Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers

The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient ge...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 16; no. 12; pp. 7514 - 7520
Main Authors Shao, Qiming, Yu, Guoqiang, Lan, Yann-Wen, Shi, Yumeng, Li, Ming-Yang, Zheng, Cheng, Zhu, Xiaodan, Li, Lain-Jong, Amiri, Pedram Khalili, Wang, Kang L
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin–orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
AbstractList The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS or WSe )/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
Not provided.
The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin–orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS2 or WSe2)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
Author Zheng, Cheng
Li, Lain-Jong
Yu, Guoqiang
Amiri, Pedram Khalili
Zhu, Xiaodan
Shao, Qiming
Lan, Yann-Wen
Li, Ming-Yang
Wang, Kang L
Shi, Yumeng
AuthorAffiliation King Abdullah University of Science and Technology
Academia Sinica
University of California
Physical Science and Engineering Division
Shenzhen University
Device Research Laboratory, Department of Electrical Engineering
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering
Research Center for Applied Sciences
AuthorAffiliation_xml – name: Shenzhen University
– name: University of California
– name: Academia Sinica
– name: Physical Science and Engineering Division
– name: Device Research Laboratory, Department of Electrical Engineering
– name: King Abdullah University of Science and Technology
– name: SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering
– name: Research Center for Applied Sciences
Author_xml – sequence: 1
  givenname: Qiming
  orcidid: 0000-0003-2613-3031
  surname: Shao
  fullname: Shao, Qiming
  email: sqm@ucla.edu
– sequence: 2
  givenname: Guoqiang
  orcidid: 0000-0002-7439-6920
  surname: Yu
  fullname: Yu, Guoqiang
  email: guoqiangyu@ucla.edu
– sequence: 3
  givenname: Yann-Wen
  surname: Lan
  fullname: Lan, Yann-Wen
– sequence: 4
  givenname: Yumeng
  surname: Shi
  fullname: Shi, Yumeng
– sequence: 5
  givenname: Ming-Yang
  surname: Li
  fullname: Li, Ming-Yang
– sequence: 6
  givenname: Cheng
  surname: Zheng
  fullname: Zheng, Cheng
– sequence: 7
  givenname: Xiaodan
  surname: Zhu
  fullname: Zhu, Xiaodan
– sequence: 8
  givenname: Lain-Jong
  surname: Li
  fullname: Li, Lain-Jong
– sequence: 9
  givenname: Pedram Khalili
  surname: Amiri
  fullname: Amiri, Pedram Khalili
– sequence: 10
  givenname: Kang L
  surname: Wang
  fullname: Wang, Kang L
  email: wang@ee.ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27960524$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1534768$$D View this record in Osti.gov
BookMark eNqFkctuEzEUhi3Uil7gDRAasWIzqS8znjE7aFNaqagSDWvLlzOJq4kdbM-ii0q8A2_Ik-CQtAsWsLJlf591_P8n6MAHDwi9IXhGMCVnyqSZVz6MkPOMa8wYxi_QMWkZrrkQ9OB53zdH6CSle4yxYC1-iY5oJzhuaXOMHu9yDH5ZfVVppVU9tzCmDM5X82EAk-trbycDtrrbOP_rx8_bqF2uFiF-nyBVBfsSygTqAWK1iMonl10oh5DVWF04s1KjCUvwzsLZJcQY1mrpIVef3B8nvUKHgxoTvN6vp-jb5XxxflXf3H6-Pv94U6umIbmmDeMWYMC0H7jue00YGA6KiIHqnmFFtcYgLKOmA24V7QUTrcZ2EMZ2HWOn6N3u3ZCyk8m4DGZlgvfli7Kk1HS8L9D7HbSJYfu9LNcuGRhH5SFMSZK-pbwjHeYFfbtHJ70GKzfRrVV8kE-5FqDZASaGlCIMzwjBclufLPXJp_rkvr6iffhLK6OqbaY5Kjf-T8Y7eXt7H6boS6T_Vn4DHC24Zw
CitedBy_id crossref_primary_10_1038_s41598_021_97189_4
crossref_primary_10_1016_j_jallcom_2022_165815
crossref_primary_10_1038_s41467_018_06518_1
crossref_primary_10_1016_j_jmmm_2022_169893
crossref_primary_10_1103_PhysRevB_107_115306
crossref_primary_10_1038_s41467_018_06059_7
crossref_primary_10_1088_0256_307X_40_3_037502
crossref_primary_10_1002_adma_201901681
crossref_primary_10_7498_aps_71_20212033
crossref_primary_10_1021_acsnano_8b08926
crossref_primary_10_1038_s41467_021_26453_y
crossref_primary_10_1103_RevModPhys_91_035004
crossref_primary_10_1007_s10854_021_05876_9
crossref_primary_10_1103_PhysRevB_101_045113
crossref_primary_10_1021_acsami_1c03530
crossref_primary_10_1063_5_0051217
crossref_primary_10_1038_s41598_019_45142_x
crossref_primary_10_1103_PhysRevApplied_11_044070
crossref_primary_10_1103_PhysRevApplied_21_014045
crossref_primary_10_1021_acsnano_4c12543
crossref_primary_10_1103_PhysRevMaterials_6_045004
crossref_primary_10_1002_smll_202411244
crossref_primary_10_1063_5_0080357
crossref_primary_10_1021_acsami_4c00881
crossref_primary_10_1016_j_jallcom_2019_01_189
crossref_primary_10_1088_1361_6528_ac780e
crossref_primary_10_1088_2515_7639_ac24ee
crossref_primary_10_1103_PhysRevB_110_024426
crossref_primary_10_1016_j_mejo_2018_06_015
crossref_primary_10_1103_PhysRevApplied_14_054056
crossref_primary_10_1088_1367_2630_ac12fb
crossref_primary_10_1007_s10854_017_8362_8
crossref_primary_10_1109_TMAG_2020_3032099
crossref_primary_10_1021_acs_nanolett_0c01955
crossref_primary_10_1088_1361_6528_aca0f6
crossref_primary_10_1002_pssr_202300433
crossref_primary_10_1073_pnas_1912472117
crossref_primary_10_1063_1_5124688
crossref_primary_10_7566_JPSJ_90_081007
crossref_primary_10_1103_PhysRevB_107_115402
crossref_primary_10_1021_acsnano_3c06686
crossref_primary_10_1063_1_5118327
crossref_primary_10_1088_1367_2630_ada634
crossref_primary_10_1063_5_0035681
crossref_primary_10_1088_1361_6463_aae553
crossref_primary_10_1088_1361_648X_ab04c7
crossref_primary_10_1063_1_5098033
crossref_primary_10_7498_aps_73_20231244
crossref_primary_10_1063_5_0029071
crossref_primary_10_1103_PhysRevB_101_144412
crossref_primary_10_1063_5_0054865
crossref_primary_10_1002_adma_202406464
crossref_primary_10_1103_PhysRevLett_121_017202
crossref_primary_10_1016_j_matlet_2020_127454
crossref_primary_10_1016_j_nantod_2021_101338
crossref_primary_10_1002_adma_202313059
crossref_primary_10_1002_wcms_1313
crossref_primary_10_1021_acsami_2c11162
crossref_primary_10_1021_acsami_4c03360
crossref_primary_10_1063_5_0006080
crossref_primary_10_1016_j_isci_2022_104511
crossref_primary_10_1088_1361_648X_ab5560
crossref_primary_10_1103_PhysRevB_107_184427
crossref_primary_10_1126_science_aav8076
crossref_primary_10_1063_5_0187983
crossref_primary_10_1021_acs_nanolett_4c01100
crossref_primary_10_1063_5_0146758
crossref_primary_10_1063_5_0098751
crossref_primary_10_1088_1367_2630_ad2f38
crossref_primary_10_1103_PhysRevB_107_L100403
crossref_primary_10_1103_PhysRevLett_123_207205
crossref_primary_10_1103_PhysRevApplied_13_024027
crossref_primary_10_1021_acsnano_0c04403
crossref_primary_10_1063_5_0049103
crossref_primary_10_1103_PhysRevB_98_180404
crossref_primary_10_1088_1361_6463_ab0b96
crossref_primary_10_1038_s41699_020_0152_0
crossref_primary_10_1126_sciadv_abq2742
crossref_primary_10_1038_s42254_021_00403_5
crossref_primary_10_1021_acsanm_0c01408
crossref_primary_10_1021_acsami_7b16919
crossref_primary_10_1103_PhysRevApplied_9_014022
crossref_primary_10_1039_D0NR07867K
crossref_primary_10_1016_j_jmmm_2018_12_080
crossref_primary_10_1038_s41928_019_0273_7
crossref_primary_10_1103_PhysRevB_106_L220409
crossref_primary_10_1063_5_0037937
crossref_primary_10_1002_adma_202406772
crossref_primary_10_1063_5_0009828
crossref_primary_10_1103_PhysRevB_108_195129
crossref_primary_10_1016_j_jmmm_2021_168462
crossref_primary_10_1063_5_0067348
crossref_primary_10_1021_acs_nanolett_0c03499
crossref_primary_10_1103_PhysRevB_104_195404
crossref_primary_10_1016_j_mattod_2021_09_015
crossref_primary_10_1142_S201032472340026X
crossref_primary_10_1002_adma_202109894
crossref_primary_10_1063_5_0050483
crossref_primary_10_1557_mrs_2020_121
crossref_primary_10_3389_fmats_2024_1343005
crossref_primary_10_1021_acs_nanolett_7b04993
crossref_primary_10_1063_5_0159703
crossref_primary_10_1016_j_physb_2022_414073
crossref_primary_10_1103_PhysRevApplied_14_014095
crossref_primary_10_1002_adma_202000513
crossref_primary_10_1038_s41699_020_0153_z
crossref_primary_10_1007_s10825_020_01615_1
crossref_primary_10_1103_PhysRevApplied_12_054030
crossref_primary_10_1016_j_jmmm_2021_167911
crossref_primary_10_1002_inf2_12048
crossref_primary_10_1109_TMAG_2021_3091292
crossref_primary_10_1063_5_0106414
crossref_primary_10_1016_j_jmmm_2019_165914
crossref_primary_10_1103_PhysRevB_108_224409
crossref_primary_10_7498_aps_72_20231244
crossref_primary_10_1063_1_5041793
crossref_primary_10_1063_5_0166965
crossref_primary_10_1088_1361_6463_abaa15
crossref_primary_10_1021_acsaelm_4c01583
crossref_primary_10_34133_2020_1768918
crossref_primary_10_1038_s41598_022_06779_3
crossref_primary_10_1039_D2NR06390E
crossref_primary_10_1103_PhysRevB_97_155415
crossref_primary_10_1063_5_0039069
crossref_primary_10_3389_fnano_2021_732916
crossref_primary_10_1039_D3NH00137G
crossref_primary_10_3389_fmats_2020_594771
crossref_primary_10_7498_aps_69_20200623
crossref_primary_10_1103_PhysRevB_99_184403
crossref_primary_10_1103_PhysRevB_104_104415
crossref_primary_10_1002_advs_202303831
crossref_primary_10_1021_acs_nanolett_9b01676
crossref_primary_10_1103_PhysRevMaterials_5_045003
crossref_primary_10_1021_acs_jpcc_2c04703
crossref_primary_10_1088_1361_6463_aaca89
crossref_primary_10_1088_1674_1056_acb2c0
crossref_primary_10_1103_PhysRevApplied_19_044009
crossref_primary_10_1038_s41567_018_0406_3
crossref_primary_10_1103_PhysRevMaterials_7_094406
crossref_primary_10_1038_s41467_020_17481_1
crossref_primary_10_1103_PhysRevB_103_245411
crossref_primary_10_1063_1_5030643
crossref_primary_10_1021_acs_jpclett_0c01502
crossref_primary_10_1063_5_0025318
crossref_primary_10_1016_j_jmmm_2020_167511
crossref_primary_10_1063_5_0086860
crossref_primary_10_1088_1361_648X_abace4
crossref_primary_10_1063_5_0098832
crossref_primary_10_1103_PhysRevB_108_094408
crossref_primary_10_1063_5_0188736
crossref_primary_10_1103_PhysRevB_97_235423
crossref_primary_10_1140_epjb_s10051_023_00516_z
crossref_primary_10_1038_s41467_023_40714_y
crossref_primary_10_1088_1361_648X_abbc35
crossref_primary_10_1016_j_jmmm_2024_172440
crossref_primary_10_1021_acsami_9b16476
crossref_primary_10_1016_j_physe_2024_116147
crossref_primary_10_1038_s41524_024_01434_z
crossref_primary_10_1103_PhysRevB_108_064419
crossref_primary_10_1021_acs_nanolett_4c03469
crossref_primary_10_1063_5_0107655
crossref_primary_10_1002_adts_202300092
crossref_primary_10_1103_PhysRevApplied_20_024063
crossref_primary_10_1016_j_physc_2019_1353592
crossref_primary_10_1109_TMAG_2021_3078583
crossref_primary_10_1063_5_0045091
crossref_primary_10_1002_adfm_202211953
crossref_primary_10_1021_acsnano_2c01788
crossref_primary_10_3390_s24031011
crossref_primary_10_1103_PhysRevB_101_184512
crossref_primary_10_1088_1361_648X_aaec55
crossref_primary_10_1142_S2010324717400136
crossref_primary_10_1021_acs_nanolett_7b03221
crossref_primary_10_1021_acs_jpclett_7b01786
crossref_primary_10_1126_sciadv_aay2324
crossref_primary_10_1038_s41598_022_14060_w
crossref_primary_10_1088_1361_6528_ac2f59
crossref_primary_10_1103_PhysRevB_97_235404
crossref_primary_10_1016_j_cossms_2024_101145
crossref_primary_10_1063_5_0073537
crossref_primary_10_1038_s41586_022_04768_0
crossref_primary_10_1016_j_mtelec_2023_100060
crossref_primary_10_1063_1_5098802
crossref_primary_10_1063_5_0086125
crossref_primary_10_1063_5_0088548
crossref_primary_10_1126_science_aar3617
crossref_primary_10_1016_j_pmatsci_2020_100761
crossref_primary_10_1103_PhysRevB_109_155403
crossref_primary_10_1016_j_isci_2020_101614
crossref_primary_10_1021_acsami_9b00226
crossref_primary_10_3390_coatings12020122
crossref_primary_10_1021_acs_nanolett_4c03809
crossref_primary_10_1103_PhysRevB_99_174413
crossref_primary_10_1002_adma_202000818
crossref_primary_10_1002_advs_202002488
crossref_primary_10_1021_acsami_0c19266
crossref_primary_10_1088_1674_1056_aca7e9
crossref_primary_10_1088_1361_6463_aac7b5
crossref_primary_10_1063_5_0039147
crossref_primary_10_1039_D1NR03342E
crossref_primary_10_3390_cryst11040351
crossref_primary_10_1021_acs_nanolett_8b04368
crossref_primary_10_1038_s42005_019_0127_7
crossref_primary_10_1002_adma_202200323
crossref_primary_10_1002_adma_202203038
crossref_primary_10_1002_adma_202002799
crossref_primary_10_1103_PhysRevLett_120_266801
crossref_primary_10_1002_aelm_202100684
crossref_primary_10_1103_PhysRevB_102_174435
crossref_primary_10_1063_5_0155998
crossref_primary_10_7498_aps_69_20200715
crossref_primary_10_1103_PhysRevB_102_014401
crossref_primary_10_1021_acs_jpclett_1c01016
crossref_primary_10_1038_s42005_021_00611_6
crossref_primary_10_1103_PhysRevB_104_014408
crossref_primary_10_1002_advs_202100847
crossref_primary_10_1109_TMAG_2023_3286476
crossref_primary_10_1126_science_aav4450
crossref_primary_10_1103_PhysRevB_111_035403
crossref_primary_10_1002_admi_202201675
crossref_primary_10_1038_s41565_019_0525_8
crossref_primary_10_1063_1_5094665
crossref_primary_10_1016_j_jmmm_2017_01_066
crossref_primary_10_1103_PhysRevB_109_094424
crossref_primary_10_1002_adma_201900776
crossref_primary_10_1063_5_0132895
crossref_primary_10_1063_5_0153312
crossref_primary_10_1186_s11671_020_03458_y
crossref_primary_10_1021_acsami_9b21747
crossref_primary_10_1063_5_0190257
crossref_primary_10_1002_pssr_202100342
crossref_primary_10_1016_j_physe_2023_115734
crossref_primary_10_1002_pssb_202100124
crossref_primary_10_1016_j_jmmm_2020_167206
crossref_primary_10_1063_5_0024019
crossref_primary_10_1038_s41467_018_04018_w
crossref_primary_10_1038_s41928_023_01080_1
crossref_primary_10_1103_PhysRevMaterials_4_104007
crossref_primary_10_1088_2053_1583_ab2c44
crossref_primary_10_1021_acs_nanolett_9b01611
crossref_primary_10_1038_s41598_023_36478_6
crossref_primary_10_1088_1361_6463_aa86d2
crossref_primary_10_1103_PhysRevB_101_224438
crossref_primary_10_1103_PhysRevResearch_3_023089
crossref_primary_10_1039_D3NR04977A
crossref_primary_10_1016_j_mattod_2023_11_008
crossref_primary_10_1103_PhysRevApplied_20_024032
crossref_primary_10_1103_PhysRevMaterials_7_024418
crossref_primary_10_7498_aps_70_20210004
crossref_primary_10_1063_5_0107903
crossref_primary_10_1021_acsnano_7b02253
crossref_primary_10_1103_PhysRevB_100_184402
crossref_primary_10_1103_PhysRevMaterials_4_084007
crossref_primary_10_1007_s12648_021_02258_z
crossref_primary_10_1063_1_5004442
crossref_primary_10_1063_5_0013363
crossref_primary_10_1002_adfm_202112754
crossref_primary_10_1063_5_0033752
Cites_doi 10.1038/nphys2576
10.1038/nphys1362
10.1021/nn405719x
10.1038/nnano.2012.96
10.1038/nmat3305
10.1038/nnano.2014.15
10.1038/nmat3973
10.1103/PhysRevLett.116.126601
10.1103/PhysRevLett.109.066803
10.1126/science.aab4097
10.1038/nnano.2014.94
10.1103/PhysRevB.86.165108
10.1038/nmat4360
10.1038/nmat3823
10.1038/nphys3933
10.1103/PhysRevB.89.104421
10.1038/nmat3522
10.1103/PhysRevLett.114.257202
10.1063/1.4941712
10.1038/nature10309
10.1038/ncomms2709
10.1103/PhysRevB.90.224427
10.1063/1.4921765
10.1126/science.1218197
10.1038/nature13534
10.1038/nmat3675
10.1103/PhysRevB.91.125420
10.1038/ncomms5748
10.1103/PhysRevLett.106.036601
10.1038/ncomms3944
10.1126/science.aac9439
10.1103/PhysRevLett.108.196802
10.1088/0022-3727/46/7/074003
10.1103/PhysRevB.87.174411
10.1038/nnano.2015.294
10.1063/1.4943076
10.1038/nphys2942
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
CorporateAuthor Univ. of California, Riverside, CA (United States)
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
CorporateAuthor_xml – name: Univ. of California, Riverside, CA (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/acs.nanolett.6b03300
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1530-6992
EndPage 7520
ExternalDocumentID 1534768
27960524
10_1021_acs_nanolett_6b03300
b13352545
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a441t-2436deef028f6b88b13ec6ea19f2b830a2bb0e9d32c7e6da289395b0df9cd7733
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu May 18 22:27:14 EDT 2023
Fri Jul 11 00:35:20 EDT 2025
Sat Sep 28 08:48:10 EDT 2024
Tue Jul 01 03:13:52 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
Thu Aug 27 13:42:42 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords spintronics
charge−spin conversion
two-dimensional materials
Spin−orbit torque
transition metal dichalcogenides
Rashba-Edelstein effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a441t-2436deef028f6b88b13ec6ea19f2b830a2bb0e9d32c7e6da289395b0df9cd7733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0012670
USDOE Office of Science (SC)
ORCID 0000-0002-7439-6920
0000-0003-2613-3031
PMID 27960524
PQID 1852671706
PQPubID 23479
PageCount 7
ParticipantIDs osti_scitechconnect_1534768
proquest_miscellaneous_1852671706
pubmed_primary_27960524
crossref_primary_10_1021_acs_nanolett_6b03300
crossref_citationtrail_10_1021_acs_nanolett_6b03300
acs_journals_10_1021_acs_nanolett_6b03300
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-14
PublicationDateYYYYMMDD 2016-12-14
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Kalitsov A. (ref31/cit31) 2016
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
Cheng C. (ref34/cit34) 2015
ref2/cit2
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1038/nphys2576
– ident: ref10/cit10
  doi: 10.1038/nphys1362
– ident: ref24/cit24
  doi: 10.1021/nn405719x
– ident: ref33/cit33
  doi: 10.1038/nnano.2012.96
– ident: ref12/cit12
  doi: 10.1038/nmat3305
– ident: ref9/cit9
  doi: 10.1038/nnano.2014.15
– ident: ref15/cit15
  doi: 10.1038/nmat3973
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.116.126601
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.109.066803
– ident: ref25/cit25
  doi: 10.1126/science.aab4097
– ident: ref7/cit7
  doi: 10.1038/nnano.2014.94
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.86.165108
– ident: ref19/cit19
  doi: 10.1038/nmat4360
– ident: ref2/cit2
  doi: 10.1038/nmat3823
– ident: ref38/cit38
  doi: 10.1038/nphys3933
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.89.104421
– ident: ref28/cit28
  doi: 10.1038/nmat3522
– ident: ref17/cit17
  doi: 10.1103/PhysRevLett.114.257202
– ident: ref11/cit11
  doi: 10.1063/1.4941712
– ident: ref3/cit3
  doi: 10.1038/nature10309
– ident: ref26/cit26
  doi: 10.1038/ncomms2709
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.90.224427
– ident: ref36/cit36
  doi: 10.1063/1.4921765
– ident: ref6/cit6
  doi: 10.1126/science.1218197
– ident: ref16/cit16
  doi: 10.1038/nature13534
– ident: ref5/cit5
  doi: 10.1038/nmat3675
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.91.125420
– ident: ref14/cit14
  doi: 10.1038/ncomms5748
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.106.036601
– ident: ref29/cit29
  doi: 10.1038/ncomms3944
– year: 2016
  ident: ref31/cit31
  publication-title: arXiv:1604.07885 [cond-mat.mes-hall]
– year: 2015
  ident: ref34/cit34
  publication-title: arXiv:1510.03451 [cond-mat.mes-hall]
– ident: ref37/cit37
  doi: 10.1126/science.aac9439
– ident: ref21/cit21
  doi: 10.1103/PhysRevLett.108.196802
– ident: ref1/cit1
  doi: 10.1088/0022-3727/46/7/074003
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.87.174411
– ident: ref39/cit39
  doi: 10.1038/nnano.2015.294
– ident: ref23/cit23
  doi: 10.1063/1.4943076
– ident: ref20/cit20
  doi: 10.1038/nphys2942
SSID ssj0009350
Score 2.634484
Snippet The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7514
SubjectTerms Chemistry
Materials Science
Physics
Science & Technology - Other Topics
Title Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers
URI http://dx.doi.org/10.1021/acs.nanolett.6b03300
https://www.ncbi.nlm.nih.gov/pubmed/27960524
https://www.proquest.com/docview/1852671706
https://www.osti.gov/biblio/1534768
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQcmkPPNoCSwEZiUsP3ia248RHKF1VSG0ltpV6i_yYlBUlqZLsBQmJ_8A_5JcwzqPloapUyimKncxkJvN98XiGkDeRk8CzxLBE-YRJ6WKmMbAzYzA4ZcLgEfYOHx6pg1P54Sw5uyaKf6_g83jXuGZWmrJCMdqZshEScKTo97lCPw5QaG9xXWRXdB1Z0YmREulMjlvlbpglBCTX_BGQJhU61s1gsws684fkeNy60-eafJ6tWjtzX_-t5Pif8jwiDwb8Sd_2BvOY3INyg6z_VpVwk3xbhN_j5_SjaT5Zw_Y9hs_QE5P2lY5Z6PbhwNPF5bL8-f3HcW2XLT2p6iAKxcvwM4F8GaE87QJhlxNGDwFRPn0fkvQvXIVWu_SwO4e6rr6Y8xJa-m7ZjWm2yOl8_2TvgA1dGphBKNUyLoXyAAUClULZLLOxAKfAxLrgNhOR4dZGoL3gLgXlDTI8oRMb-UI7n6ZCPCGTsirhGaFGKR00glMWUjttY44xPJUGIJFO-SnZQe3lg5c1ebeAzuM8nBxVmg8qnRIxvtbcDeXOQ9eNi1tGsatRl325j1uu3w4WkyNcCTV3XUhOcm2OFiiRx03J69GQcvTasBRjSqhW-ORZwlUaShdNydPewq7ux1NklQmXz-8g7TZZQyTXdVSK5QsyaesVvES01NpXnYv8AhCHFHE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq5QAcypsu5WEkLhy8TWzHiY-ldLVAt0jsFvUW-ZWyoiRVkr0gVep_4B_ySxh7ky0gVVWlnKzY8TgzmW_i8TcIvYkMdzRLFEmETQjnJiYSHDtRCpxTxhRc_uzw9FBMjvjH4-R4AyX9WRiYRAMjNWET_5JdIN7xbaUqK5CmHQkdQRwOkfotwCPUK_bu3uySa5eFwqxgyxAZyYz3J-auGMX7JdP845cGFdjX1Zgz-J7xPfR1PeuQcvJ9tGz1yPz8j9DxxmLdR5sdGsW7K_V5gDZc-RDd_Yuj8BE6n_mf5Sf4i2q-aUX2LThTXyETr3iPia_9YZzFs7NF-fvi1-daL1o8r2ovEYbb4KMB0TMAexzcYsgQw1MHmB-_9yn7p6YCHV5YtzN2dV39UCela_G7RejTPEZH4_353oR0NRuIAmDVEsqZsM4VAFsKobNMx8wZ4VQsC6ozFimqdeSkZdSkTlgF8R6TiY5sIY1NU8aeoEFZlW4LYSWE9CsCQxZcGqljCh495cq5hBthh-gtrF7e2VyTh-10Gue-sV_SvFvSIWL9281NR37ua3CcXtOLrHudrcg_rrl_2ytODuDFM_Aan6pk2hwUkUNUN0Sve33KwYb9xowqXbWEmWegxKknMhqipytFWz-PphBjJpQ_u4G0r9DtyXx6kB98OPy0je4Axgu1lmL-HA3aeuleAI5q9ctgNX8A8l0c0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQIiE4QHkv5WEkLhy8TWzHSY6l7ao8WhDbShWXyK-UFSVZJdkLUqX-B_4hv6Qz3uxSkKoKpJys2LGdmcw3mfE3hLyKrPQ8SzRLlEuYlDZmORh2pjUYp0xouPDs8N6-2j2U746SowulvmASLYzUhiA-avXMlT3DQLyB7ZWualhRN1ImAl8cvPXrGLlD4d7cmvzm2xWhOCvoM3hHeSaXp-YuGQVtk23_sE2DGnTsctwZ7M_4DvmymnlIO_k2mndmZH_8Rer4X0tbI7d7VEo3F2J0l1zz1T1y6wJX4X1yOsGf5sf0s26_Gs12HBhVrJRJF_zHDGuAWO_oZDatfp39_NiYaUcP6gZXReE2-HiAFw0AnwbzGDLF6J4H7E-3MXX_xNYgy1PnN8a-aerv-rjyHX0zDX3aB-RwvHOwtcv62g1MA8DqGJdCOe9LgC-lMllmYuGt8jrOS24yEWluTORzJ7hNvXIa_D6RJyZyZW5dmgrxkAyquvKPCdVK5bgjMGQpc5ubmINlT6X2PpFWuSF5DbtX9LrXFiGszuMCG5dbWvRbOiRi-YYL25OgYy2Okyt6sVWv2YIE5Ir711F4CgAxyMRrMWXJdgUIowTvbkheLmWqAF3GAI2ufD2HmWcJVykSGg3Jo4WwrZ7HU_A1Ey6f_MNqX5Abn7bHxYe3--_XyU2AeqHkUiyfkkHXzP0zgFOdeR4U5xzrxB9V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Rashba-Edelstein+Effect-Induced+Spin-Orbit+Torques+in+Monolayer+Transition+Metal+Dichalcogenide%2FFerromagnet+Bilayers&rft.jtitle=Nano+letters&rft.au=Shao%2C+Qiming&rft.au=Yu%2C+Guoqiang&rft.au=Lan%2C+Yann-Wen&rft.au=Shi%2C+Yumeng&rft.date=2016-12-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=16&rft.issue=12&rft.spage=7514&rft_id=info:doi/10.1021%2Facs.nanolett.6b03300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon