect.a035907 – ident: ref168/cit168 doi: 10.1016/j.addr.2017.04.006 – ident: ref193/cit193 doi: 10.3390/cancers13143484 – ident: ref139/cit139 doi: 10.1016/j.ces.2014.08.046 – ident: ref142/cit142 doi: 10.1016/j.addr.2018.05.002 – ident: ref115/cit115 doi: 10.2174/1381612821666150302151959 – ident: ref207/cit207 doi: 10.1021/acsami.6b06099 – ident: ref3/cit3 doi: 10.3390/cancers12040855 – ident: ref9/cit9 doi: 10.1016/j.phrs.2010.03.005 – ident: ref22/cit22 doi: 10.1016/j.colsurfb.2016.06.053 – ident: ref88/cit88 doi: 10.1002/star.201400226 – ident: ref62/cit62 doi: 10.1016/j.coche.2020.02.002 – ident: ref85/cit85 doi: 10.2147/DDDT.S142337 – ident: ref119/cit119 doi: 10.1021/acs.langmuir.5b03081 – ident: ref170/cit170 doi: 10.1016/j.jconrel.2017.12.016 – ident: ref120/cit120 doi: 10.1002/mabi.200600129 – ident: ref30/cit30 doi: 10.2147/IJN.S132780 – ident: ref55/cit55 doi: 10.1016/j.arr.2023.101965 – ident: ref94/cit94 doi: 10.17265/2161-6213/2016.5-6.005 – ident: ref110/cit110 doi: 10.1021/acssuschemeng.0c01603 – ident: ref65/cit65 doi: 10.2147/IJN.S99882 – ident: ref144/cit144 doi: 10.3390/ijms21093233 – ident: ref190/cit190 doi: 10.1002/wnan.1551 – ident: ref155/cit155 doi: 10.1155/2014/180549 – ident: ref8/cit8 doi: 10.1016/j.fct.2013.03.046 – ident: ref103/cit103 doi: 10.1186/s13045-021-01096-0 – ident: ref53/cit53 doi: 10.1038/s41467-018-03705-y – ident: ref202/cit202 doi: 10.1016/j.jconrel.2019.04.036 – ident: ref108/cit108 doi: 10.1016/j.nano.2016.06.012 – ident: ref159/cit159 doi: 10.1021/ja505412p – ident: ref210/cit210 doi: 10.1016/j.carbpol.2019.01.010 – ident: ref29/cit29 doi: 10.3390/jfb10010004 – ident: ref169/cit169 doi: 10.1021/acs.jafc.6b04409 – ident: ref156/cit156 doi: 10.1016/j.ijbiomac.2023.125826 – ident: ref163/cit163 doi: 10.1021/acs.bioconjchem.6b00437 – ident: ref20/cit20 doi: 10.1016/j.saa.2014.10.043 – ident: ref57/cit57 doi: 10.1016/j.biopha.2022.113658 – ident: ref147/cit147 doi: 10.1111/cas.14404 – ident: ref95/cit95 doi: 10.3390/nano6020026 – ident: ref128/cit128 doi: 10.1002/adma.201403562 – ident: ref141/cit141 doi: 10.1021/acsomega.8b01488 – ident: ref135/cit135 doi: 10.1021/bm401526d – ident: ref100/cit100 doi: 10.1016/j.addr.2015.11.015 – ident: ref48/cit48 doi: 10.1021/acsabm.2c00041 – ident: ref99/cit99 doi: 10.1021/acsami.8b14001 – ident: ref124/cit124 doi: 10.1111/cbdd.12447 – ident: ref112/cit112 doi: 10.3390/nano12030576 – ident: ref37/cit37 doi: 10.1016/j.biosx.2022.100106 – ident: ref66/cit66 doi: 10.5101/nbe.v7i3.p128-133 – ident: ref116/cit116 doi: 10.1016/j.biopha.2019.109341 – ident: ref77/cit77 doi: 10.1002/bip.21328 – ident: ref130/cit130 doi: 10.1002/adma.201606628 – ident: ref44/cit44 doi: 10.21873/anticanres.14622 – ident: ref49/cit49 doi: 10.1007/978-981-16-2516-9_14 – ident: ref129/cit129 doi: 10.1002/jbm.b.34015 – ident: ref194/cit194 doi: 10.3389/fchem.2019.00387 – ident: ref201/cit201 doi: 10.7150/thno.22872 – ident: ref179/cit179 doi: 10.15171/apb.2017.041 – ident: ref111/cit111 doi: 10.1016/j.eurpolymj.2019.109319 – ident: ref196/cit196 doi: 10.1038/s41568-022-00496-9 – ident: ref38/cit38 doi: 10.1021/acs.molpharmaceut.1c00455 – ident: ref189/cit189 doi: 10.1016/j.carbpol.2018.10.062 – ident: ref158/cit158 doi: 10.7150/thno.44668 – ident: ref78/cit78 doi: 10.3390/nano12234187 – ident: ref198/cit198 doi: 10.1021/am5019989 – ident: ref209/cit209 doi: 10.1021/acsnano.5b00147 – ident: ref68/cit68 doi: 10.1016/j.indcrop.2014.01.042 – ident: ref146/cit146 doi: 10.1038/s42003-020-01539-3 – ident: ref126/cit126 doi: 10.3390/md20070460 – ident: ref75/cit75 doi: 10.1021/acsomega.8b01772 – ident: ref164/cit164 doi: 10.1002/jps.21270 – ident: ref4/cit4 doi: 10.3322/caac.20107 – ident: ref15/cit15 doi: 10.1002/VIW.20200042 – ident: ref180/cit180 doi: 10.3389/fchem.2021.691697 – ident: ref132/cit132 doi: 10.1002/smtd.201700358 – ident: ref32/cit32 doi: 10.1016/j.addr.2012.08.011 – ident: ref6/cit6 doi: 10.2217/nnm-2016-0279 – ident: ref199/cit199 doi: 10.3390/md12126038 – ident: ref106/cit106 doi: 10.19080/GJN.2017.02.555590 – ident: ref157/cit157 doi: 10.1126/science.1147241 – ident: ref187/cit187 doi: 10.1039/c2jm16447g – ident: ref161/cit161 doi: 10.3390/jpm11080771 – ident: ref200/cit200 doi: 10.1021/acs.biomac.5b00511 – ident: ref118/cit118 doi: 10.1016/j.arabjc.2015.11.002 – ident: ref82/cit82 doi: 10.3390/nano10071403 – ident: ref52/cit52 doi: 10.1049/iet-nbt.2017.0120 – ident: ref7/cit7 doi: 10.22077/jhpr.2021.3812.1177 – ident: ref87/cit87 doi: 10.1002/adhm.201300034 – ident: ref93/cit93 doi: 10.2174/1574892813666180226121819 – ident: ref192/cit192 doi: 10.1016/j.biomaterials.2011.05.007 – ident: ref151/cit151 doi: 10.3390/pharmaceutics12010065 – ident: ref12/cit12 doi: 10.3390/pharmaceutics14010106 – ident: ref19/cit19 doi: 10.1080/17518253.2017.1385856 – ident: ref191/cit191 doi: 10.1002/jemt.23213 – ident: ref101/cit101 doi: 10.1002/star.201500307 – ident: ref160/cit160 doi: 10.1016/j.jconrel.2012.07.013 – ident: ref167/cit167 doi: 10.1016/j.addr.2017.06.003 – ident: ref54/cit54 doi: 10.2147/DDDT.S165440 – ident: ref133/cit133 doi: 10.1021/acs.jmedchem.5b01571 – ident: ref185/cit185 doi: 10.1155/2012/940585 – ident: ref97/cit97 doi: 10.1002/jbm.a.31775 – ident: ref10/cit10 doi: 10.1007/s00210-023-02612-4 – ident: ref184/cit184 doi: 10.1016/j.jconrel.2013.02.020 – ident: ref178/cit178 doi: 10.1016/j.bioorg.2019.01.019 – ident: ref40/cit40 doi: 10.1016/j.jconrel.2020.06.015 – ident: ref51/cit51 doi: 10.3390/biomedicines5040070 – ident: ref13/cit13 doi: 10.1016/j.actbio.2015.11.031 – ident: ref73/cit73 doi: 10.1021/bm301894z – ident: ref98/cit98 doi: 10.1002/mame.201700505 – ident: ref76/cit76 doi: 10.1002/psc.2633 – ident: ref91/cit91 doi: 10.3390/gels7040153 |
SSID | ssj0002003189 |
Score | 2.3766603 |
SecondaryResourceType | review_article |
Snippet | Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat... Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat... |
SourceID | swepub pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3959 |
SubjectTerms | Review |
Title | Advancement in Biopolymer Assisted Cancer Theranostics |
URI | http://dx.doi.org/10.1021/acsabm.3c00458 https://www.proquest.com/docview/2864619869 https://pubmed.ncbi.nlm.nih.gov/PMC10583232 http://kipublications.ki.se/Default.aspx?queryparsed=id |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBgR5RNQSA4pdRLHPdYKqoKCS5QqbfIdhxRASlq2gN8PTNJWkgrBLfEnliyZ5x54-UNIRdKAQq1jYZvQwoBitFNmHM08K2wAjx-M9EGbyPfP8huT9z1g_73esf8Dj6j19pm2rzVuUX0oZbJKpMqxDCr1X6craaw3DgR6yKA9gFUsylD40IT6IdsVvVD3-By_mhkhUA0dzqdzYIBKcu5CvGsyUt9MjZ1-7nI5Phnf7bIRok8vVZhKttkyaU7ZP0HH-Euka3iRACuGHqD1LsZYAqFjzc38kCNaBCx10aBkfeE97bSYc7yvEd6ndundtcvEyv4GtDP2Bc60JYq3QwaieLUysQYzoMY3qQ13Dke0piFmpmEilA5AAmSQVHidCBi7vg-WUmHqTsgnnJCWGesESIQWoRGAT4QikqnAu3isEbOocNROTGyKN_zZjQqRiEqR6FG_KkyIltyk2OKjNdf5a9m8u8FK8evkmdT3UYwcXA3RKduOMkipqSA6FHJZo2oitJnTSL1drUmHTznFNyASuFXyFmNXBb2UfmmLHqBJxdBCA6Y6fBf43BE1jCdPfpGKo_Jyng0cScAesbmNLf3LwH1_hU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xcGA5AMvuivIMWsSeUupHHPdYKlBZHkKiSNws23G0FZCipj3Ar2ecpGUDQlpuiTOxHM9M5hs_PgPsS4ko1LZaoY0JJihGt9HnSBRabjlG_Haqjd-NfHEpejf8z210OweH070w2Igca8qLSfxXdgFyiGXaPDSZ9SBEfoEFRCLUZ1ud7vVsUIUWNuohr8fRIWJrOiVqfFeFD0c2r4ejV4z5doVkjUe0iD0nK3A1a3Wx5OSuORmbpn1-Q-j4ic9aheUKhwad0nC-wZzL1mDpH3bC7yA65foAP34YDLLgaOAPVHh6cKMAlerNIwm6XmAU9P0urmxYcD7_gJuT4363F1bHLIQasdA45DrSlkjdjlqpZMSK1BjGogTvhDXMORaThMaampTwWDqEDIJiUep0xBPm2E-Yz4aZW4dAOs6tM9ZwHnHNYyMRLXBJhJORdkncgF_4wapyk1wVM-CUqLIXVNULDQinOlG2Yir3B2bcfyj_eyb_WHJ0fCi5N1WxQjfycyM6c8NJrqgUHHNJKdoNkDXdz6r0RNz1J9ngb0HIjRgVf4yMNuCgNJPaO1XRHV45hQk5IqiN_-qHXVjs9S_O1fnp5dkmfPUH3fuoScQWzI9HE7eNcGhsdgoXeAGeOQaF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkKbtgQHbtPK1IKbtKaWOHcd97AoV35q0IvFm2Y6jVUCKmvaB_fW7S9JCmJC2t8RxLMd3l_udz_4Z4ItSiEJdpxO6hGGAYk0XbY7FoRNOoMfvZsbSbuSLS3l8JU6v4-t6HzfthcFOFNhSUSbxyarv06xmGGAHWG7sXZs7AiLqFaxQzo4irl7_52JiJSr1lGAvYekQ8XU0J2v8qwlySa5ouqRHnPl8lWSDS7T0P4N3MFz0vFx2ctOeTW3b_X5G6vifn7YGqzUeDXqVAq3Dks834O0TlsL3IHvVOgGaRwxGefB9RAcrPNz5SYDCJTVJgz5VmARD2s2Vj0vu5w9wNTga9o_D-riF0CAmmobCxMYxZbpxJ1OcOZlZy3mc4p10lnvPE5ZGiYlsxkSiPEIHGWFR5k0sUu75R1jOx7n_BIHyQjhvnRUiFkYkViFqEIpJr2Lj06QF-_jBujaXQpeZ8IjpahR0PQotCOdy0a5mLKeDM25frP9tUf--4up4sebeXMwazYlyJCb341mhIyUFxpRKdlugGvJfNEmE3M0n-ehXScyNWBV_kDxqwddKVRrv1EU3eOU1BuaIpDb_aRw-w-sfhwN9fnJ5tgVv6Lx7cp5MbsPydDLzO4iKpna3tII_CQ4JCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancement+in+Biopolymer+Assisted+Cancer+Theranostics&rft.jtitle=ACS+applied+bio+materials&rft.au=Bhattacharya%2C+Tanima&rft.au=Preetam%2C+Subham&rft.au=Ghosh%2C+Basab&rft.au=Chakrabarti%2C+Tulika&rft.date=2023-10-16&rft.pub=American+Chemical+Society&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=6&rft.issue=10&rft.spage=3959&rft.epage=3983&rft_id=info:doi/10.1021%2Facsabm.3c00458&rft.externalDocID=b383841019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |