Efficient Method of Lignin Isolation Using Microwave-Assisted Acidolysis and Characterization of the Residual Lignin
Microwave heating is characterized by high efficiency and selectivity in biomass treatment. Due to the high thermal stability and low polarity of lignin, isolation of lignin by high-temperature microwave treatment is a promising subject for investigation. In this paper, microwave treatment is applie...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 5; no. 5; pp. 3768 - 3774 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microwave heating is characterized by high efficiency and selectivity in biomass treatment. Due to the high thermal stability and low polarity of lignin, isolation of lignin by high-temperature microwave treatment is a promising subject for investigation. In this paper, microwave treatment is applied to polysaccharide liquefaction and lignin isolation from softwood at 160–210 °C for 10 min with dilute sulfuric acid. Mass balance/element analysis/FTIR/TG/solid-state 13C NMR/Py-GC/MS are applied to investigate the processed residues (residual lignin). At 190 °C processing temperature, the residual lignin is a material rich in aromatics. High lignin purity (93 wt %) and yield (82 wt %) could be achieved by a simple protocol, which usually takes days or even weeks using conventional milled wood lignin protocols. The Py-GC/MS is applied to check the structure of lignin by a newly developed approach. The liquid phase after isolation is analyzed by GC-MS and liquid carbon NMR. Most chemicals in processed liquid are from cellulose and hemicellulose, suggesting that lignin is preserved well in the residue. By comparison, we found that microwave isolation causes less lignin degradation than conventional acidolysis under equivalent conditions. It is concluded that microwave treatment is potentially a promising tool for isolation of polysaccharide-free lignin with high efficiency. |
---|---|
AbstractList | Microwave heating is characterized by high efficiency and selectivity in biomass treatment. Due to the high thermal stability and low polarity of lignin, isolation of lignin by high-temperature microwave treatment is a promising subject for investigation. In this paper, microwave treatment is applied to polysaccharide liquefaction and lignin isolation from softwood at 160–210 °C for 10 min with dilute sulfuric acid. Mass balance/element analysis/FTIR/TG/solid-state ¹³C NMR/Py-GC/MS are applied to investigate the processed residues (residual lignin). At 190 °C processing temperature, the residual lignin is a material rich in aromatics. High lignin purity (93 wt %) and yield (82 wt %) could be achieved by a simple protocol, which usually takes days or even weeks using conventional milled wood lignin protocols. The Py-GC/MS is applied to check the structure of lignin by a newly developed approach. The liquid phase after isolation is analyzed by GC-MS and liquid carbon NMR. Most chemicals in processed liquid are from cellulose and hemicellulose, suggesting that lignin is preserved well in the residue. By comparison, we found that microwave isolation causes less lignin degradation than conventional acidolysis under equivalent conditions. It is concluded that microwave treatment is potentially a promising tool for isolation of polysaccharide-free lignin with high efficiency. Microwave heating is characterized by high efficiency and selectivity in biomass treatment. Due to the high thermal stability and low polarity of lignin, isolation of lignin by high-temperature microwave treatment is a promising subject for investigation. In this paper, microwave treatment is applied to polysaccharide liquefaction and lignin isolation from softwood at 160–210 °C for 10 min with dilute sulfuric acid. Mass balance/element analysis/FTIR/TG/solid-state 13C NMR/Py-GC/MS are applied to investigate the processed residues (residual lignin). At 190 °C processing temperature, the residual lignin is a material rich in aromatics. High lignin purity (93 wt %) and yield (82 wt %) could be achieved by a simple protocol, which usually takes days or even weeks using conventional milled wood lignin protocols. The Py-GC/MS is applied to check the structure of lignin by a newly developed approach. The liquid phase after isolation is analyzed by GC-MS and liquid carbon NMR. Most chemicals in processed liquid are from cellulose and hemicellulose, suggesting that lignin is preserved well in the residue. By comparison, we found that microwave isolation causes less lignin degradation than conventional acidolysis under equivalent conditions. It is concluded that microwave treatment is potentially a promising tool for isolation of polysaccharide-free lignin with high efficiency. |
Author | Budarin, Vitaliy Zhou, Long Fan, Jiajun Sloan, Raymond Macquarrie, Duncan |
AuthorAffiliation | the Biocentre Biorenewables Development Centre Green Chemistry Centre of Excellence, Department of Chemistry |
AuthorAffiliation_xml | – name: the Biocentre – name: Biorenewables Development Centre – name: Green Chemistry Centre of Excellence, Department of Chemistry |
Author_xml | – sequence: 1 givenname: Long surname: Zhou fullname: Zhou, Long organization: Green Chemistry Centre of Excellence, Department of Chemistry – sequence: 2 givenname: Vitaliy surname: Budarin fullname: Budarin, Vitaliy organization: Green Chemistry Centre of Excellence, Department of Chemistry – sequence: 3 givenname: Jiajun surname: Fan fullname: Fan, Jiajun organization: Green Chemistry Centre of Excellence, Department of Chemistry – sequence: 4 givenname: Raymond surname: Sloan fullname: Sloan, Raymond organization: the Biocentre – sequence: 5 givenname: Duncan orcidid: 0000-0003-2017-7076 surname: Macquarrie fullname: Macquarrie, Duncan email: duncan.macquarrie@york.ac.uk organization: Green Chemistry Centre of Excellence, Department of Chemistry |
BookMark | eNqFkE1LAzEQhoMo-NWfIOToZTXJfrV4KqVqoSKIPS_ZZNKmbJOaySr66422B_ViLpNh5nlhnlNy6LwDQi44u-JM8GupEHtUK9iAW15VLRNlUR6QE8GrYcaKYXn4439MBohrlt5olIshPyFxaoxVFlykDxBXXlNv6NwunXV0hr6T0XpHF2jdkj5YFfybfIVsjGgxgqZjZbXv3lNHpdN0spJBqgjBfuzAFBZXQJ8Are5lt08-J0dGdgiDfT0ji9vp8-Q-mz_ezSbjeSaLgsdMAAchzSivCi1MNarb3BTaMKFlXtdMQF7lreHKQCkkCN6qNtdGVUwKKEHV-Rm53OVug3_pAWOzsaig66QD32MjkoiyTlllWr3ZraYTEQOYRtn4fUMM0nYNZ82X7uaX7mavO9HlH3ob7EaG9385vuPSuFn7Prik4x_mE7lUn7w |
CitedBy_id | crossref_primary_10_1016_j_renene_2020_07_143 crossref_primary_10_3390_polym14040814 crossref_primary_10_3390_polym16202935 crossref_primary_10_1021_acssuschemeng_7b03999 crossref_primary_10_1002_cssc_202000490 crossref_primary_10_1039_C8GC02182A crossref_primary_10_1039_C8GC02994F crossref_primary_10_1016_j_biortech_2019_121878 crossref_primary_10_1016_j_carbpol_2020_117170 crossref_primary_10_1016_j_conbuildmat_2020_118405 crossref_primary_10_1016_j_ijbiomac_2020_06_168 crossref_primary_10_1039_D1GC00623A crossref_primary_10_1007_s12649_021_01436_8 crossref_primary_10_1039_C7GC02300F crossref_primary_10_1016_j_clema_2024_100253 crossref_primary_10_1016_j_enconman_2019_01_111 crossref_primary_10_1016_j_indcrop_2023_117750 crossref_primary_10_1016_j_est_2021_102338 crossref_primary_10_1021_acs_iecr_9b01168 crossref_primary_10_1021_acssuschemeng_7b02860 crossref_primary_10_1021_acssuschemeng_0c03390 crossref_primary_10_1021_acs_iecr_1c01776 crossref_primary_10_1016_j_jclepro_2023_139687 crossref_primary_10_1039_C8GC03015D crossref_primary_10_1016_j_pecs_2019_100788 crossref_primary_10_1021_acs_iecr_3c01231 crossref_primary_10_1515_gps_2023_0258 crossref_primary_10_1021_acssuschemeng_9b03096 crossref_primary_10_1039_C8GC03244K crossref_primary_10_1016_S1872_2067_21_63839_1 crossref_primary_10_1021_acssuschemeng_8b02769 crossref_primary_10_1016_j_enconman_2018_03_091 crossref_primary_10_1002_slct_202202575 crossref_primary_10_1155_2019_7231263 crossref_primary_10_1021_acssuschemeng_4c04802 crossref_primary_10_1080_10643389_2020_1753632 crossref_primary_10_1021_acs_energyfuels_9b00621 crossref_primary_10_1021_acs_iecr_0c01617 crossref_primary_10_1039_D2RA08179B crossref_primary_10_9767_bcrec_16_1_8872_31_43 crossref_primary_10_1016_j_chemosphere_2021_131631 crossref_primary_10_1016_j_indcrop_2020_113106 crossref_primary_10_1016_j_jclepro_2018_04_126 crossref_primary_10_3390_en11112877 crossref_primary_10_1016_j_crci_2018_01_010 |
Cites_doi | 10.1002/cssc.201402742 10.1002/jctb.3996 10.15376/biores.5.3.1366-1383 10.1039/C4GC02398F 10.1016/j.fuel.2007.02.032 10.1007/BF00202089 10.1016/S0008-6223(98)00086-4 10.1016/j.indcrop.2008.03.008 10.1021/jf801955b 10.15376/biores.7.4.5634-5646 10.1080/02773813.2012.666316 10.1016/j.cej.2006.06.008 10.1021/ac020145j 10.1016/j.procbio.2012.06.006 10.1021/ie0514049 10.1126/science.1246843 10.1016/S0926-2040(99)00045-4 10.1016/j.biortech.2014.01.038 10.1007/BF00365615 10.1021/jf062199q 10.1016/j.foodchem.2012.03.037 10.4236/fns.2011.24050 10.1021/ac00128a036 10.1016/j.cep.2007.09.001 10.1002/mrc.3836 10.1016/j.phytochem.2006.11.024 10.1021/ja4056273 10.1007/s10086-004-0682-7 10.1016/S0960-8524(99)00104-2 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.6b02545 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 3774 |
ExternalDocumentID | 10_1021_acssuschemeng_6b02545 h40244630 |
GroupedDBID | 53G 55A AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a441t-2e1e2af9364d2f697b3f4df02da37702e363bf1cfe52ae21bcb3dfc60a2e5ec73 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Thu Jul 10 18:27:57 EDT 2025 Tue Jul 01 02:36:04 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Thu Aug 27 13:42:22 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Microwave Lignin Acidolysis Lignocellulosic biomass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-2e1e2af9364d2f697b3f4df02da37702e363bf1cfe52ae21bcb3dfc60a2e5ec73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2017-7076 |
OpenAccessLink | https://eprints.whiterose.ac.uk/115749/1/Longs_ACSSuschem_paper.pdf |
PQID | 2000573775 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000573775 crossref_citationtrail_10_1021_acssuschemeng_6b02545 crossref_primary_10_1021_acssuschemeng_6b02545 acs_journals_10_1021_acssuschemeng_6b02545 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 Argyropoulos D. S. (ref20/cit20) 2002; 28 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 Wu S. (ref11/cit11) 2003; 29 ref12/cit12 ref15/cit15 ref22/cit22 ref33/cit33 Kline L. M. (ref28/cit28) 2010; 5 ref4/cit4 Gulbrandsen T. A. (ref13/cit13) 2015; 49 Degen I. A. (ref25/cit25) 1997 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1002/cssc.201402742 – ident: ref4/cit4 doi: 10.1002/jctb.3996 – ident: ref9/cit9 – volume: 5 start-page: 1366 issue: 3 year: 2010 ident: ref28/cit28 publication-title: BioResour. doi: 10.15376/biores.5.3.1366-1383 – ident: ref19/cit19 doi: 10.1039/C4GC02398F – ident: ref23/cit23 doi: 10.1016/j.fuel.2007.02.032 – volume-title: Tables of Characteristic Group Frequencies for the Interpretation of Infrared and Raman Spectra year: 1997 ident: ref25/cit25 – ident: ref26/cit26 doi: 10.1007/BF00202089 – ident: ref7/cit7 doi: 10.1016/S0008-6223(98)00086-4 – ident: ref6/cit6 doi: 10.1016/j.indcrop.2008.03.008 – ident: ref17/cit17 doi: 10.1021/jf801955b – ident: ref22/cit22 doi: 10.15376/biores.7.4.5634-5646 – ident: ref27/cit27 doi: 10.1080/02773813.2012.666316 – ident: ref35/cit35 – ident: ref2/cit2 doi: 10.1016/j.cej.2006.06.008 – ident: ref30/cit30 doi: 10.1021/ac020145j – ident: ref15/cit15 doi: 10.1016/j.procbio.2012.06.006 – ident: ref24/cit24 doi: 10.1021/ie0514049 – ident: ref8/cit8 doi: 10.1126/science.1246843 – ident: ref33/cit33 doi: 10.1016/S0926-2040(99)00045-4 – ident: ref14/cit14 doi: 10.1016/j.biortech.2014.01.038 – ident: ref21/cit21 doi: 10.1007/BF00365615 – ident: ref29/cit29 doi: 10.1021/jf062199q – ident: ref16/cit16 doi: 10.1016/j.foodchem.2012.03.037 – ident: ref34/cit34 doi: 10.4236/fns.2011.24050 – ident: ref31/cit31 doi: 10.1021/ac00128a036 – ident: ref3/cit3 doi: 10.1016/j.cep.2007.09.001 – ident: ref32/cit32 doi: 10.1002/mrc.3836 – volume: 49 start-page: 117 issue: 2 year: 2015 ident: ref13/cit13 publication-title: Cell. Chem. Tech. – volume: 28 start-page: 50 issue: 2 year: 2002 ident: ref20/cit20 publication-title: J. Pulp Pap. Sci. – ident: ref1/cit1 doi: 10.1016/j.phytochem.2006.11.024 – ident: ref12/cit12 doi: 10.1021/ja4056273 – volume: 29 start-page: 235 issue: 7 year: 2003 ident: ref11/cit11 publication-title: J. Pulp Pap. Sci. – ident: ref10/cit10 doi: 10.1007/s10086-004-0682-7 – ident: ref5/cit5 doi: 10.1016/S0960-8524(99)00104-2 |
SSID | ssj0000993281 |
Score | 2.3470619 |
Snippet | Microwave heating is characterized by high efficiency and selectivity in biomass treatment. Due to the high thermal stability and low polarity of lignin,... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3768 |
SubjectTerms | acidolysis aromatic compounds biomass carbon cellulose Fourier transform infrared spectroscopy gas chromatography-mass spectrometry hemicellulose lignin liquefaction microwave treatment nuclear magnetic resonance spectroscopy softwood stable isotopes sulfuric acid temperature thermal stability |
Title | Efficient Method of Lignin Isolation Using Microwave-Assisted Acidolysis and Characterization of the Residual Lignin |
URI | http://dx.doi.org/10.1021/acssuschemeng.6b02545 https://www.proquest.com/docview/2000573775 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxsxDDZZ-7I9dGu30XZr8WBPAydn-ccljyUkZKUpY10hb4fPlktouZTm0sL--tnOJSyUku0PkPFJsvWdJX0i5CsqhcIhZ2ByzaR0hvW8RCbBagfcgzKp2uJSj67l-URNWqTzQgYfeMfYsIHwpxdfy27auozt2-oV2QUdDnLEQv2r9aNKgDsC0mBS4LrLgneqVdfOSyvFqGTnm1Fp81JOkWb4lvxY9essC0xu24u6bNvfz-kb__Uj3pG9BnXSs6Wb7JMWVgfkzV9chO9JPUhkEiEG0XGaKk1nnl5Mb6ppRb8HB00WpKnCgI5jFd-TeUQWrBv9xNEzO3WzRG9CTeVof80DvWzzjIsFqEl_4jx1fzUrfyDXw8Gv_og1IxmYCbipZoAcwfie0NKB1728FF46n4EzIs8zQKFF6bn1qMAg8NKWwnmrMwOo0ObiI9mpZhUeEiozya10KsOuldzIXhnAqHBdB-it9dkR-Ra0VjRHal6kbDnwYkOVRaPKIyJX9itsQ24eZ2zcbRNrr8Xul-we2wS-rJyjCOcwJldMhbPFPI7zjNySea6O_2fjn8hriEAhlVB-Jjv1wwJPAsypy9Pk2n8A-k3-4g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcgAOvCvK00ickBzW48cmxyhqlULSA7Sit5XXHlcRaIPYDUj8emxnEwgSqnpdyaNZ-_POt_bMNwBvSGuSngRHWxqulLd8FBRxhc54FAG1zdkWp2Z6rt5f6Is9MJtamOhEGy21-RL_j7qAeBeftav4w5cOzS4Hpk5V3PoG3IyEBBOyx5NP27OVyHok5v6kKMyQR5DqTfHO_yyl4OTa3eC0-23OAef4HnzeuprzTL4MVl09cL_-UXG8_rvch7s9B2XjNWgewB41D-HOX8qEj6A7ytISMSKxee4xzZaBzRaXzaJhJxGueT1Zzjdg85TT99P-IB7XOqHGs7Fb-GUWO2G28WyyVYVeF30mY5F4so_U5lqw3vJjOD8-OptMed-ggdvIojqOJAhtGEmjPAYzKmsZlA8FeivLskCSRtZBuEAaLaGoXS19cKawSJpcKQ9gv1k29ASYKpRwyuuChk4Jq0Z1pKbSDz1ScC4Uh_A2zlrVb7C2ynfnKKqdqaz6qTwEtVnGyvVS56njxterhg22w76ttT6uGvB6g5Eq7sp01WIbWq7a1NwzKU2WpX56Hcdfwa3p2XxWzU5OPzyD25goRE6ufA773fcVvYgEqKtfZrT_BmuAB1I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA6tBWkfbL1R7S2FPglZJyeX2X1cVhetF0pVEHwYMsmJLMqsOLMW-uubZGcXVyjSvg7kkEm-zPkm55zvEPINlULhkDMwuWZSOsN6XiKTYLUD7kGZlG1xqg8u5PdLddlmVcZamDCJOliqUxA_nuo751uFAb4bnteT8NMXL86uO7qMldzqJXkVQ3cR3f3B2fx-JTAfAalHKXDdZQGoalbA8zdL0UHZetFBLX6fk9MZviVX8-mmXJObzqQpO_b3EyXH_3ufd2Sl5aK0PwXPKnmB1Rp580ihcJ00-0liIngmepJ6TdOxp8ej62pU0cMA27SvNOUd0JOY2_fLPCALex7R42jfjtw4iZ5QUzk6mKtDT4s_o7FAQOlPrFNNWGt5g1wM988HB6xt1MBMYFMNA-QIxveElg687uWl8NL5DJwReZ4BCi1Kz61HBQaBl7YUzludGUCFNhebZKkaV_ieUJlJbqVTGXat5Eb2ykBRhes6QG-tz7bITli1oj1odZFi6MCLhaUs2qXcInK2lYVtJc9j543b54Z15sPuppofzw34OsNJEU5nDLmYCseTOjb5jIqTea62_2XiX8jyj71hcXx4evSBvIbIJFKO5Uey1NxP8FPgQU35OQH-D7kgCdU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Method+of+Lignin+Isolation+Using+Microwave-Assisted+Acidolysis+and+Characterization+of+the+Residual+Lignin&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Zhou%2C+Long&rft.au=Budarin%2C+Vitaliy&rft.au=Fan%2C+Jiajun&rft.au=Sloan%2C+Raymond&rft.date=2017-05-01&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=5&rft.issue=5&rft.spage=3768&rft.epage=3774&rft_id=info:doi/10.1021%2Facssuschemeng.6b02545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssuschemeng_6b02545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |