Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers
The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient ge...
Saved in:
Published in | Nano letters Vol. 16; no. 12; pp. 7514 - 7520 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin–orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials. |
---|---|
AbstractList | The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials. The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS or WSe )/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials. Not provided. The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin–orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials. |
Author | Zheng, Cheng Li, Lain-Jong Yu, Guoqiang Amiri, Pedram Khalili Zhu, Xiaodan Shao, Qiming Lan, Yann-Wen Li, Ming-Yang Wang, Kang L Shi, Yumeng |
AuthorAffiliation | King Abdullah University of Science and Technology Academia Sinica University of California Physical Science and Engineering Division Shenzhen University Device Research Laboratory, Department of Electrical Engineering SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering Research Center for Applied Sciences |
AuthorAffiliation_xml | – name: Shenzhen University – name: University of California – name: Academia Sinica – name: Physical Science and Engineering Division – name: Device Research Laboratory, Department of Electrical Engineering – name: King Abdullah University of Science and Technology – name: SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering – name: Research Center for Applied Sciences |
Author_xml | – sequence: 1 givenname: Qiming orcidid: 0000-0003-2613-3031 surname: Shao fullname: Shao, Qiming email: sqm@ucla.edu – sequence: 2 givenname: Guoqiang orcidid: 0000-0002-7439-6920 surname: Yu fullname: Yu, Guoqiang email: guoqiangyu@ucla.edu – sequence: 3 givenname: Yann-Wen surname: Lan fullname: Lan, Yann-Wen – sequence: 4 givenname: Yumeng surname: Shi fullname: Shi, Yumeng – sequence: 5 givenname: Ming-Yang surname: Li fullname: Li, Ming-Yang – sequence: 6 givenname: Cheng surname: Zheng fullname: Zheng, Cheng – sequence: 7 givenname: Xiaodan surname: Zhu fullname: Zhu, Xiaodan – sequence: 8 givenname: Lain-Jong surname: Li fullname: Li, Lain-Jong – sequence: 9 givenname: Pedram Khalili surname: Amiri fullname: Amiri, Pedram Khalili – sequence: 10 givenname: Kang L surname: Wang fullname: Wang, Kang L email: wang@ee.ucla.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27960524$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1534768$$D View this record in Osti.gov |
BookMark | eNqFkctuEzEUhi3Uil7gDRAasWIzqS8znjE7aFNaqagSDWvLlzOJq4kdbM-ii0q8A2_Ik-CQtAsWsLJlf591_P8n6MAHDwi9IXhGMCVnyqSZVz6MkPOMa8wYxi_QMWkZrrkQ9OB53zdH6CSle4yxYC1-iY5oJzhuaXOMHu9yDH5ZfVVppVU9tzCmDM5X82EAk-trbycDtrrbOP_rx8_bqF2uFiF-nyBVBfsSygTqAWK1iMonl10oh5DVWF04s1KjCUvwzsLZJcQY1mrpIVef3B8nvUKHgxoTvN6vp-jb5XxxflXf3H6-Pv94U6umIbmmDeMWYMC0H7jue00YGA6KiIHqnmFFtcYgLKOmA24V7QUTrcZ2EMZ2HWOn6N3u3ZCyk8m4DGZlgvfli7Kk1HS8L9D7HbSJYfu9LNcuGRhH5SFMSZK-pbwjHeYFfbtHJ70GKzfRrVV8kE-5FqDZASaGlCIMzwjBclufLPXJp_rkvr6iffhLK6OqbaY5Kjf-T8Y7eXt7H6boS6T_Vn4DHC24Zw |
CitedBy_id | crossref_primary_10_1038_s41598_021_97189_4 crossref_primary_10_1016_j_jallcom_2022_165815 crossref_primary_10_1038_s41467_018_06518_1 crossref_primary_10_1016_j_jmmm_2022_169893 crossref_primary_10_1103_PhysRevB_107_115306 crossref_primary_10_1038_s41467_018_06059_7 crossref_primary_10_1088_0256_307X_40_3_037502 crossref_primary_10_1002_adma_201901681 crossref_primary_10_7498_aps_71_20212033 crossref_primary_10_1021_acsnano_8b08926 crossref_primary_10_1038_s41467_021_26453_y crossref_primary_10_1103_RevModPhys_91_035004 crossref_primary_10_1007_s10854_021_05876_9 crossref_primary_10_1103_PhysRevB_101_045113 crossref_primary_10_1021_acsami_1c03530 crossref_primary_10_1063_5_0051217 crossref_primary_10_1038_s41598_019_45142_x crossref_primary_10_1103_PhysRevApplied_11_044070 crossref_primary_10_1103_PhysRevApplied_21_014045 crossref_primary_10_1021_acsnano_4c12543 crossref_primary_10_1103_PhysRevMaterials_6_045004 crossref_primary_10_1002_smll_202411244 crossref_primary_10_1063_5_0080357 crossref_primary_10_1021_acsami_4c00881 crossref_primary_10_1016_j_jallcom_2019_01_189 crossref_primary_10_1088_1361_6528_ac780e crossref_primary_10_1088_2515_7639_ac24ee crossref_primary_10_1103_PhysRevB_110_024426 crossref_primary_10_1016_j_mejo_2018_06_015 crossref_primary_10_1103_PhysRevApplied_14_054056 crossref_primary_10_1088_1367_2630_ac12fb crossref_primary_10_1007_s10854_017_8362_8 crossref_primary_10_1109_TMAG_2020_3032099 crossref_primary_10_1021_acs_nanolett_0c01955 crossref_primary_10_1088_1361_6528_aca0f6 crossref_primary_10_1002_pssr_202300433 crossref_primary_10_1073_pnas_1912472117 crossref_primary_10_1063_1_5124688 crossref_primary_10_7566_JPSJ_90_081007 crossref_primary_10_1103_PhysRevB_107_115402 crossref_primary_10_1021_acsnano_3c06686 crossref_primary_10_1063_1_5118327 crossref_primary_10_1088_1367_2630_ada634 crossref_primary_10_1063_5_0035681 crossref_primary_10_1088_1361_6463_aae553 crossref_primary_10_1088_1361_648X_ab04c7 crossref_primary_10_1063_1_5098033 crossref_primary_10_7498_aps_73_20231244 crossref_primary_10_1063_5_0029071 crossref_primary_10_1103_PhysRevB_101_144412 crossref_primary_10_1063_5_0054865 crossref_primary_10_1002_adma_202406464 crossref_primary_10_1103_PhysRevLett_121_017202 crossref_primary_10_1016_j_matlet_2020_127454 crossref_primary_10_1016_j_nantod_2021_101338 crossref_primary_10_1002_adma_202313059 crossref_primary_10_1002_wcms_1313 crossref_primary_10_1021_acsami_2c11162 crossref_primary_10_1021_acsami_4c03360 crossref_primary_10_1063_5_0006080 crossref_primary_10_1016_j_isci_2022_104511 crossref_primary_10_1088_1361_648X_ab5560 crossref_primary_10_1103_PhysRevB_107_184427 crossref_primary_10_1126_science_aav8076 crossref_primary_10_1063_5_0187983 crossref_primary_10_1021_acs_nanolett_4c01100 crossref_primary_10_1063_5_0146758 crossref_primary_10_1063_5_0098751 crossref_primary_10_1088_1367_2630_ad2f38 crossref_primary_10_1103_PhysRevB_107_L100403 crossref_primary_10_1103_PhysRevLett_123_207205 crossref_primary_10_1103_PhysRevApplied_13_024027 crossref_primary_10_1021_acsnano_0c04403 crossref_primary_10_1063_5_0049103 crossref_primary_10_1103_PhysRevB_98_180404 crossref_primary_10_1088_1361_6463_ab0b96 crossref_primary_10_1038_s41699_020_0152_0 crossref_primary_10_1126_sciadv_abq2742 crossref_primary_10_1038_s42254_021_00403_5 crossref_primary_10_1021_acsanm_0c01408 crossref_primary_10_1021_acsami_7b16919 crossref_primary_10_1103_PhysRevApplied_9_014022 crossref_primary_10_1039_D0NR07867K crossref_primary_10_1016_j_jmmm_2018_12_080 crossref_primary_10_1038_s41928_019_0273_7 crossref_primary_10_1103_PhysRevB_106_L220409 crossref_primary_10_1063_5_0037937 crossref_primary_10_1002_adma_202406772 crossref_primary_10_1063_5_0009828 crossref_primary_10_1103_PhysRevB_108_195129 crossref_primary_10_1016_j_jmmm_2021_168462 crossref_primary_10_1063_5_0067348 crossref_primary_10_1021_acs_nanolett_0c03499 crossref_primary_10_1103_PhysRevB_104_195404 crossref_primary_10_1016_j_mattod_2021_09_015 crossref_primary_10_1142_S201032472340026X crossref_primary_10_1002_adma_202109894 crossref_primary_10_1063_5_0050483 crossref_primary_10_1557_mrs_2020_121 crossref_primary_10_3389_fmats_2024_1343005 crossref_primary_10_1021_acs_nanolett_7b04993 crossref_primary_10_1063_5_0159703 crossref_primary_10_1016_j_physb_2022_414073 crossref_primary_10_1103_PhysRevApplied_14_014095 crossref_primary_10_1002_adma_202000513 crossref_primary_10_1038_s41699_020_0153_z crossref_primary_10_1007_s10825_020_01615_1 crossref_primary_10_1103_PhysRevApplied_12_054030 crossref_primary_10_1016_j_jmmm_2021_167911 crossref_primary_10_1002_inf2_12048 crossref_primary_10_1109_TMAG_2021_3091292 crossref_primary_10_1063_5_0106414 crossref_primary_10_1016_j_jmmm_2019_165914 crossref_primary_10_1103_PhysRevB_108_224409 crossref_primary_10_7498_aps_72_20231244 crossref_primary_10_1063_1_5041793 crossref_primary_10_1063_5_0166965 crossref_primary_10_1088_1361_6463_abaa15 crossref_primary_10_1021_acsaelm_4c01583 crossref_primary_10_34133_2020_1768918 crossref_primary_10_1038_s41598_022_06779_3 crossref_primary_10_1039_D2NR06390E crossref_primary_10_1103_PhysRevB_97_155415 crossref_primary_10_1063_5_0039069 crossref_primary_10_3389_fnano_2021_732916 crossref_primary_10_1039_D3NH00137G crossref_primary_10_3389_fmats_2020_594771 crossref_primary_10_7498_aps_69_20200623 crossref_primary_10_1103_PhysRevB_99_184403 crossref_primary_10_1103_PhysRevB_104_104415 crossref_primary_10_1002_advs_202303831 crossref_primary_10_1021_acs_nanolett_9b01676 crossref_primary_10_1103_PhysRevMaterials_5_045003 crossref_primary_10_1021_acs_jpcc_2c04703 crossref_primary_10_1088_1361_6463_aaca89 crossref_primary_10_1088_1674_1056_acb2c0 crossref_primary_10_1103_PhysRevApplied_19_044009 crossref_primary_10_1038_s41567_018_0406_3 crossref_primary_10_1103_PhysRevMaterials_7_094406 crossref_primary_10_1038_s41467_020_17481_1 crossref_primary_10_1103_PhysRevB_103_245411 crossref_primary_10_1063_1_5030643 crossref_primary_10_1021_acs_jpclett_0c01502 crossref_primary_10_1063_5_0025318 crossref_primary_10_1016_j_jmmm_2020_167511 crossref_primary_10_1063_5_0086860 crossref_primary_10_1088_1361_648X_abace4 crossref_primary_10_1063_5_0098832 crossref_primary_10_1103_PhysRevB_108_094408 crossref_primary_10_1063_5_0188736 crossref_primary_10_1103_PhysRevB_97_235423 crossref_primary_10_1140_epjb_s10051_023_00516_z crossref_primary_10_1038_s41467_023_40714_y crossref_primary_10_1088_1361_648X_abbc35 crossref_primary_10_1016_j_jmmm_2024_172440 crossref_primary_10_1021_acsami_9b16476 crossref_primary_10_1016_j_physe_2024_116147 crossref_primary_10_1038_s41524_024_01434_z crossref_primary_10_1103_PhysRevB_108_064419 crossref_primary_10_1021_acs_nanolett_4c03469 crossref_primary_10_1063_5_0107655 crossref_primary_10_1002_adts_202300092 crossref_primary_10_1103_PhysRevApplied_20_024063 crossref_primary_10_1016_j_physc_2019_1353592 crossref_primary_10_1109_TMAG_2021_3078583 crossref_primary_10_1063_5_0045091 crossref_primary_10_1002_adfm_202211953 crossref_primary_10_1021_acsnano_2c01788 crossref_primary_10_3390_s24031011 crossref_primary_10_1103_PhysRevB_101_184512 crossref_primary_10_1088_1361_648X_aaec55 crossref_primary_10_1142_S2010324717400136 crossref_primary_10_1021_acs_nanolett_7b03221 crossref_primary_10_1021_acs_jpclett_7b01786 crossref_primary_10_1126_sciadv_aay2324 crossref_primary_10_1038_s41598_022_14060_w crossref_primary_10_1088_1361_6528_ac2f59 crossref_primary_10_1103_PhysRevB_97_235404 crossref_primary_10_1016_j_cossms_2024_101145 crossref_primary_10_1063_5_0073537 crossref_primary_10_1038_s41586_022_04768_0 crossref_primary_10_1016_j_mtelec_2023_100060 crossref_primary_10_1063_1_5098802 crossref_primary_10_1063_5_0086125 crossref_primary_10_1063_5_0088548 crossref_primary_10_1126_science_aar3617 crossref_primary_10_1016_j_pmatsci_2020_100761 crossref_primary_10_1103_PhysRevB_109_155403 crossref_primary_10_1016_j_isci_2020_101614 crossref_primary_10_1021_acsami_9b00226 crossref_primary_10_3390_coatings12020122 crossref_primary_10_1021_acs_nanolett_4c03809 crossref_primary_10_1103_PhysRevB_99_174413 crossref_primary_10_1002_adma_202000818 crossref_primary_10_1002_advs_202002488 crossref_primary_10_1021_acsami_0c19266 crossref_primary_10_1088_1674_1056_aca7e9 crossref_primary_10_1088_1361_6463_aac7b5 crossref_primary_10_1063_5_0039147 crossref_primary_10_1039_D1NR03342E crossref_primary_10_3390_cryst11040351 crossref_primary_10_1021_acs_nanolett_8b04368 crossref_primary_10_1038_s42005_019_0127_7 crossref_primary_10_1002_adma_202200323 crossref_primary_10_1002_adma_202203038 crossref_primary_10_1002_adma_202002799 crossref_primary_10_1103_PhysRevLett_120_266801 crossref_primary_10_1002_aelm_202100684 crossref_primary_10_1103_PhysRevB_102_174435 crossref_primary_10_1063_5_0155998 crossref_primary_10_7498_aps_69_20200715 crossref_primary_10_1103_PhysRevB_102_014401 crossref_primary_10_1021_acs_jpclett_1c01016 crossref_primary_10_1038_s42005_021_00611_6 crossref_primary_10_1103_PhysRevB_104_014408 crossref_primary_10_1002_advs_202100847 crossref_primary_10_1109_TMAG_2023_3286476 crossref_primary_10_1126_science_aav4450 crossref_primary_10_1103_PhysRevB_111_035403 crossref_primary_10_1002_admi_202201675 crossref_primary_10_1038_s41565_019_0525_8 crossref_primary_10_1063_1_5094665 crossref_primary_10_1016_j_jmmm_2017_01_066 crossref_primary_10_1103_PhysRevB_109_094424 crossref_primary_10_1002_adma_201900776 crossref_primary_10_1063_5_0132895 crossref_primary_10_1063_5_0153312 crossref_primary_10_1186_s11671_020_03458_y crossref_primary_10_1021_acsami_9b21747 crossref_primary_10_1063_5_0190257 crossref_primary_10_1002_pssr_202100342 crossref_primary_10_1016_j_physe_2023_115734 crossref_primary_10_1002_pssb_202100124 crossref_primary_10_1016_j_jmmm_2020_167206 crossref_primary_10_1063_5_0024019 crossref_primary_10_1038_s41467_018_04018_w crossref_primary_10_1038_s41928_023_01080_1 crossref_primary_10_1103_PhysRevMaterials_4_104007 crossref_primary_10_1088_2053_1583_ab2c44 crossref_primary_10_1021_acs_nanolett_9b01611 crossref_primary_10_1038_s41598_023_36478_6 crossref_primary_10_1088_1361_6463_aa86d2 crossref_primary_10_1103_PhysRevB_101_224438 crossref_primary_10_1103_PhysRevResearch_3_023089 crossref_primary_10_1039_D3NR04977A crossref_primary_10_1016_j_mattod_2023_11_008 crossref_primary_10_1103_PhysRevApplied_20_024032 crossref_primary_10_1103_PhysRevMaterials_7_024418 crossref_primary_10_7498_aps_70_20210004 crossref_primary_10_1063_5_0107903 crossref_primary_10_1021_acsnano_7b02253 crossref_primary_10_1103_PhysRevB_100_184402 crossref_primary_10_1103_PhysRevMaterials_4_084007 crossref_primary_10_1007_s12648_021_02258_z crossref_primary_10_1063_1_5004442 crossref_primary_10_1063_5_0013363 crossref_primary_10_1002_adfm_202112754 crossref_primary_10_1063_5_0033752 |
Cites_doi | 10.1038/nphys2576 10.1038/nphys1362 10.1021/nn405719x 10.1038/nnano.2012.96 10.1038/nmat3305 10.1038/nnano.2014.15 10.1038/nmat3973 10.1103/PhysRevLett.116.126601 10.1103/PhysRevLett.109.066803 10.1126/science.aab4097 10.1038/nnano.2014.94 10.1103/PhysRevB.86.165108 10.1038/nmat4360 10.1038/nmat3823 10.1038/nphys3933 10.1103/PhysRevB.89.104421 10.1038/nmat3522 10.1103/PhysRevLett.114.257202 10.1063/1.4941712 10.1038/nature10309 10.1038/ncomms2709 10.1103/PhysRevB.90.224427 10.1063/1.4921765 10.1126/science.1218197 10.1038/nature13534 10.1038/nmat3675 10.1103/PhysRevB.91.125420 10.1038/ncomms5748 10.1103/PhysRevLett.106.036601 10.1038/ncomms3944 10.1126/science.aac9439 10.1103/PhysRevLett.108.196802 10.1088/0022-3727/46/7/074003 10.1103/PhysRevB.87.174411 10.1038/nnano.2015.294 10.1063/1.4943076 10.1038/nphys2942 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
CorporateAuthor | Univ. of California, Riverside, CA (United States) Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES) |
CorporateAuthor_xml | – name: Univ. of California, Riverside, CA (United States) – name: Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES) |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/acs.nanolett.6b03300 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1530-6992 |
EndPage | 7520 |
ExternalDocumentID | 1534768 27960524 10_1021_acs_nanolett_6b03300 b13352545 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a441t-2436deef028f6b88b13ec6ea19f2b830a2bb0e9d32c7e6da289395b0df9cd7733 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu May 18 22:27:14 EDT 2023 Fri Jul 11 00:35:20 EDT 2025 Sat Sep 28 08:48:10 EDT 2024 Tue Jul 01 03:13:52 EDT 2025 Thu Apr 24 22:54:51 EDT 2025 Thu Aug 27 13:42:42 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | spintronics charge−spin conversion two-dimensional materials Spin−orbit torque transition metal dichalcogenides Rashba-Edelstein effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-2436deef028f6b88b13ec6ea19f2b830a2bb0e9d32c7e6da289395b0df9cd7733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0012670 USDOE Office of Science (SC) |
ORCID | 0000-0002-7439-6920 0000-0003-2613-3031 |
PMID | 27960524 |
PQID | 1852671706 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1534768 proquest_miscellaneous_1852671706 pubmed_primary_27960524 crossref_primary_10_1021_acs_nanolett_6b03300 crossref_citationtrail_10_1021_acs_nanolett_6b03300 acs_journals_10_1021_acs_nanolett_6b03300 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-14 |
PublicationDateYYYYMMDD | 2016-12-14 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Kalitsov A. (ref31/cit31) 2016 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 Cheng C. (ref34/cit34) 2015 ref2/cit2 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1038/nphys2576 – ident: ref10/cit10 doi: 10.1038/nphys1362 – ident: ref24/cit24 doi: 10.1021/nn405719x – ident: ref33/cit33 doi: 10.1038/nnano.2012.96 – ident: ref12/cit12 doi: 10.1038/nmat3305 – ident: ref9/cit9 doi: 10.1038/nnano.2014.15 – ident: ref15/cit15 doi: 10.1038/nmat3973 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.116.126601 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.109.066803 – ident: ref25/cit25 doi: 10.1126/science.aab4097 – ident: ref7/cit7 doi: 10.1038/nnano.2014.94 – ident: ref22/cit22 doi: 10.1103/PhysRevB.86.165108 – ident: ref19/cit19 doi: 10.1038/nmat4360 – ident: ref2/cit2 doi: 10.1038/nmat3823 – ident: ref38/cit38 doi: 10.1038/nphys3933 – ident: ref8/cit8 doi: 10.1103/PhysRevB.89.104421 – ident: ref28/cit28 doi: 10.1038/nmat3522 – ident: ref17/cit17 doi: 10.1103/PhysRevLett.114.257202 – ident: ref11/cit11 doi: 10.1063/1.4941712 – ident: ref3/cit3 doi: 10.1038/nature10309 – ident: ref26/cit26 doi: 10.1038/ncomms2709 – ident: ref27/cit27 doi: 10.1103/PhysRevB.90.224427 – ident: ref36/cit36 doi: 10.1063/1.4921765 – ident: ref6/cit6 doi: 10.1126/science.1218197 – ident: ref16/cit16 doi: 10.1038/nature13534 – ident: ref5/cit5 doi: 10.1038/nmat3675 – ident: ref30/cit30 doi: 10.1103/PhysRevB.91.125420 – ident: ref14/cit14 doi: 10.1038/ncomms5748 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.106.036601 – ident: ref29/cit29 doi: 10.1038/ncomms3944 – year: 2016 ident: ref31/cit31 publication-title: arXiv:1604.07885 [cond-mat.mes-hall] – year: 2015 ident: ref34/cit34 publication-title: arXiv:1510.03451 [cond-mat.mes-hall] – ident: ref37/cit37 doi: 10.1126/science.aac9439 – ident: ref21/cit21 doi: 10.1103/PhysRevLett.108.196802 – ident: ref1/cit1 doi: 10.1088/0022-3727/46/7/074003 – ident: ref32/cit32 doi: 10.1103/PhysRevB.87.174411 – ident: ref39/cit39 doi: 10.1038/nnano.2015.294 – ident: ref23/cit23 doi: 10.1063/1.4943076 – ident: ref20/cit20 doi: 10.1038/nphys2942 |
SSID | ssj0009350 |
Score | 2.634484 |
Snippet | The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7514 |
SubjectTerms | Chemistry Materials Science Physics Science & Technology - Other Topics |
Title | Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers |
URI | http://dx.doi.org/10.1021/acs.nanolett.6b03300 https://www.ncbi.nlm.nih.gov/pubmed/27960524 https://www.proquest.com/docview/1852671706 https://www.osti.gov/biblio/1534768 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQcmkPPNoCSwEZiUsP3ia248RHKF1VSG0ltpV6i_yYlBUlqZLsBQmJ_8A_5JcwzqPloapUyimKncxkJvN98XiGkDeRk8CzxLBE-YRJ6WKmMbAzYzA4ZcLgEfYOHx6pg1P54Sw5uyaKf6_g83jXuGZWmrJCMdqZshEScKTo97lCPw5QaG9xXWRXdB1Z0YmREulMjlvlbpglBCTX_BGQJhU61s1gsws684fkeNy60-eafJ6tWjtzX_-t5Pif8jwiDwb8Sd_2BvOY3INyg6z_VpVwk3xbhN_j5_SjaT5Zw_Y9hs_QE5P2lY5Z6PbhwNPF5bL8-f3HcW2XLT2p6iAKxcvwM4F8GaE87QJhlxNGDwFRPn0fkvQvXIVWu_SwO4e6rr6Y8xJa-m7ZjWm2yOl8_2TvgA1dGphBKNUyLoXyAAUClULZLLOxAKfAxLrgNhOR4dZGoL3gLgXlDTI8oRMb-UI7n6ZCPCGTsirhGaFGKR00glMWUjttY44xPJUGIJFO-SnZQe3lg5c1ebeAzuM8nBxVmg8qnRIxvtbcDeXOQ9eNi1tGsatRl325j1uu3w4WkyNcCTV3XUhOcm2OFiiRx03J69GQcvTasBRjSqhW-ORZwlUaShdNydPewq7ux1NklQmXz-8g7TZZQyTXdVSK5QsyaesVvES01NpXnYv8AhCHFHE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq5QAcypsu5WEkLhy8TWzHiY-ldLVAt0jsFvUW-ZWyoiRVkr0gVep_4B_ySxh7ky0gVVWlnKzY8TgzmW_i8TcIvYkMdzRLFEmETQjnJiYSHDtRCpxTxhRc_uzw9FBMjvjH4-R4AyX9WRiYRAMjNWET_5JdIN7xbaUqK5CmHQkdQRwOkfotwCPUK_bu3uySa5eFwqxgyxAZyYz3J-auGMX7JdP845cGFdjX1Zgz-J7xPfR1PeuQcvJ9tGz1yPz8j9DxxmLdR5sdGsW7K_V5gDZc-RDd_Yuj8BE6n_mf5Sf4i2q-aUX2LThTXyETr3iPia_9YZzFs7NF-fvi1-daL1o8r2ovEYbb4KMB0TMAexzcYsgQw1MHmB-_9yn7p6YCHV5YtzN2dV39UCela_G7RejTPEZH4_353oR0NRuIAmDVEsqZsM4VAFsKobNMx8wZ4VQsC6ozFimqdeSkZdSkTlgF8R6TiY5sIY1NU8aeoEFZlW4LYSWE9CsCQxZcGqljCh495cq5hBthh-gtrF7e2VyTh-10Gue-sV_SvFvSIWL9281NR37ua3CcXtOLrHudrcg_rrl_2ytODuDFM_Aan6pk2hwUkUNUN0Sve33KwYb9xowqXbWEmWegxKknMhqipytFWz-PphBjJpQ_u4G0r9DtyXx6kB98OPy0je4Axgu1lmL-HA3aeuleAI5q9ctgNX8A8l0c0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQIiE4QHkv5WEkLhy8TWzHSY6l7ao8WhDbShWXyK-UFSVZJdkLUqX-B_4hv6Qz3uxSkKoKpJys2LGdmcw3mfE3hLyKrPQ8SzRLlEuYlDZmORh2pjUYp0xouPDs8N6-2j2U746SowulvmASLYzUhiA-avXMlT3DQLyB7ZWualhRN1ImAl8cvPXrGLlD4d7cmvzm2xWhOCvoM3hHeSaXp-YuGQVtk23_sE2DGnTsctwZ7M_4DvmymnlIO_k2mndmZH_8Rer4X0tbI7d7VEo3F2J0l1zz1T1y6wJX4X1yOsGf5sf0s26_Gs12HBhVrJRJF_zHDGuAWO_oZDatfp39_NiYaUcP6gZXReE2-HiAFw0AnwbzGDLF6J4H7E-3MXX_xNYgy1PnN8a-aerv-rjyHX0zDX3aB-RwvHOwtcv62g1MA8DqGJdCOe9LgC-lMllmYuGt8jrOS24yEWluTORzJ7hNvXIa_D6RJyZyZW5dmgrxkAyquvKPCdVK5bgjMGQpc5ubmINlT6X2PpFWuSF5DbtX9LrXFiGszuMCG5dbWvRbOiRi-YYL25OgYy2Okyt6sVWv2YIE5Ir711F4CgAxyMRrMWXJdgUIowTvbkheLmWqAF3GAI2ufD2HmWcJVykSGg3Jo4WwrZ7HU_A1Ey6f_MNqX5Abn7bHxYe3--_XyU2AeqHkUiyfkkHXzP0zgFOdeR4U5xzrxB9V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Rashba-Edelstein+Effect-Induced+Spin-Orbit+Torques+in+Monolayer+Transition+Metal+Dichalcogenide%2FFerromagnet+Bilayers&rft.jtitle=Nano+letters&rft.au=Shao%2C+Qiming&rft.au=Yu%2C+Guoqiang&rft.au=Lan%2C+Yann-Wen&rft.au=Shi%2C+Yumeng&rft.date=2016-12-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=16&rft.issue=12&rft.spage=7514&rft_id=info:doi/10.1021%2Facs.nanolett.6b03300&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |