Antarctic calving loss rivals ice-shelf thinning
Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet 1 – 3 . Until now, data limitations have made it difficult to mon...
Saved in:
Published in | Nature (London) Vol. 609; no. 7929; pp. 948 - 953 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.09.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-022-05037-w |
Cover
Loading…
Abstract | Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet
1
–
3
. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica’s recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.
Data from multiple satellite sensors show that Antarctica lost almost 37,000 km
2
of ice-shelf area from 1997 to 2021, and that calving losses are as important as ice-shelf thinning. |
---|---|
AbstractList | Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future. Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet 1 – 3 . Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica’s recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future. Data from multiple satellite sensors show that Antarctica lost almost 37,000 km 2 of ice-shelf area from 1997 to 2021, and that calving losses are as important as ice-shelf thinning. Antarctica's ice shelves help to control the flow ofglacial ice as it drains into the ocean, meaning that the rate ofglobal sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact ofrecent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts ofAntarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future. |
Author | Fraser, Alexander D. Schlegel, Nicole-Jeanne Greene, Chad A. Gardner, Alex S. |
Author_xml | – sequence: 1 givenname: Chad A. orcidid: 0000-0001-6710-6297 surname: Greene fullname: Greene, Chad A. email: chad@chadagreene.com organization: Jet Propulsion Laboratory, California Institute of Technology – sequence: 2 givenname: Alex S. orcidid: 0000-0002-8394-8889 surname: Gardner fullname: Gardner, Alex S. organization: Jet Propulsion Laboratory, California Institute of Technology – sequence: 3 givenname: Nicole-Jeanne orcidid: 0000-0001-8035-448X surname: Schlegel fullname: Schlegel, Nicole-Jeanne organization: Jet Propulsion Laboratory, California Institute of Technology – sequence: 4 givenname: Alexander D. orcidid: 0000-0003-1924-0015 surname: Fraser fullname: Fraser, Alexander D. organization: Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania |
BookMark | eNp9kMtOAjEUhhuDiYC-gKtJ3Lipnl6m7SwJ8ZaQuNF1UzoFSoYOtgPEt7c4JiYsWJ3F-b9z-UZoENrgELol8ECAqcfESakEBkoxlMAkPlygIeFSYC6UHKAhAFUYFBNXaJTSGgBKIvkQwSR0JtrO28KaZu_DsmjalIro96ZJhbcOp5VrFkW38iHk9jW6XOSOu_mrY_T5_PQxfcWz95e36WSGDeekw5TJqqJUUKfqeT0XRDG3qOlclbzmghMoLSWkFFQQpkohWV1RYSvOayGBV4aN0X0_dxvbr51Lnd74ZF3TmODaXdJUAgHJZP52jO5Oout2F0O-LqcoZAsgjynap2zMD0a30NvoNyZ-awL6KFH3EnWWqH8l6kOG1AlkfWc634YuGt-cR1mPprwnLF38v-oM9QOVeIXl |
CitedBy_id | crossref_primary_10_1038_s43247_024_01255_4 crossref_primary_10_5194_jm_43_269_2024 crossref_primary_10_1016_j_epsl_2023_118444 crossref_primary_10_1016_j_polar_2024_101124 crossref_primary_10_1038_s41586_023_06863_2 crossref_primary_10_1016_j_jag_2024_104017 crossref_primary_10_1126_sciadv_adi0186 crossref_primary_10_5194_tc_19_541_2025 crossref_primary_10_1525_elementa_2024_00036 crossref_primary_10_3390_rs15143540 crossref_primary_10_1038_s43017_024_00583_5 crossref_primary_10_5194_tc_17_3409_2023 crossref_primary_10_3389_frym_2024_1063214 crossref_primary_10_1126_sciadv_ado6429 crossref_primary_10_1080_17538947_2023_2246436 crossref_primary_10_1029_2023AV001023 crossref_primary_10_5194_tc_18_791_2024 crossref_primary_10_5194_os_20_1585_2024 crossref_primary_10_1038_s41467_023_42970_4 crossref_primary_10_5194_tc_18_5117_2024 crossref_primary_10_1016_j_marchem_2025_104509 crossref_primary_10_1126_sciadv_add7049 crossref_primary_10_1016_j_epsl_2024_118958 crossref_primary_10_1038_s41467_025_57417_1 crossref_primary_10_1038_s41467_025_55948_1 crossref_primary_10_1109_LGRS_2024_3407860 crossref_primary_10_5194_tc_17_3041_2023 crossref_primary_10_5194_tc_17_4571_2023 crossref_primary_10_1017_aog_2023_27 crossref_primary_10_5194_tc_17_4549_2023 crossref_primary_10_1017_aog_2023_26 crossref_primary_10_5194_tc_17_2059_2023 crossref_primary_10_5194_tc_18_4723_2024 crossref_primary_10_1109_MCSE_2023_3341335 crossref_primary_10_1126_sciadv_adi9014 crossref_primary_10_1109_TGRS_2024_3382573 crossref_primary_10_5194_tc_18_5207_2024 crossref_primary_10_1017_jog_2023_71 crossref_primary_10_5194_sp_3_slre1_4_2024 crossref_primary_10_5194_tc_18_43_2024 crossref_primary_10_1007_s10712_024_09866_4 crossref_primary_10_1016_j_scitotenv_2024_173127 crossref_primary_10_1017_jog_2023_102 crossref_primary_10_1126_sciadv_adi7638 crossref_primary_10_1360_SSTe_2023_0160 crossref_primary_10_1016_j_crm_2023_100555 crossref_primary_10_1038_s41467_023_38425_5 crossref_primary_10_5194_tc_19_283_2025 crossref_primary_10_1038_s43017_023_00509_7 crossref_primary_10_5194_tc_17_157_2023 crossref_primary_10_1017_jog_2024_71 crossref_primary_10_1038_s41586_024_07049_0 crossref_primary_10_1146_annurev_marine_040323_074354 crossref_primary_10_5194_essd_17_65_2025 crossref_primary_10_5194_gmd_16_7289_2023 crossref_primary_10_1029_2023GL106178 crossref_primary_10_1038_s43247_023_00961_9 crossref_primary_10_1126_science_adt9619 crossref_primary_10_1029_2022RG000770 crossref_primary_10_5194_tc_19_249_2025 crossref_primary_10_1038_s41467_023_42198_2 crossref_primary_10_1038_s41561_023_01273_5 crossref_primary_10_1016_j_scitotenv_2023_164448 crossref_primary_10_1038_s41597_023_02045_x crossref_primary_10_5194_tc_19_955_2025 crossref_primary_10_1007_s11430_023_1338_8 crossref_primary_10_1080_17538947_2025_2475165 crossref_primary_10_1017_jog_2024_21 |
Cites_doi | 10.5067/8JKNEW6BFRVD 10.5194/tc-14-2331-2020 10.5194/tc-13-2817-2019 10.1029/2004JC002843 10.1029/2020GL091200 10.1029/2002JB002329 10.1029/2019GL084397 10.5067/68TBT0CGJSOJ 10.5194/essd-12-2987-2020 10.5194/tc-12-521-2018 10.1029/2000JC000601 10.1038/s41467-022-27968-8 10.1126/science.abf6271 10.1017/S003224740000807X 10.1029/JB094iB04p04071 10.1038/s41561-020-0616-z 10.5067/SE3XH9RXQWAM 10.5194/tc-7-375-2013 10.1016/j.cageo.2016.08.003 10.3189/172756402781817581 10.5194/tc-15-113-2021 10.1073/pnas.1415137112 10.1038/s41586-021-03302-y 10.5067/H0FQ1KL9NEKM 10.1038/s41586-019-0901-4 10.1029/2011JF002140 10.1016/j.epsl.2008.12.027 10.1029/2019GL084183 10.1038/s41467-021-23070-7 10.3189/2012JoG11J262 10.1002/2013JC009441 10.1038/s41558-018-0305-8 10.1038/nature12567 10.1038/nclimate2912 10.1002/2016JC011835 10.5194/tc-9-2429-2015 10.1126/science.1235798 10.1038/ngeo2563 10.1038/nature17145 10.1017/S002214300001621X 10.3189/002214308786570836 10.3189/2013JoG13J054 10.5067/D7GK8F5J8M8R 10.5067/E1QL9HFQ7A8M 10.5194/tc-14-3033-2020 10.1038/ncomms7642 10.5194/tc-15-2357-2021 10.1073/pnas.1912890117 10.3390/rs11010074 10.5067/6II6VW8LLWJ7 10.5194/essd-13-4583-2021 10.1029/2010GL043853 10.1029/2019GL085027 10.5194/tc-12-3511-2018 10.1126/sciadv.1501350 10.1029/2019GC008392 10.1016/j.dsr2.2010.05.024 10.1080/10889379909377676 10.3189/002214308784886180 10.1017/jog.2020.20 10.1126/sciadv.abg3080 10.1029/2012GL053317 10.5067/AXE4121732AD 10.14358/PERS.70.5.605 10.1029/2005JF000394 10.1002/2014JF003223 10.1038/s41558-017-0020-x 10.1098/rstb.2006.1958 10.5194/tc-12-2869-2018 10.5194/tc-13-665-2019 10.1017/jog.2020.67 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Nature Publishing Group Sep 29, 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Nature Publishing Group Sep 29, 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-022-05037-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest eLibrary (NC LIVE) ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (subscription) Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 953 |
ExternalDocumentID | 10_1038_s41586_022_05037_w |
GeographicLocations | Antarctica |
GeographicLocations_xml | – name: Antarctica |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-a441t-237992262e8dbdb6183efd2b854d464105c21156261385673d926c944d67049a3 |
IEDL.DBID | 8C1 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 03:06:21 EDT 2025 Fri Jul 25 09:00:14 EDT 2025 Tue Jul 01 02:32:40 EDT 2025 Thu Apr 24 22:50:30 EDT 2025 Fri Feb 21 02:39:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7929 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a441t-237992262e8dbdb6183efd2b854d464105c21156261385673d926c944d67049a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1924-0015 0000-0001-8035-448X 0000-0001-6710-6297 0000-0002-8394-8889 |
PQID | 2720476070 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2701073750 proquest_journals_2720476070 crossref_primary_10_1038_s41586_022_05037_w crossref_citationtrail_10_1038_s41586_022_05037_w springer_journals_10_1038_s41586_022_05037_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-29 |
PublicationDateYYYYMMDD | 2022-09-29 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mouginot, J., Scheuchl, B. & Rignot, E. MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017; https://doi.org/10.5067/AXE4121732AD GoldbergDNHeimbachPJoughinISmithBCommitted retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibrationCryosphere201592429244610.5194/tc-9-2429-20152015TCry....9.2429G RobelAABanwellAFA speed limit on ice shelf collapse through hydrofractureGeophys. Res. Lett.201946120921210010.1029/2019GL0843972019GeoRL..4612092R Fricker, H. A., Young, N. W., Allison, I. & Coleman, R. Iceberg calving from the Amery ice shelf, East Antarctica. Ann. Glaciol.34, 241–246 (2002). Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans111, C03004 (2006). GudmundssonGHPaoloFSAdusumilliSFrickerHAInstantaneous Antarctic ice sheet mass loss driven by thinning ice shelvesGeophys. Res. Lett.201946139031390910.1029/2019GL0850272019GeoRL..4613903G Liu, H., Jezek, K. C., Li, B. & Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2015); https://doi.org/10.5067/8JKNEW6BFRVD Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil. Trans. R. Soc. B362, 149–166 (2007). Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci.104, 151–157 (2017). MacAyealDRTabular iceberg collisions within the coastal regimeJ. Glaciol.20085437138610.3189/0022143087848861802008JGlac..54..371M SeroussiHISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centuryCryosphere2020143033307010.5194/tc-14-3033-20202020TCry...14.3033S Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017); https://doi.org/10.5067/D7GK8F5J8M8R ScambosTAIce shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-upsEarth Planet. Sci. Lett.200928051601:CAS:528:DC%2BD1MXjslOnsrg%3D10.1016/j.epsl.2008.12.0272009E&PSL.280...51S Massom, R. A. et al. External influences on the Mertz Glacier Tongue East Antarctica in the decade leading up to its calving in 2010. J. Geophys. Res. Earth Surf.120, 490–506 (2015). Walker, C. C. et al. Iceberg, right ahead!: The surprising and ongoing collapse of an East Antarctic ice shelf in response to changes in the ocean environment. In AGU Fall Meeting Abstracts abstr. C13A-06 (AGU, 2019). De RydtJReeseRPaoloFSGudmundssonGHDrivers of Pine Island Glacier speed-up between 1996 and 2016Cryosphere20211511313210.5194/tc-15-113-20212021TCry...15..113D FürstJJThe safety band of Antarctic ice shelvesNat. Clim. Change2016647948210.1038/nclimate29122016NatCC...6..479F TruselLDDivergent trajectories of Antarctic surface melt under two twenty-first-century climate scenariosNat. Geosci.201589279321:CAS:528:DC%2BC2MXhs1KksrzE10.1038/ngeo25632015NatGe...8..927T LiuYOcean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelvesProc. Natl Acad. Sci. USA2015112326332681:CAS:528:DC%2BC2MXjs1Gru7k%3D25733856437194910.1073/pnas.14151371122015PNAS..112.3263L Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst.20, 3774–3781 (2019). Liu, H. & Jezek, K. A complete high-resolution coastline of Antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sensing70, 605–616 (2004). HowatIMPorterCSmithBENohMJMorinPThe reference elevation model of AntarcticaCryosphere20191366567410.5194/tc-13-665-20192019TCry...13..665H Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,Ch.9 (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021). BassisJNBergBCrawfordAJBennDITransition to marine ice cliff instability controlled by ice thickness gradients and velocityScience2021372134213441:CAS:528:DC%2BB3MXhtlKrs77M3414038710.1126/science.abf62712021Sci...372.1342B BlatterHVelocity and stress-fields in grounded glaciers: a simple algorithm for including deviatoric stress gradientsJ. Glaciol.19954133334410.1017/S002214300001621X1995JGlac..41..333B CrawfordAJMarine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterizationNat. Commun.20211227011:CAS:528:DC%2BB3MXhtFWgtLrP33976208811332810.1038/s41467-021-23070-72021NatCo..12.2701C AdusumilliSFrickerHAMedleyBPadmanLSiegfried.MRInterannual variations in meltwater input to the Southern Ocean from Antarctic ice shelvesNat. Geosci.2020136166201:CAS:528:DC%2BB3cXhsFOlsrbL32952606750048210.1038/s41561-020-0616-z2020NatGe..13..616A GrosfeldKSchröderMFahrbachEGerdesRMackensenAHow iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf–Ocean SystemJ. Geophys. Res. Oceans20011069039905510.1029/2000JC0006012001JGR...106.9039G WalkerCCBeckerMKFrickerHAA high resolution, three‐dimensional view of the D‐28 calving event from Amery Ice Shelf with ICESat‐2 and satellite imageryGeophys. Res. Lett.2021483e2020GL0912002021GeoRL..4891200W Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H. & Kuenzer, C. Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere15, 2357–2381 (2021). Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol.66, 891–904 (2020). MilesBWJIntermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018J. Glaciol.20206648549510.1017/jog.2020.202020JGlac..66..485M Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020); https://doi.org/10.5067/E1QL9HFQ7A8M SchlegelN-JExploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM frameworkCryosphere2018123511353410.5194/tc-12-3511-20182018TCry...12.3511S Fraser, A. D. et al. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data12, 2987–2999 (2020). Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R. & Van der Veen, C. J. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr.23, 201–212 (1999). GreeneCAYoungDAGwytherDEGalton-FenziBKBlankenshipDDSeasonal dynamics of Totten Ice Shelf controlled by sea ice buttressingCryosphere2018122869288210.5194/tc-12-2869-20182018TCry...12.2869G MacAyealDRLarge-scale ice flow over a viscous basal sediment. Theory and application to Ice Stream B, AntarcticaJ. Geophys. Res.1989944071408710.1029/JB094iB04p040711989JGR....94.4071M PattynFThe Greenland and Antarctic ice sheets under 1.5 °C global warmingNat. Clim. Change201881053106110.1038/s41558-018-0305-82018NatCC...8.1053P Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science341, 266–270 (2013). LilienDAJoughinISmithBGourmelenNMelt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciersCryosphere2019132817283410.5194/tc-13-2817-20192019TCry...13.2817L Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of Antarctica Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/68TBT0CGJSOJ Paolo, F., Gardner, A. S., Greene, C. A. & Schlegel, N. J. MEaSUREs ITS_LIVE Antarctic Ice Shelf Height Change and Basal Melt Rates, Version 1 (2022); NASA https://doi.org/10.5067/SE3XH9RXQWAM Scambos, T. et al. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol.54, 579–591 (2008). ClercFMinchewBMBehnMDMarine ice cliff instability mitigated by slow removal of ice shelvesGeophys. Res. Lett.201946.21121081211610.1029/2019GL084183 Ferrigno, J. G. & Gould, W. G. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec.23, 577–583 (1987). GuttJBiodiversity change after climate-induced ice-shelf collapse in the AntarcticDeep Sea Res. II201158748310.1016/j.dsr2.2010.05.0242011DSR....58...74G SternAAAdcroftASergienkoOThe effects of Antarctic iceberg calving‐size distribution in a global climate modelJ. Geophys. Res. Oceans20161215773578810.1002/2016JC0118352016JGRC..121.5773S DepoorterMACalving fluxes and basal melt rates of Antarctic ice shelvesNature201350289921:CAS:528:DC%2BC3sXhsVeqsbvI2403737710.1038/nature125672013Natur.502...89D MacGregorJACataniaGAMarkowskiMSAndrews.AGWidespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011J. Glaciol.20125845846610.3189/2012JoG11J2622012JGlac..58..458M DeContoRMPollardDContribution of Antarctica to past and future sea-level riseNature20165315915971:CAS:528:DC%2BC28XltlSqu7c%3D2702927410.1038/nature171452016Natur.531..591D BorstadCPA damage mechanics assessment of the Larsen B ice shelf prior to collapse: toward a physically-based calving lawGeophys. Res. Lett.201239L1850210.1029/2012GL0533172012GeoRL..3918502B Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf.117, F01022 (2012). Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere7, 375–393 (2013). Pattyn, F., Huyghe, A., De Brabander, S. & De Smedt, B. Role of transition zones in marine ice sheet dynamics. J. Geophys. Res. Earth Surf.111, eabg3080 (2006). CampagnePGlacial ice and atmospheric forcing on the 5037_CR29 5037_CR27 5037_CR28 5037_CR25 LD Trusel (5037_CR6) 2015; 8 CP Borstad (5037_CR4) 2012; 39 5037_CR24 5037_CR68 H Seroussi (5037_CR9) 2020; 14 JA MacGregor (5037_CR63) 2012; 58 J Gutt (5037_CR22) 2011; 58 H Blatter (5037_CR69) 1995; 41 R Reese (5037_CR2) 2018; 8 CC Walker (5037_CR50) 2021; 483 JN Bassis (5037_CR12) 2021; 372 5037_CR66 MA Depoorter (5037_CR32) 2013; 502 BWJ Miles (5037_CR64) 2020; 66 K Grosfeld (5037_CR18) 2001; 106 5037_CR61 5037_CR62 CA Greene (5037_CR26) 2018; 12 5037_CR60 5037_CR1 5037_CR19 AA Robel (5037_CR43) 2019; 46 5037_CR17 5037_CR58 5037_CR59 5037_CR56 5037_CR57 S Adusumilli (5037_CR23) 2020; 13 AJ Crawford (5037_CR13) 2021; 12 JJ Fürst (5037_CR3) 2016; 6 Y Liu (5037_CR33) 2015; 112 DR MacAyeal (5037_CR30) 2008; 54 5037_CR55 5037_CR52 5037_CR53 5037_CR51 MR Cape (5037_CR15) 2014; 119 5037_CR49 TL Edwards (5037_CR11) 2019; 566 5037_CR48 F Pattyn (5037_CR70) 2003; 108 5037_CR46 RM DeConto (5037_CR10) 2016; 531 IM Howat (5037_CR54) 2019; 13 AA Stern (5037_CR20) 2016; 121 N-J Schlegel (5037_CR42) 2018; 12 J De Rydt (5037_CR40) 2021; 15 GH Gudmundsson (5037_CR38) 2019; 46 5037_CR41 F Pattyn (5037_CR8) 2018; 8 TA Scambos (5037_CR5) 2009; 280 DN Goldberg (5037_CR44) 2015; 9 M Qi (5037_CR34) 2021; 13 5037_CR39 5037_CR36 5037_CR37 5037_CR35 DA Lilien (5037_CR45) 2019; 13 S Nowicki (5037_CR7) 2020; 14 S Lhermitte (5037_CR65) 2020; 117 ME Morlighem (5037_CR67) 2010; 37 P Campagne (5037_CR16) 2015; 6 DR MacAyeal (5037_CR71) 1989; 94 F Clerc (5037_CR14) 2019; 46.21 TL Edwards (5037_CR47) 2021; 593 S-T Yoon (5037_CR21) 2022; 13 5037_CR74 5037_CR31 5037_CR72 5037_CR73 |
References_xml | – reference: Ferrigno, J. G. & Gould, W. G. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec.23, 577–583 (1987). – reference: Walker, C. C. et al. Iceberg, right ahead!: The surprising and ongoing collapse of an East Antarctic ice shelf in response to changes in the ocean environment. In AGU Fall Meeting Abstracts abstr. C13A-06 (AGU, 2019). – reference: ScambosTAIce shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-upsEarth Planet. Sci. Lett.200928051601:CAS:528:DC%2BD1MXjslOnsrg%3D10.1016/j.epsl.2008.12.0272009E&PSL.280...51S – reference: NowickiSExperimental protocol for sea level projections from ISMIP6 stand-alone ice sheet modelsCryosphere2020142331236810.5194/tc-14-2331-20202020TCry...14.2331N – reference: MilesBWJIntermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018J. Glaciol.20206648549510.1017/jog.2020.202020JGlac..66..485M – reference: BlatterHVelocity and stress-fields in grounded glaciers: a simple algorithm for including deviatoric stress gradientsJ. Glaciol.19954133334410.1017/S002214300001621X1995JGlac..41..333B – reference: Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016). – reference: GreeneCAYoungDAGwytherDEGalton-FenziBKBlankenshipDDSeasonal dynamics of Totten Ice Shelf controlled by sea ice buttressingCryosphere2018122869288210.5194/tc-12-2869-20182018TCry...12.2869G – reference: Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017); https://doi.org/10.5067/D7GK8F5J8M8R – reference: Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv.7, eabg3080 (2021). – reference: Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of Antarctica Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/68TBT0CGJSOJ – reference: Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R. & Van der Veen, C. J. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr.23, 201–212 (1999). – reference: QiMA 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observationsEarth Syst. Sci. Data2021134583460110.5194/essd-13-4583-20212021ESSD...13.4583Q – reference: Paolo, F., Gardner, A. S., Greene, C. A. & Schlegel, N. J. MEaSUREs ITS_LIVE Antarctic Ice Shelf Height Change and Basal Melt Rates, Version 1 (2022); NASA https://doi.org/10.5067/SE3XH9RXQWAM – reference: PattynFA new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakesJ. Geophys. Res.2003108238210.1029/2002JB0023292003JGRB..108.2382P – reference: Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science341, 266–270 (2013). – reference: HowatIMPorterCSmithBENohMJMorinPThe reference elevation model of AntarcticaCryosphere20191366567410.5194/tc-13-665-20192019TCry...13..665H – reference: Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol.66, 891–904 (2020). – reference: CapeMRVernetMKahruMSpreenGPolynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapseJ. Geophys. Res. Oceans201411957259410.1002/2013JC0094412014JGRC..119..572C – reference: SternAAAdcroftASergienkoOThe effects of Antarctic iceberg calving‐size distribution in a global climate modelJ. Geophys. Res. Oceans20161215773578810.1002/2016JC0118352016JGRC..121.5773S – reference: Mohajerani, Y., Wood, M., Velicogna, I. & Rignot, E. Detection of glacier calving margins with convolutional neural networks: a case study. Remote Sensing2019, 74 (2019). – reference: Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans111, C03004 (2006). – reference: BorstadCPA damage mechanics assessment of the Larsen B ice shelf prior to collapse: toward a physically-based calving lawGeophys. Res. Lett.201239L1850210.1029/2012GL0533172012GeoRL..3918502B – reference: Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere7, 375–393 (2013). – reference: Fricker, H. A., Young, N. W., Allison, I. & Coleman, R. Iceberg calving from the Amery ice shelf, East Antarctica. Ann. Glaciol.34, 241–246 (2002). – reference: Seroussi, H. et al. Dependence of Greenland Ice Sheet projections on its thermal regime. J. Glaciol.59, 1024–1034 (2013). – reference: SchlegelN-JExploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM frameworkCryosphere2018123511353410.5194/tc-12-3511-20182018TCry...12.3511S – reference: De RydtJReeseRPaoloFSGudmundssonGHDrivers of Pine Island Glacier speed-up between 1996 and 2016Cryosphere20211511313210.5194/tc-15-113-20212021TCry...15..113D – reference: EdwardsTLRevisiting Antarctic ice loss due to marine ice-cliff instabilityNature201956658641:CAS:528:DC%2BC1MXnt1Gjtrk%3D3072852210.1038/s41586-019-0901-42019Natur.566...58E – reference: Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf.117, F01022 (2012). – reference: GudmundssonGHPaoloFSAdusumilliSFrickerHAInstantaneous Antarctic ice sheet mass loss driven by thinning ice shelvesGeophys. Res. Lett.201946139031390910.1029/2019GL0850272019GeoRL..4613903G – reference: GoldbergDNHeimbachPJoughinISmithBCommitted retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibrationCryosphere201592429244610.5194/tc-9-2429-20152015TCry....9.2429G – reference: CampagnePGlacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 yearsNat. Commun.201561:STN:280:DC%2BC2MnnsF2qsA%3D%3D2580377910.1038/ncomms76422015NatCo...6.6642C – reference: Bamber, J., Gomez-Dans, J. L. & Griggs, J. A. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2009); https://doi.org/10.5067/H0FQ1KL9NEKM – reference: Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020); https://doi.org/10.5067/E1QL9HFQ7A8M – reference: PattynFThe Greenland and Antarctic ice sheets under 1.5 °C global warmingNat. Clim. Change201881053106110.1038/s41558-018-0305-82018NatCC...8.1053P – reference: Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,Ch.9 (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021). – reference: EdwardsTLProjected land ice contributions to twenty-first-century sea level riseNature202159374821:CAS:528:DC%2BB3MXhtVCrsbfP3395341510.1038/s41586-021-03302-y2021Natur.593...74E – reference: Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci.104, 151–157 (2017). – reference: Liu, H. & Jezek, K. A complete high-resolution coastline of Antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sensing70, 605–616 (2004). – reference: GrosfeldKSchröderMFahrbachEGerdesRMackensenAHow iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf–Ocean SystemJ. Geophys. Res. Oceans20011069039905510.1029/2000JC0006012001JGR...106.9039G – reference: RobelAABanwellAFA speed limit on ice shelf collapse through hydrofractureGeophys. Res. Lett.201946120921210010.1029/2019GL0843972019GeoRL..4612092R – reference: LiuYOcean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelvesProc. Natl Acad. Sci. USA2015112326332681:CAS:528:DC%2BC2MXjs1Gru7k%3D25733856437194910.1073/pnas.14151371122015PNAS..112.3263L – reference: Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H. & Kuenzer, C. Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere15, 2357–2381 (2021). – reference: DepoorterMACalving fluxes and basal melt rates of Antarctic ice shelvesNature201350289921:CAS:528:DC%2BC3sXhsVeqsbvI2403737710.1038/nature125672013Natur.502...89D – reference: Gardner, A. S., Fahnestock, M. A. & Scambos, T. A. ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities (National Snow and Ice Data Center, 2019); https://doi.org/10.5067/6II6VW8LLWJ7 – reference: MacGregorJACataniaGAMarkowskiMSAndrews.AGWidespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011J. Glaciol.20125845846610.3189/2012JoG11J2622012JGlac..58..458M – reference: Fraser, A. D. et al. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data12, 2987–2999 (2020). – reference: YoonS-TIce front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelfNat. Commun.2022131:CAS:528:DC%2BB38Xht1Oitb4%3D35027549875866110.1038/s41467-022-27968-82022NatCo..13..306Y – reference: AdusumilliSFrickerHAMedleyBPadmanLSiegfried.MRInterannual variations in meltwater input to the Southern Ocean from Antarctic ice shelvesNat. Geosci.2020136166201:CAS:528:DC%2BB3cXhsFOlsrbL32952606750048210.1038/s41561-020-0616-z2020NatGe..13..616A – reference: LilienDAJoughinISmithBGourmelenNMelt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciersCryosphere2019132817283410.5194/tc-13-2817-20192019TCry...13.2817L – reference: SeroussiHISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centuryCryosphere2020143033307010.5194/tc-14-3033-20202020TCry...14.3033S – reference: FürstJJThe safety band of Antarctic ice shelvesNat. Clim. Change2016647948210.1038/nclimate29122016NatCC...6..479F – reference: TruselLDDivergent trajectories of Antarctic surface melt under two twenty-first-century climate scenariosNat. Geosci.201589279321:CAS:528:DC%2BC2MXhs1KksrzE10.1038/ngeo25632015NatGe...8..927T – reference: WalkerCCBeckerMKFrickerHAA high resolution, three‐dimensional view of the D‐28 calving event from Amery Ice Shelf with ICESat‐2 and satellite imageryGeophys. Res. Lett.2021483e2020GL0912002021GeoRL..4891200W – reference: ClercFMinchewBMBehnMDMarine ice cliff instability mitigated by slow removal of ice shelvesGeophys. Res. Lett.201946.21121081211610.1029/2019GL084183 – reference: Mouginot, J., Scheuchl, B. & Rignot, E. MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017; https://doi.org/10.5067/AXE4121732AD – reference: LhermitteSDamage accelerates ice shelf instability and mass loss in Amundsen Sea EmbaymentProc. Natl Acad. Sci. USA202011724735247411:CAS:528:DC%2BB3cXitVSrtrrL32929004754721910.1073/pnas.19128901172020PNAS..11724735L – reference: MacAyealDRTabular iceberg collisions within the coastal regimeJ. Glaciol.20085437138610.3189/0022143087848861802008JGlac..54..371M – reference: MacAyealDRLarge-scale ice flow over a viscous basal sediment. Theory and application to Ice Stream B, AntarcticaJ. Geophys. Res.1989944071408710.1029/JB094iB04p040711989JGR....94.4071M – reference: DeContoRMPollardDContribution of Antarctica to past and future sea-level riseNature20165315915971:CAS:528:DC%2BC28XltlSqu7c%3D2702927410.1038/nature171452016Natur.531..591D – reference: Pattyn, F., Huyghe, A., De Brabander, S. & De Smedt, B. Role of transition zones in marine ice sheet dynamics. J. Geophys. Res. Earth Surf.111, eabg3080 (2006). – reference: Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil. Trans. R. Soc. B362, 149–166 (2007). – reference: Scambos, T. et al. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol.54, 579–591 (2008). – reference: BassisJNBergBCrawfordAJBennDITransition to marine ice cliff instability controlled by ice thickness gradients and velocityScience2021372134213441:CAS:528:DC%2BB3MXhtlKrs77M3414038710.1126/science.abf62712021Sci...372.1342B – reference: ReeseRGudmundssonGHLevermannAWinkelmannRThe far reach of ice-shelf thinning in AntarcticaNat. Clim. Change20188535710.1038/s41558-017-0020-x2018NatCC...8...53R – reference: Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere12, 521–547 (2018). – reference: Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements 2nd edn (University Science Books, 1997). – reference: Liu, H., Jezek, K. C., Li, B. & Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2015); https://doi.org/10.5067/8JKNEW6BFRVD – reference: Massom, R. A. et al. External influences on the Mertz Glacier Tongue East Antarctica in the decade leading up to its calving in 2010. J. Geophys. Res. Earth Surf.120, 490–506 (2015). – reference: MorlighemMESpatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West AntarcticaGeophys. Res. Lett.201037L1450210.1029/2010GL0438532010GeoRL..3714502M – reference: GuttJBiodiversity change after climate-induced ice-shelf collapse in the AntarcticDeep Sea Res. II201158748310.1016/j.dsr2.2010.05.0242011DSR....58...74G – reference: Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst.20, 3774–3781 (2019). – reference: CrawfordAJMarine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterizationNat. Commun.20211227011:CAS:528:DC%2BB3MXhtFWgtLrP33976208811332810.1038/s41467-021-23070-72021NatCo..12.2701C – ident: 5037_CR1 – ident: 5037_CR57 doi: 10.5067/8JKNEW6BFRVD – volume: 14 start-page: 2331 year: 2020 ident: 5037_CR7 publication-title: Cryosphere doi: 10.5194/tc-14-2331-2020 – volume: 13 start-page: 2817 year: 2019 ident: 5037_CR45 publication-title: Cryosphere doi: 10.5194/tc-13-2817-2019 – ident: 5037_CR19 doi: 10.1029/2004JC002843 – volume: 483 start-page: e2020GL091200 year: 2021 ident: 5037_CR50 publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL091200 – volume: 108 start-page: 2382 year: 2003 ident: 5037_CR70 publication-title: J. Geophys. Res. doi: 10.1029/2002JB002329 – volume: 46 start-page: 12092 year: 2019 ident: 5037_CR43 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL084397 – ident: 5037_CR60 doi: 10.5067/68TBT0CGJSOJ – ident: 5037_CR61 doi: 10.5194/essd-12-2987-2020 – ident: 5037_CR72 doi: 10.5194/tc-12-521-2018 – volume: 106 start-page: 9039 year: 2001 ident: 5037_CR18 publication-title: J. Geophys. Res. Oceans doi: 10.1029/2000JC000601 – volume: 13 year: 2022 ident: 5037_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-022-27968-8 – volume: 372 start-page: 1342 year: 2021 ident: 5037_CR12 publication-title: Science doi: 10.1126/science.abf6271 – ident: 5037_CR35 doi: 10.1017/S003224740000807X – volume: 94 start-page: 4071 year: 1989 ident: 5037_CR71 publication-title: J. Geophys. Res. doi: 10.1029/JB094iB04p04071 – volume: 13 start-page: 616 year: 2020 ident: 5037_CR23 publication-title: Nat. Geosci. doi: 10.1038/s41561-020-0616-z – ident: 5037_CR36 doi: 10.5067/SE3XH9RXQWAM – ident: 5037_CR55 doi: 10.5194/tc-7-375-2013 – ident: 5037_CR73 doi: 10.1016/j.cageo.2016.08.003 – ident: 5037_CR49 doi: 10.3189/172756402781817581 – volume: 15 start-page: 113 year: 2021 ident: 5037_CR40 publication-title: Cryosphere doi: 10.5194/tc-15-113-2021 – volume: 112 start-page: 3263 year: 2015 ident: 5037_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1415137112 – volume: 593 start-page: 74 year: 2021 ident: 5037_CR47 publication-title: Nature doi: 10.1038/s41586-021-03302-y – ident: 5037_CR56 doi: 10.5067/H0FQ1KL9NEKM – volume: 566 start-page: 58 year: 2019 ident: 5037_CR11 publication-title: Nature doi: 10.1038/s41586-019-0901-4 – ident: 5037_CR37 doi: 10.1029/2011JF002140 – volume: 280 start-page: 51 year: 2009 ident: 5037_CR5 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2008.12.027 – volume: 46.21 start-page: 12108 year: 2019 ident: 5037_CR14 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL084183 – volume: 12 start-page: 2701 year: 2021 ident: 5037_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23070-7 – volume: 58 start-page: 458 year: 2012 ident: 5037_CR63 publication-title: J. Glaciol. doi: 10.3189/2012JoG11J262 – volume: 119 start-page: 572 year: 2014 ident: 5037_CR15 publication-title: J. Geophys. Res. Oceans doi: 10.1002/2013JC009441 – volume: 8 start-page: 1053 year: 2018 ident: 5037_CR8 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0305-8 – volume: 502 start-page: 89 year: 2013 ident: 5037_CR32 publication-title: Nature doi: 10.1038/nature12567 – volume: 6 start-page: 479 year: 2016 ident: 5037_CR3 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2912 – volume: 121 start-page: 5773 year: 2016 ident: 5037_CR20 publication-title: J. Geophys. Res. Oceans doi: 10.1002/2016JC011835 – volume: 9 start-page: 2429 year: 2015 ident: 5037_CR44 publication-title: Cryosphere doi: 10.5194/tc-9-2429-2015 – ident: 5037_CR31 doi: 10.1126/science.1235798 – volume: 8 start-page: 927 year: 2015 ident: 5037_CR6 publication-title: Nat. Geosci. doi: 10.1038/ngeo2563 – volume: 531 start-page: 591 year: 2016 ident: 5037_CR10 publication-title: Nature doi: 10.1038/nature17145 – volume: 41 start-page: 333 year: 1995 ident: 5037_CR69 publication-title: J. Glaciol. doi: 10.1017/S002214300001621X – ident: 5037_CR28 doi: 10.3189/002214308786570836 – ident: 5037_CR68 doi: 10.3189/2013JoG13J054 – ident: 5037_CR52 doi: 10.5067/D7GK8F5J8M8R – ident: 5037_CR53 doi: 10.5067/E1QL9HFQ7A8M – volume: 14 start-page: 3033 year: 2020 ident: 5037_CR9 publication-title: Cryosphere doi: 10.5194/tc-14-3033-2020 – volume: 6 year: 2015 ident: 5037_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms7642 – ident: 5037_CR27 doi: 10.5194/tc-15-2357-2021 – volume: 117 start-page: 24735 year: 2020 ident: 5037_CR65 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1912890117 – ident: 5037_CR24 doi: 10.3390/rs11010074 – ident: 5037_CR51 doi: 10.5067/6II6VW8LLWJ7 – volume: 13 start-page: 4583 year: 2021 ident: 5037_CR34 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-4583-2021 – volume: 37 start-page: L14502 year: 2010 ident: 5037_CR67 publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL043853 – volume: 46 start-page: 13903 year: 2019 ident: 5037_CR38 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL085027 – volume: 12 start-page: 3511 year: 2018 ident: 5037_CR42 publication-title: Cryosphere doi: 10.5194/tc-12-3511-2018 – ident: 5037_CR25 doi: 10.1126/sciadv.1501350 – ident: 5037_CR74 doi: 10.1029/2019GC008392 – volume: 58 start-page: 74 year: 2011 ident: 5037_CR22 publication-title: Deep Sea Res. II doi: 10.1016/j.dsr2.2010.05.024 – ident: 5037_CR29 doi: 10.1080/10889379909377676 – volume: 54 start-page: 371 year: 2008 ident: 5037_CR30 publication-title: J. Glaciol. doi: 10.3189/002214308784886180 – volume: 66 start-page: 485 year: 2020 ident: 5037_CR64 publication-title: J. Glaciol. doi: 10.1017/jog.2020.20 – ident: 5037_CR41 doi: 10.1126/sciadv.abg3080 – volume: 39 start-page: L18502 year: 2012 ident: 5037_CR4 publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL053317 – ident: 5037_CR58 doi: 10.5067/AXE4121732AD – ident: 5037_CR59 doi: 10.14358/PERS.70.5.605 – ident: 5037_CR46 doi: 10.1029/2005JF000394 – ident: 5037_CR48 doi: 10.1002/2014JF003223 – ident: 5037_CR66 – volume: 8 start-page: 53 year: 2018 ident: 5037_CR2 publication-title: Nat. Clim. Change doi: 10.1038/s41558-017-0020-x – ident: 5037_CR17 doi: 10.1098/rstb.2006.1958 – volume: 12 start-page: 2869 year: 2018 ident: 5037_CR26 publication-title: Cryosphere doi: 10.5194/tc-12-2869-2018 – volume: 13 start-page: 665 year: 2019 ident: 5037_CR54 publication-title: Cryosphere doi: 10.5194/tc-13-665-2019 – ident: 5037_CR39 doi: 10.1017/jog.2020.67 – ident: 5037_CR62 |
SSID | ssj0005174 |
Score | 2.6341038 |
Snippet | Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the... Antarctica's ice shelves help to control the flow ofglacial ice as it drains into the ocean, meaning that the rate ofglobal sea-level rise is subject to the... Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 948 |
SubjectTerms | 704/106/125 704/106/829/2737 Altimetry Buttresses Coastal evolution Coasts Glaciers Humanities and Social Sciences Ice Ice sheets Ice shelves Land ice multidisciplinary Net losses Radar Radar data Radar satellites Satellites Science Science (multidisciplinary) Sea level Sea level rise Structural integrity Thinning Trends |
Title | Antarctic calving loss rivals ice-shelf thinning |
URI | https://link.springer.com/article/10.1038/s41586-022-05037-w https://www.proquest.com/docview/2720476070 https://www.proquest.com/docview/2701073750 |
Volume | 609 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UIfgibirOj1HBB0WDrk2T9El0bA5BEXGwt9LmA4XRqe3Yv-8ly5wK7qUvbRK478tdfwdwolQWZ3FCCaYThlBJDRES9coYabTWmWi7GUsPj6w_oPfDeOgv3ErfVjm3ic5Qq7G0d-SXtl5IOUMJvX7_IHZqlK2u-hEaq1Brow222Pmi86PF4w8Ks_9p5ioSlyU6LmHbb0NiEVE4mf52TIto80-B1Pmd3hZs-oAxuJlxuA4rumjAumvclGUD6l45y-DUI0ifbcPVTVGhAOOKAFlgrwyCEZ4ZfL6hXJUB2gZSvuqRCarXNzeyaAcGve5Lp0_8aASSYfxSkTDiFlCWhVqoXOUMFVMbFeYipooy27opMbPD2Aa9tYgZj1QSMplQqhjHnCCLdmGtGBd6DwIR4RZMUpqwnBrGE4NJTS5YLBPFJA-b0J7TJZUeN9yOrxilrn4diXRGyxRpmTpaptMmnH-veZ-hZiz9-nBO7tRrUJku-N2E4-_XKPu2oJEVejyx32A2ySMMeppwMWfTYov_T9xffuIBbIROMhISJoewVn1O9BHGHlXeglU-5C0nZvbZu2tB7bb7-PT8BbUV1GY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD5YpbQvUrWlW7VNoUJLG9Qkk2QeShGtrPXypOBbOpMLCsvsdmdk8U_5Gz3Jzrgq1DefJ5PAyZdzyTn5DsAX54qsyHJBMZwIVFgRqLZ4rkKwwXtf6O3UY-n4RPbPxJ_z7HwObrq3MLGsstOJSVG7oY135JsxXyiURIT-Gv2jsWtUzK52LTSmsDj01xMM2eqfB3u4vxuM7f8-3e3TtqsALdD0N5RxFblYJfPala6UiGkfHCt1JpyQserRYlCEbgEaOp1JxV3OpM2FcFKhO11wnPcFLAjOVeTq17v3SkoesT63j3S2uN6s0VDqWO7LaGRgUXTy0BDOvNtHCdlk5_bfwGLroJKdKaKWYM5Xy_AyFYraehmWWmVQk68tY_W3FdjaqRqUDP5BcMvjFQUZ4JpkfIk4rgnqIlpf-EEgzcVlapH0Fs6eRWjvYL4aVv49EM1xCmmFyGUpglR5wCCq1DKzuZNWsR5sd3IxtuUpj-0yBibly7k2U1kalKVJsjSTHny_-2c0Zel4cvRaJ27TntjazPDVg893n_GsxQRKUfnhVRyD0avi6GT14Ee3TbMp_r_ih6dX_ASv-qfHR-bo4ORwFV6zhJKcsnwN5pvxlV9Hv6cpPyawEfj73Oi-BeUzCnY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD5Yi8WX4hXXqk3BgqJhNZNJMg8iUrt4qdKHCvsWZ3JBYZm1zsjSv-av8yQ746JQ33zODU6-c8s5OQdg09o8zdOMU3QnPOWGe6oM8pX3xjvncrUfeyxdXIqTK37WT_tT8Nj-hQlpla1MjILaDk14I--GeCGXAhHa9U1axO_j3uHdXxo6SIVIa9tOYwyRc_dvhO5bdXB6jHf9nbHezz8_TmjTYYDmaAbUlCUy1GUVzClb2EIgvp23rFApt1yEDEiDDhKaCKj0VCpkYjMmTMa5FRJN6zzBfT_AR5mg2kRekn05SS95VQG6-bCzl6huhUpThdRfRkM1FklHL5XixNJ9FZyNOq83B58bY5UcjdE1D1OuXICZmDRqqgWYbwRDRbaa6tXbi7B3VNZIGVxB8PrDcwUZ4Jnk_hYxXRGUS7S6cQNP6pvb2C5pCa7ehWjLMF0OS7cCRCW4hTCcZ6LgXsjMo0NVKJGazAojWQf2W7po09QsD60zBjrGzhOlx7TUSEsdaalHHdh5XnM3rtjx5uy1lty64d5KT7DWgW_Pw8h3IZiSl274EOagJysTNLg6sNte02SL_5-4-vaJX-ET4lr_Or08_wKzLIIkoyxbg-n6_sGtowlUFxsRawSu3xvcT-iSDtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antarctic+calving+loss+rivals+ice-shelf+thinning&rft.jtitle=Nature+%28London%29&rft.au=Greene%2C+Chad+A&rft.au=Gardner%2C+Alex+S&rft.au=Schlegel%2C+Nicole-Jeanne&rft.au=Fraser%2C+Alexander+D&rft.date=2022-09-29&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=609&rft.issue=7929&rft.spage=948&rft_id=info:doi/10.1038%2Fs41586-022-05037-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |