Antarctic calving loss rivals ice-shelf thinning

Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet 1 – 3 . Until now, data limitations have made it difficult to mon...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 609; no. 7929; pp. 948 - 953
Main Authors Greene, Chad A., Gardner, Alex S., Schlegel, Nicole-Jeanne, Fraser, Alexander D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.09.2022
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-022-05037-w

Cover

Loading…
Abstract Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet 1 – 3 . Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica’s recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future. Data from multiple satellite sensors show that Antarctica lost almost 37,000 km 2 of ice-shelf area from 1997 to 2021, and that calving losses are as important as ice-shelf thinning.
AbstractList Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.
Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet 1 – 3 . Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica’s recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future. Data from multiple satellite sensors show that Antarctica lost almost 37,000 km 2 of ice-shelf area from 1997 to 2021, and that calving losses are as important as ice-shelf thinning.
Antarctica's ice shelves help to control the flow ofglacial ice as it drains into the ocean, meaning that the rate ofglobal sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet1-3. Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact ofrecent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of36,701 ± 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 ± 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 ± 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts ofAntarctica's recent coastline evolution in the absence of additional feedbacks, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.
Author Fraser, Alexander D.
Schlegel, Nicole-Jeanne
Greene, Chad A.
Gardner, Alex S.
Author_xml – sequence: 1
  givenname: Chad A.
  orcidid: 0000-0001-6710-6297
  surname: Greene
  fullname: Greene, Chad A.
  email: chad@chadagreene.com
  organization: Jet Propulsion Laboratory, California Institute of Technology
– sequence: 2
  givenname: Alex S.
  orcidid: 0000-0002-8394-8889
  surname: Gardner
  fullname: Gardner, Alex S.
  organization: Jet Propulsion Laboratory, California Institute of Technology
– sequence: 3
  givenname: Nicole-Jeanne
  orcidid: 0000-0001-8035-448X
  surname: Schlegel
  fullname: Schlegel, Nicole-Jeanne
  organization: Jet Propulsion Laboratory, California Institute of Technology
– sequence: 4
  givenname: Alexander D.
  orcidid: 0000-0003-1924-0015
  surname: Fraser
  fullname: Fraser, Alexander D.
  organization: Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania
BookMark eNp9kMtOAjEUhhuDiYC-gKtJ3Lipnl6m7SwJ8ZaQuNF1UzoFSoYOtgPEt7c4JiYsWJ3F-b9z-UZoENrgELol8ECAqcfESakEBkoxlMAkPlygIeFSYC6UHKAhAFUYFBNXaJTSGgBKIvkQwSR0JtrO28KaZu_DsmjalIro96ZJhbcOp5VrFkW38iHk9jW6XOSOu_mrY_T5_PQxfcWz95e36WSGDeekw5TJqqJUUKfqeT0XRDG3qOlclbzmghMoLSWkFFQQpkohWV1RYSvOayGBV4aN0X0_dxvbr51Lnd74ZF3TmODaXdJUAgHJZP52jO5Oout2F0O-LqcoZAsgjynap2zMD0a30NvoNyZ-awL6KFH3EnWWqH8l6kOG1AlkfWc634YuGt-cR1mPprwnLF38v-oM9QOVeIXl
CitedBy_id crossref_primary_10_1038_s43247_024_01255_4
crossref_primary_10_5194_jm_43_269_2024
crossref_primary_10_1016_j_epsl_2023_118444
crossref_primary_10_1016_j_polar_2024_101124
crossref_primary_10_1038_s41586_023_06863_2
crossref_primary_10_1016_j_jag_2024_104017
crossref_primary_10_1126_sciadv_adi0186
crossref_primary_10_5194_tc_19_541_2025
crossref_primary_10_1525_elementa_2024_00036
crossref_primary_10_3390_rs15143540
crossref_primary_10_1038_s43017_024_00583_5
crossref_primary_10_5194_tc_17_3409_2023
crossref_primary_10_3389_frym_2024_1063214
crossref_primary_10_1126_sciadv_ado6429
crossref_primary_10_1080_17538947_2023_2246436
crossref_primary_10_1029_2023AV001023
crossref_primary_10_5194_tc_18_791_2024
crossref_primary_10_5194_os_20_1585_2024
crossref_primary_10_1038_s41467_023_42970_4
crossref_primary_10_5194_tc_18_5117_2024
crossref_primary_10_1016_j_marchem_2025_104509
crossref_primary_10_1126_sciadv_add7049
crossref_primary_10_1016_j_epsl_2024_118958
crossref_primary_10_1038_s41467_025_57417_1
crossref_primary_10_1038_s41467_025_55948_1
crossref_primary_10_1109_LGRS_2024_3407860
crossref_primary_10_5194_tc_17_3041_2023
crossref_primary_10_5194_tc_17_4571_2023
crossref_primary_10_1017_aog_2023_27
crossref_primary_10_5194_tc_17_4549_2023
crossref_primary_10_1017_aog_2023_26
crossref_primary_10_5194_tc_17_2059_2023
crossref_primary_10_5194_tc_18_4723_2024
crossref_primary_10_1109_MCSE_2023_3341335
crossref_primary_10_1126_sciadv_adi9014
crossref_primary_10_1109_TGRS_2024_3382573
crossref_primary_10_5194_tc_18_5207_2024
crossref_primary_10_1017_jog_2023_71
crossref_primary_10_5194_sp_3_slre1_4_2024
crossref_primary_10_5194_tc_18_43_2024
crossref_primary_10_1007_s10712_024_09866_4
crossref_primary_10_1016_j_scitotenv_2024_173127
crossref_primary_10_1017_jog_2023_102
crossref_primary_10_1126_sciadv_adi7638
crossref_primary_10_1360_SSTe_2023_0160
crossref_primary_10_1016_j_crm_2023_100555
crossref_primary_10_1038_s41467_023_38425_5
crossref_primary_10_5194_tc_19_283_2025
crossref_primary_10_1038_s43017_023_00509_7
crossref_primary_10_5194_tc_17_157_2023
crossref_primary_10_1017_jog_2024_71
crossref_primary_10_1038_s41586_024_07049_0
crossref_primary_10_1146_annurev_marine_040323_074354
crossref_primary_10_5194_essd_17_65_2025
crossref_primary_10_5194_gmd_16_7289_2023
crossref_primary_10_1029_2023GL106178
crossref_primary_10_1038_s43247_023_00961_9
crossref_primary_10_1126_science_adt9619
crossref_primary_10_1029_2022RG000770
crossref_primary_10_5194_tc_19_249_2025
crossref_primary_10_1038_s41467_023_42198_2
crossref_primary_10_1038_s41561_023_01273_5
crossref_primary_10_1016_j_scitotenv_2023_164448
crossref_primary_10_1038_s41597_023_02045_x
crossref_primary_10_5194_tc_19_955_2025
crossref_primary_10_1007_s11430_023_1338_8
crossref_primary_10_1080_17538947_2025_2475165
crossref_primary_10_1017_jog_2024_21
Cites_doi 10.5067/8JKNEW6BFRVD
10.5194/tc-14-2331-2020
10.5194/tc-13-2817-2019
10.1029/2004JC002843
10.1029/2020GL091200
10.1029/2002JB002329
10.1029/2019GL084397
10.5067/68TBT0CGJSOJ
10.5194/essd-12-2987-2020
10.5194/tc-12-521-2018
10.1029/2000JC000601
10.1038/s41467-022-27968-8
10.1126/science.abf6271
10.1017/S003224740000807X
10.1029/JB094iB04p04071
10.1038/s41561-020-0616-z
10.5067/SE3XH9RXQWAM
10.5194/tc-7-375-2013
10.1016/j.cageo.2016.08.003
10.3189/172756402781817581
10.5194/tc-15-113-2021
10.1073/pnas.1415137112
10.1038/s41586-021-03302-y
10.5067/H0FQ1KL9NEKM
10.1038/s41586-019-0901-4
10.1029/2011JF002140
10.1016/j.epsl.2008.12.027
10.1029/2019GL084183
10.1038/s41467-021-23070-7
10.3189/2012JoG11J262
10.1002/2013JC009441
10.1038/s41558-018-0305-8
10.1038/nature12567
10.1038/nclimate2912
10.1002/2016JC011835
10.5194/tc-9-2429-2015
10.1126/science.1235798
10.1038/ngeo2563
10.1038/nature17145
10.1017/S002214300001621X
10.3189/002214308786570836
10.3189/2013JoG13J054
10.5067/D7GK8F5J8M8R
10.5067/E1QL9HFQ7A8M
10.5194/tc-14-3033-2020
10.1038/ncomms7642
10.5194/tc-15-2357-2021
10.1073/pnas.1912890117
10.3390/rs11010074
10.5067/6II6VW8LLWJ7
10.5194/essd-13-4583-2021
10.1029/2010GL043853
10.1029/2019GL085027
10.5194/tc-12-3511-2018
10.1126/sciadv.1501350
10.1029/2019GC008392
10.1016/j.dsr2.2010.05.024
10.1080/10889379909377676
10.3189/002214308784886180
10.1017/jog.2020.20
10.1126/sciadv.abg3080
10.1029/2012GL053317
10.5067/AXE4121732AD
10.14358/PERS.70.5.605
10.1029/2005JF000394
10.1002/2014JF003223
10.1038/s41558-017-0020-x
10.1098/rstb.2006.1958
10.5194/tc-12-2869-2018
10.5194/tc-13-665-2019
10.1017/jog.2020.67
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Nature Publishing Group Sep 29, 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Nature Publishing Group Sep 29, 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-022-05037-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest eLibrary (NC LIVE)
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (subscription)
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 953
ExternalDocumentID 10_1038_s41586_022_05037_w
GeographicLocations Antarctica
GeographicLocations_xml – name: Antarctica
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-a441t-237992262e8dbdb6183efd2b854d464105c21156261385673d926c944d67049a3
IEDL.DBID 8C1
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 03:06:21 EDT 2025
Fri Jul 25 09:00:14 EDT 2025
Tue Jul 01 02:32:40 EDT 2025
Thu Apr 24 22:50:30 EDT 2025
Fri Feb 21 02:39:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7929
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a441t-237992262e8dbdb6183efd2b854d464105c21156261385673d926c944d67049a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1924-0015
0000-0001-8035-448X
0000-0001-6710-6297
0000-0002-8394-8889
PQID 2720476070
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2701073750
proquest_journals_2720476070
crossref_primary_10_1038_s41586_022_05037_w
crossref_citationtrail_10_1038_s41586_022_05037_w
springer_journals_10_1038_s41586_022_05037_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-29
PublicationDateYYYYMMDD 2022-09-29
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mouginot, J., Scheuchl, B. & Rignot, E. MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017; https://doi.org/10.5067/AXE4121732AD
GoldbergDNHeimbachPJoughinISmithBCommitted retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibrationCryosphere201592429244610.5194/tc-9-2429-20152015TCry....9.2429G
RobelAABanwellAFA speed limit on ice shelf collapse through hydrofractureGeophys. Res. Lett.201946120921210010.1029/2019GL0843972019GeoRL..4612092R
Fricker, H. A., Young, N. W., Allison, I. & Coleman, R. Iceberg calving from the Amery ice shelf, East Antarctica. Ann. Glaciol.34, 241–246 (2002).
Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans111, C03004 (2006).
GudmundssonGHPaoloFSAdusumilliSFrickerHAInstantaneous Antarctic ice sheet mass loss driven by thinning ice shelvesGeophys. Res. Lett.201946139031390910.1029/2019GL0850272019GeoRL..4613903G
Liu, H., Jezek, K. C., Li, B. & Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2015); https://doi.org/10.5067/8JKNEW6BFRVD
Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil. Trans. R. Soc. B362, 149–166 (2007).
Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci.104, 151–157 (2017).
MacAyealDRTabular iceberg collisions within the coastal regimeJ. Glaciol.20085437138610.3189/0022143087848861802008JGlac..54..371M
SeroussiHISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centuryCryosphere2020143033307010.5194/tc-14-3033-20202020TCry...14.3033S
Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017); https://doi.org/10.5067/D7GK8F5J8M8R
ScambosTAIce shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-upsEarth Planet. Sci. Lett.200928051601:CAS:528:DC%2BD1MXjslOnsrg%3D10.1016/j.epsl.2008.12.0272009E&PSL.280...51S
Massom, R. A. et al. External influences on the Mertz Glacier Tongue East Antarctica in the decade leading up to its calving in 2010. J. Geophys. Res. Earth Surf.120, 490–506 (2015).
Walker, C. C. et al. Iceberg, right ahead!: The surprising and ongoing collapse of an East Antarctic ice shelf in response to changes in the ocean environment. In AGU Fall Meeting Abstracts abstr. C13A-06 (AGU, 2019).
De RydtJReeseRPaoloFSGudmundssonGHDrivers of Pine Island Glacier speed-up between 1996 and 2016Cryosphere20211511313210.5194/tc-15-113-20212021TCry...15..113D
FürstJJThe safety band of Antarctic ice shelvesNat. Clim. Change2016647948210.1038/nclimate29122016NatCC...6..479F
TruselLDDivergent trajectories of Antarctic surface melt under two twenty-first-century climate scenariosNat. Geosci.201589279321:CAS:528:DC%2BC2MXhs1KksrzE10.1038/ngeo25632015NatGe...8..927T
LiuYOcean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelvesProc. Natl Acad. Sci. USA2015112326332681:CAS:528:DC%2BC2MXjs1Gru7k%3D25733856437194910.1073/pnas.14151371122015PNAS..112.3263L
Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst.20, 3774–3781 (2019).
Liu, H. & Jezek, K. A complete high-resolution coastline of Antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sensing70, 605–616 (2004).
HowatIMPorterCSmithBENohMJMorinPThe reference elevation model of AntarcticaCryosphere20191366567410.5194/tc-13-665-20192019TCry...13..665H
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,Ch.9 (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
BassisJNBergBCrawfordAJBennDITransition to marine ice cliff instability controlled by ice thickness gradients and velocityScience2021372134213441:CAS:528:DC%2BB3MXhtlKrs77M3414038710.1126/science.abf62712021Sci...372.1342B
BlatterHVelocity and stress-fields in grounded glaciers: a simple algorithm for including deviatoric stress gradientsJ. Glaciol.19954133334410.1017/S002214300001621X1995JGlac..41..333B
CrawfordAJMarine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterizationNat. Commun.20211227011:CAS:528:DC%2BB3MXhtFWgtLrP33976208811332810.1038/s41467-021-23070-72021NatCo..12.2701C
AdusumilliSFrickerHAMedleyBPadmanLSiegfried.MRInterannual variations in meltwater input to the Southern Ocean from Antarctic ice shelvesNat. Geosci.2020136166201:CAS:528:DC%2BB3cXhsFOlsrbL32952606750048210.1038/s41561-020-0616-z2020NatGe..13..616A
GrosfeldKSchröderMFahrbachEGerdesRMackensenAHow iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf–Ocean SystemJ. Geophys. Res. Oceans20011069039905510.1029/2000JC0006012001JGR...106.9039G
WalkerCCBeckerMKFrickerHAA high resolution, three‐dimensional view of the D‐28 calving event from Amery Ice Shelf with ICESat‐2 and satellite imageryGeophys. Res. Lett.2021483e2020GL0912002021GeoRL..4891200W
Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H. & Kuenzer, C. Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere15, 2357–2381 (2021).
Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol.66, 891–904 (2020).
MilesBWJIntermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018J. Glaciol.20206648549510.1017/jog.2020.202020JGlac..66..485M
Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020); https://doi.org/10.5067/E1QL9HFQ7A8M
SchlegelN-JExploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM frameworkCryosphere2018123511353410.5194/tc-12-3511-20182018TCry...12.3511S
Fraser, A. D. et al. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data12, 2987–2999 (2020).
Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R. & Van der Veen, C. J. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr.23, 201–212 (1999).
GreeneCAYoungDAGwytherDEGalton-FenziBKBlankenshipDDSeasonal dynamics of Totten Ice Shelf controlled by sea ice buttressingCryosphere2018122869288210.5194/tc-12-2869-20182018TCry...12.2869G
MacAyealDRLarge-scale ice flow over a viscous basal sediment. Theory and application to Ice Stream B, AntarcticaJ. Geophys. Res.1989944071408710.1029/JB094iB04p040711989JGR....94.4071M
PattynFThe Greenland and Antarctic ice sheets under 1.5 °C global warmingNat. Clim. Change201881053106110.1038/s41558-018-0305-82018NatCC...8.1053P
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science341, 266–270 (2013).
LilienDAJoughinISmithBGourmelenNMelt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciersCryosphere2019132817283410.5194/tc-13-2817-20192019TCry...13.2817L
Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of Antarctica Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/68TBT0CGJSOJ
Paolo, F., Gardner, A. S., Greene, C. A. & Schlegel, N. J. MEaSUREs ITS_LIVE Antarctic Ice Shelf Height Change and Basal Melt Rates, Version 1 (2022); NASA https://doi.org/10.5067/SE3XH9RXQWAM
Scambos, T. et al. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol.54, 579–591 (2008).
ClercFMinchewBMBehnMDMarine ice cliff instability mitigated by slow removal of ice shelvesGeophys. Res. Lett.201946.21121081211610.1029/2019GL084183
Ferrigno, J. G. & Gould, W. G. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec.23, 577–583 (1987).
GuttJBiodiversity change after climate-induced ice-shelf collapse in the AntarcticDeep Sea Res. II201158748310.1016/j.dsr2.2010.05.0242011DSR....58...74G
SternAAAdcroftASergienkoOThe effects of Antarctic iceberg calving‐size distribution in a global climate modelJ. Geophys. Res. Oceans20161215773578810.1002/2016JC0118352016JGRC..121.5773S
DepoorterMACalving fluxes and basal melt rates of Antarctic ice shelvesNature201350289921:CAS:528:DC%2BC3sXhsVeqsbvI2403737710.1038/nature125672013Natur.502...89D
MacGregorJACataniaGAMarkowskiMSAndrews.AGWidespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011J. Glaciol.20125845846610.3189/2012JoG11J2622012JGlac..58..458M
DeContoRMPollardDContribution of Antarctica to past and future sea-level riseNature20165315915971:CAS:528:DC%2BC28XltlSqu7c%3D2702927410.1038/nature171452016Natur.531..591D
BorstadCPA damage mechanics assessment of the Larsen B ice shelf prior to collapse: toward a physically-based calving lawGeophys. Res. Lett.201239L1850210.1029/2012GL0533172012GeoRL..3918502B
Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf.117, F01022 (2012).
Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere7, 375–393 (2013).
Pattyn, F., Huyghe, A., De Brabander, S. & De Smedt, B. Role of transition zones in marine ice sheet dynamics. J. Geophys. Res. Earth Surf.111, eabg3080 (2006).
CampagnePGlacial ice and atmospheric forcing on the
5037_CR29
5037_CR27
5037_CR28
5037_CR25
LD Trusel (5037_CR6) 2015; 8
CP Borstad (5037_CR4) 2012; 39
5037_CR24
5037_CR68
H Seroussi (5037_CR9) 2020; 14
JA MacGregor (5037_CR63) 2012; 58
J Gutt (5037_CR22) 2011; 58
H Blatter (5037_CR69) 1995; 41
R Reese (5037_CR2) 2018; 8
CC Walker (5037_CR50) 2021; 483
JN Bassis (5037_CR12) 2021; 372
5037_CR66
MA Depoorter (5037_CR32) 2013; 502
BWJ Miles (5037_CR64) 2020; 66
K Grosfeld (5037_CR18) 2001; 106
5037_CR61
5037_CR62
CA Greene (5037_CR26) 2018; 12
5037_CR60
5037_CR1
5037_CR19
AA Robel (5037_CR43) 2019; 46
5037_CR17
5037_CR58
5037_CR59
5037_CR56
5037_CR57
S Adusumilli (5037_CR23) 2020; 13
AJ Crawford (5037_CR13) 2021; 12
JJ Fürst (5037_CR3) 2016; 6
Y Liu (5037_CR33) 2015; 112
DR MacAyeal (5037_CR30) 2008; 54
5037_CR55
5037_CR52
5037_CR53
5037_CR51
MR Cape (5037_CR15) 2014; 119
5037_CR49
TL Edwards (5037_CR11) 2019; 566
5037_CR48
F Pattyn (5037_CR70) 2003; 108
5037_CR46
RM DeConto (5037_CR10) 2016; 531
IM Howat (5037_CR54) 2019; 13
AA Stern (5037_CR20) 2016; 121
N-J Schlegel (5037_CR42) 2018; 12
J De Rydt (5037_CR40) 2021; 15
GH Gudmundsson (5037_CR38) 2019; 46
5037_CR41
F Pattyn (5037_CR8) 2018; 8
TA Scambos (5037_CR5) 2009; 280
DN Goldberg (5037_CR44) 2015; 9
M Qi (5037_CR34) 2021; 13
5037_CR39
5037_CR36
5037_CR37
5037_CR35
DA Lilien (5037_CR45) 2019; 13
S Nowicki (5037_CR7) 2020; 14
S Lhermitte (5037_CR65) 2020; 117
ME Morlighem (5037_CR67) 2010; 37
P Campagne (5037_CR16) 2015; 6
DR MacAyeal (5037_CR71) 1989; 94
F Clerc (5037_CR14) 2019; 46.21
TL Edwards (5037_CR47) 2021; 593
S-T Yoon (5037_CR21) 2022; 13
5037_CR74
5037_CR31
5037_CR72
5037_CR73
References_xml – reference: Ferrigno, J. G. & Gould, W. G. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec.23, 577–583 (1987).
– reference: Walker, C. C. et al. Iceberg, right ahead!: The surprising and ongoing collapse of an East Antarctic ice shelf in response to changes in the ocean environment. In AGU Fall Meeting Abstracts abstr. C13A-06 (AGU, 2019).
– reference: ScambosTAIce shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-upsEarth Planet. Sci. Lett.200928051601:CAS:528:DC%2BD1MXjslOnsrg%3D10.1016/j.epsl.2008.12.0272009E&PSL.280...51S
– reference: NowickiSExperimental protocol for sea level projections from ISMIP6 stand-alone ice sheet modelsCryosphere2020142331236810.5194/tc-14-2331-20202020TCry...14.2331N
– reference: MilesBWJIntermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018J. Glaciol.20206648549510.1017/jog.2020.202020JGlac..66..485M
– reference: BlatterHVelocity and stress-fields in grounded glaciers: a simple algorithm for including deviatoric stress gradientsJ. Glaciol.19954133334410.1017/S002214300001621X1995JGlac..41..333B
– reference: Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016).
– reference: GreeneCAYoungDAGwytherDEGalton-FenziBKBlankenshipDDSeasonal dynamics of Totten Ice Shelf controlled by sea ice buttressingCryosphere2018122869288210.5194/tc-12-2869-20182018TCry...12.2869G
– reference: Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017); https://doi.org/10.5067/D7GK8F5J8M8R
– reference: Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv.7, eabg3080 (2021).
– reference: Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of Antarctica Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/68TBT0CGJSOJ
– reference: Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R. & Van der Veen, C. J. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr.23, 201–212 (1999).
– reference: QiMA 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observationsEarth Syst. Sci. Data2021134583460110.5194/essd-13-4583-20212021ESSD...13.4583Q
– reference: Paolo, F., Gardner, A. S., Greene, C. A. & Schlegel, N. J. MEaSUREs ITS_LIVE Antarctic Ice Shelf Height Change and Basal Melt Rates, Version 1 (2022); NASA https://doi.org/10.5067/SE3XH9RXQWAM
– reference: PattynFA new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakesJ. Geophys. Res.2003108238210.1029/2002JB0023292003JGRB..108.2382P
– reference: Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science341, 266–270 (2013).
– reference: HowatIMPorterCSmithBENohMJMorinPThe reference elevation model of AntarcticaCryosphere20191366567410.5194/tc-13-665-20192019TCry...13..665H
– reference: Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol.66, 891–904 (2020).
– reference: CapeMRVernetMKahruMSpreenGPolynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapseJ. Geophys. Res. Oceans201411957259410.1002/2013JC0094412014JGRC..119..572C
– reference: SternAAAdcroftASergienkoOThe effects of Antarctic iceberg calving‐size distribution in a global climate modelJ. Geophys. Res. Oceans20161215773578810.1002/2016JC0118352016JGRC..121.5773S
– reference: Mohajerani, Y., Wood, M., Velicogna, I. & Rignot, E. Detection of glacier calving margins with convolutional neural networks: a case study. Remote Sensing2019, 74 (2019).
– reference: Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans111, C03004 (2006).
– reference: BorstadCPA damage mechanics assessment of the Larsen B ice shelf prior to collapse: toward a physically-based calving lawGeophys. Res. Lett.201239L1850210.1029/2012GL0533172012GeoRL..3918502B
– reference: Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere7, 375–393 (2013).
– reference: Fricker, H. A., Young, N. W., Allison, I. & Coleman, R. Iceberg calving from the Amery ice shelf, East Antarctica. Ann. Glaciol.34, 241–246 (2002).
– reference: Seroussi, H. et al. Dependence of Greenland Ice Sheet projections on its thermal regime. J. Glaciol.59, 1024–1034 (2013).
– reference: SchlegelN-JExploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM frameworkCryosphere2018123511353410.5194/tc-12-3511-20182018TCry...12.3511S
– reference: De RydtJReeseRPaoloFSGudmundssonGHDrivers of Pine Island Glacier speed-up between 1996 and 2016Cryosphere20211511313210.5194/tc-15-113-20212021TCry...15..113D
– reference: EdwardsTLRevisiting Antarctic ice loss due to marine ice-cliff instabilityNature201956658641:CAS:528:DC%2BC1MXnt1Gjtrk%3D3072852210.1038/s41586-019-0901-42019Natur.566...58E
– reference: Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf.117, F01022 (2012).
– reference: GudmundssonGHPaoloFSAdusumilliSFrickerHAInstantaneous Antarctic ice sheet mass loss driven by thinning ice shelvesGeophys. Res. Lett.201946139031390910.1029/2019GL0850272019GeoRL..4613903G
– reference: GoldbergDNHeimbachPJoughinISmithBCommitted retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibrationCryosphere201592429244610.5194/tc-9-2429-20152015TCry....9.2429G
– reference: CampagnePGlacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 yearsNat. Commun.201561:STN:280:DC%2BC2MnnsF2qsA%3D%3D2580377910.1038/ncomms76422015NatCo...6.6642C
– reference: Bamber, J., Gomez-Dans, J. L. & Griggs, J. A. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2009); https://doi.org/10.5067/H0FQ1KL9NEKM
– reference: Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020); https://doi.org/10.5067/E1QL9HFQ7A8M
– reference: PattynFThe Greenland and Antarctic ice sheets under 1.5 °C global warmingNat. Clim. Change201881053106110.1038/s41558-018-0305-82018NatCC...8.1053P
– reference: Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,Ch.9 (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
– reference: EdwardsTLProjected land ice contributions to twenty-first-century sea level riseNature202159374821:CAS:528:DC%2BB3MXhtVCrsbfP3395341510.1038/s41586-021-03302-y2021Natur.593...74E
– reference: Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci.104, 151–157 (2017).
– reference: Liu, H. & Jezek, K. A complete high-resolution coastline of Antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sensing70, 605–616 (2004).
– reference: GrosfeldKSchröderMFahrbachEGerdesRMackensenAHow iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf–Ocean SystemJ. Geophys. Res. Oceans20011069039905510.1029/2000JC0006012001JGR...106.9039G
– reference: RobelAABanwellAFA speed limit on ice shelf collapse through hydrofractureGeophys. Res. Lett.201946120921210010.1029/2019GL0843972019GeoRL..4612092R
– reference: LiuYOcean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelvesProc. Natl Acad. Sci. USA2015112326332681:CAS:528:DC%2BC2MXjs1Gru7k%3D25733856437194910.1073/pnas.14151371122015PNAS..112.3263L
– reference: Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H. & Kuenzer, C. Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere15, 2357–2381 (2021).
– reference: DepoorterMACalving fluxes and basal melt rates of Antarctic ice shelvesNature201350289921:CAS:528:DC%2BC3sXhsVeqsbvI2403737710.1038/nature125672013Natur.502...89D
– reference: Gardner, A. S., Fahnestock, M. A. & Scambos, T. A. ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities (National Snow and Ice Data Center, 2019); https://doi.org/10.5067/6II6VW8LLWJ7
– reference: MacGregorJACataniaGAMarkowskiMSAndrews.AGWidespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011J. Glaciol.20125845846610.3189/2012JoG11J2622012JGlac..58..458M
– reference: Fraser, A. D. et al. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data12, 2987–2999 (2020).
– reference: YoonS-TIce front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelfNat. Commun.2022131:CAS:528:DC%2BB38Xht1Oitb4%3D35027549875866110.1038/s41467-022-27968-82022NatCo..13..306Y
– reference: AdusumilliSFrickerHAMedleyBPadmanLSiegfried.MRInterannual variations in meltwater input to the Southern Ocean from Antarctic ice shelvesNat. Geosci.2020136166201:CAS:528:DC%2BB3cXhsFOlsrbL32952606750048210.1038/s41561-020-0616-z2020NatGe..13..616A
– reference: LilienDAJoughinISmithBGourmelenNMelt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciersCryosphere2019132817283410.5194/tc-13-2817-20192019TCry...13.2817L
– reference: SeroussiHISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centuryCryosphere2020143033307010.5194/tc-14-3033-20202020TCry...14.3033S
– reference: FürstJJThe safety band of Antarctic ice shelvesNat. Clim. Change2016647948210.1038/nclimate29122016NatCC...6..479F
– reference: TruselLDDivergent trajectories of Antarctic surface melt under two twenty-first-century climate scenariosNat. Geosci.201589279321:CAS:528:DC%2BC2MXhs1KksrzE10.1038/ngeo25632015NatGe...8..927T
– reference: WalkerCCBeckerMKFrickerHAA high resolution, three‐dimensional view of the D‐28 calving event from Amery Ice Shelf with ICESat‐2 and satellite imageryGeophys. Res. Lett.2021483e2020GL0912002021GeoRL..4891200W
– reference: ClercFMinchewBMBehnMDMarine ice cliff instability mitigated by slow removal of ice shelvesGeophys. Res. Lett.201946.21121081211610.1029/2019GL084183
– reference: Mouginot, J., Scheuchl, B. & Rignot, E. MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017; https://doi.org/10.5067/AXE4121732AD
– reference: LhermitteSDamage accelerates ice shelf instability and mass loss in Amundsen Sea EmbaymentProc. Natl Acad. Sci. USA202011724735247411:CAS:528:DC%2BB3cXitVSrtrrL32929004754721910.1073/pnas.19128901172020PNAS..11724735L
– reference: MacAyealDRTabular iceberg collisions within the coastal regimeJ. Glaciol.20085437138610.3189/0022143087848861802008JGlac..54..371M
– reference: MacAyealDRLarge-scale ice flow over a viscous basal sediment. Theory and application to Ice Stream B, AntarcticaJ. Geophys. Res.1989944071408710.1029/JB094iB04p040711989JGR....94.4071M
– reference: DeContoRMPollardDContribution of Antarctica to past and future sea-level riseNature20165315915971:CAS:528:DC%2BC28XltlSqu7c%3D2702927410.1038/nature171452016Natur.531..591D
– reference: Pattyn, F., Huyghe, A., De Brabander, S. & De Smedt, B. Role of transition zones in marine ice sheet dynamics. J. Geophys. Res. Earth Surf.111, eabg3080 (2006).
– reference: Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil. Trans. R. Soc. B362, 149–166 (2007).
– reference: Scambos, T. et al. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol.54, 579–591 (2008).
– reference: BassisJNBergBCrawfordAJBennDITransition to marine ice cliff instability controlled by ice thickness gradients and velocityScience2021372134213441:CAS:528:DC%2BB3MXhtlKrs77M3414038710.1126/science.abf62712021Sci...372.1342B
– reference: ReeseRGudmundssonGHLevermannAWinkelmannRThe far reach of ice-shelf thinning in AntarcticaNat. Clim. Change20188535710.1038/s41558-017-0020-x2018NatCC...8...53R
– reference: Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere12, 521–547 (2018).
– reference: Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements 2nd edn (University Science Books, 1997).
– reference: Liu, H., Jezek, K. C., Li, B. & Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2015); https://doi.org/10.5067/8JKNEW6BFRVD
– reference: Massom, R. A. et al. External influences on the Mertz Glacier Tongue East Antarctica in the decade leading up to its calving in 2010. J. Geophys. Res. Earth Surf.120, 490–506 (2015).
– reference: MorlighemMESpatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West AntarcticaGeophys. Res. Lett.201037L1450210.1029/2010GL0438532010GeoRL..3714502M
– reference: GuttJBiodiversity change after climate-induced ice-shelf collapse in the AntarcticDeep Sea Res. II201158748310.1016/j.dsr2.2010.05.0242011DSR....58...74G
– reference: Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst.20, 3774–3781 (2019).
– reference: CrawfordAJMarine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterizationNat. Commun.20211227011:CAS:528:DC%2BB3MXhtFWgtLrP33976208811332810.1038/s41467-021-23070-72021NatCo..12.2701C
– ident: 5037_CR1
– ident: 5037_CR57
  doi: 10.5067/8JKNEW6BFRVD
– volume: 14
  start-page: 2331
  year: 2020
  ident: 5037_CR7
  publication-title: Cryosphere
  doi: 10.5194/tc-14-2331-2020
– volume: 13
  start-page: 2817
  year: 2019
  ident: 5037_CR45
  publication-title: Cryosphere
  doi: 10.5194/tc-13-2817-2019
– ident: 5037_CR19
  doi: 10.1029/2004JC002843
– volume: 483
  start-page: e2020GL091200
  year: 2021
  ident: 5037_CR50
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL091200
– volume: 108
  start-page: 2382
  year: 2003
  ident: 5037_CR70
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JB002329
– volume: 46
  start-page: 12092
  year: 2019
  ident: 5037_CR43
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL084397
– ident: 5037_CR60
  doi: 10.5067/68TBT0CGJSOJ
– ident: 5037_CR61
  doi: 10.5194/essd-12-2987-2020
– ident: 5037_CR72
  doi: 10.5194/tc-12-521-2018
– volume: 106
  start-page: 9039
  year: 2001
  ident: 5037_CR18
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2000JC000601
– volume: 13
  year: 2022
  ident: 5037_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-27968-8
– volume: 372
  start-page: 1342
  year: 2021
  ident: 5037_CR12
  publication-title: Science
  doi: 10.1126/science.abf6271
– ident: 5037_CR35
  doi: 10.1017/S003224740000807X
– volume: 94
  start-page: 4071
  year: 1989
  ident: 5037_CR71
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB094iB04p04071
– volume: 13
  start-page: 616
  year: 2020
  ident: 5037_CR23
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-020-0616-z
– ident: 5037_CR36
  doi: 10.5067/SE3XH9RXQWAM
– ident: 5037_CR55
  doi: 10.5194/tc-7-375-2013
– ident: 5037_CR73
  doi: 10.1016/j.cageo.2016.08.003
– ident: 5037_CR49
  doi: 10.3189/172756402781817581
– volume: 15
  start-page: 113
  year: 2021
  ident: 5037_CR40
  publication-title: Cryosphere
  doi: 10.5194/tc-15-113-2021
– volume: 112
  start-page: 3263
  year: 2015
  ident: 5037_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1415137112
– volume: 593
  start-page: 74
  year: 2021
  ident: 5037_CR47
  publication-title: Nature
  doi: 10.1038/s41586-021-03302-y
– ident: 5037_CR56
  doi: 10.5067/H0FQ1KL9NEKM
– volume: 566
  start-page: 58
  year: 2019
  ident: 5037_CR11
  publication-title: Nature
  doi: 10.1038/s41586-019-0901-4
– ident: 5037_CR37
  doi: 10.1029/2011JF002140
– volume: 280
  start-page: 51
  year: 2009
  ident: 5037_CR5
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.12.027
– volume: 46.21
  start-page: 12108
  year: 2019
  ident: 5037_CR14
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL084183
– volume: 12
  start-page: 2701
  year: 2021
  ident: 5037_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23070-7
– volume: 58
  start-page: 458
  year: 2012
  ident: 5037_CR63
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J262
– volume: 119
  start-page: 572
  year: 2014
  ident: 5037_CR15
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2013JC009441
– volume: 8
  start-page: 1053
  year: 2018
  ident: 5037_CR8
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0305-8
– volume: 502
  start-page: 89
  year: 2013
  ident: 5037_CR32
  publication-title: Nature
  doi: 10.1038/nature12567
– volume: 6
  start-page: 479
  year: 2016
  ident: 5037_CR3
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2912
– volume: 121
  start-page: 5773
  year: 2016
  ident: 5037_CR20
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2016JC011835
– volume: 9
  start-page: 2429
  year: 2015
  ident: 5037_CR44
  publication-title: Cryosphere
  doi: 10.5194/tc-9-2429-2015
– ident: 5037_CR31
  doi: 10.1126/science.1235798
– volume: 8
  start-page: 927
  year: 2015
  ident: 5037_CR6
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2563
– volume: 531
  start-page: 591
  year: 2016
  ident: 5037_CR10
  publication-title: Nature
  doi: 10.1038/nature17145
– volume: 41
  start-page: 333
  year: 1995
  ident: 5037_CR69
  publication-title: J. Glaciol.
  doi: 10.1017/S002214300001621X
– ident: 5037_CR28
  doi: 10.3189/002214308786570836
– ident: 5037_CR68
  doi: 10.3189/2013JoG13J054
– ident: 5037_CR52
  doi: 10.5067/D7GK8F5J8M8R
– ident: 5037_CR53
  doi: 10.5067/E1QL9HFQ7A8M
– volume: 14
  start-page: 3033
  year: 2020
  ident: 5037_CR9
  publication-title: Cryosphere
  doi: 10.5194/tc-14-3033-2020
– volume: 6
  year: 2015
  ident: 5037_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7642
– ident: 5037_CR27
  doi: 10.5194/tc-15-2357-2021
– volume: 117
  start-page: 24735
  year: 2020
  ident: 5037_CR65
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1912890117
– ident: 5037_CR24
  doi: 10.3390/rs11010074
– ident: 5037_CR51
  doi: 10.5067/6II6VW8LLWJ7
– volume: 13
  start-page: 4583
  year: 2021
  ident: 5037_CR34
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-4583-2021
– volume: 37
  start-page: L14502
  year: 2010
  ident: 5037_CR67
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL043853
– volume: 46
  start-page: 13903
  year: 2019
  ident: 5037_CR38
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL085027
– volume: 12
  start-page: 3511
  year: 2018
  ident: 5037_CR42
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3511-2018
– ident: 5037_CR25
  doi: 10.1126/sciadv.1501350
– ident: 5037_CR74
  doi: 10.1029/2019GC008392
– volume: 58
  start-page: 74
  year: 2011
  ident: 5037_CR22
  publication-title: Deep Sea Res. II
  doi: 10.1016/j.dsr2.2010.05.024
– ident: 5037_CR29
  doi: 10.1080/10889379909377676
– volume: 54
  start-page: 371
  year: 2008
  ident: 5037_CR30
  publication-title: J. Glaciol.
  doi: 10.3189/002214308784886180
– volume: 66
  start-page: 485
  year: 2020
  ident: 5037_CR64
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2020.20
– ident: 5037_CR41
  doi: 10.1126/sciadv.abg3080
– volume: 39
  start-page: L18502
  year: 2012
  ident: 5037_CR4
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL053317
– ident: 5037_CR58
  doi: 10.5067/AXE4121732AD
– ident: 5037_CR59
  doi: 10.14358/PERS.70.5.605
– ident: 5037_CR46
  doi: 10.1029/2005JF000394
– ident: 5037_CR48
  doi: 10.1002/2014JF003223
– ident: 5037_CR66
– volume: 8
  start-page: 53
  year: 2018
  ident: 5037_CR2
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-017-0020-x
– ident: 5037_CR17
  doi: 10.1098/rstb.2006.1958
– volume: 12
  start-page: 2869
  year: 2018
  ident: 5037_CR26
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2869-2018
– volume: 13
  start-page: 665
  year: 2019
  ident: 5037_CR54
  publication-title: Cryosphere
  doi: 10.5194/tc-13-665-2019
– ident: 5037_CR39
  doi: 10.1017/jog.2020.67
– ident: 5037_CR62
SSID ssj0005174
Score 2.6341038
Snippet Antarctica’s ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the...
Antarctica's ice shelves help to control the flow ofglacial ice as it drains into the ocean, meaning that the rate ofglobal sea-level rise is subject to the...
Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 948
SubjectTerms 704/106/125
704/106/829/2737
Altimetry
Buttresses
Coastal evolution
Coasts
Glaciers
Humanities and Social Sciences
Ice
Ice sheets
Ice shelves
Land ice
multidisciplinary
Net losses
Radar
Radar data
Radar satellites
Satellites
Science
Science (multidisciplinary)
Sea level
Sea level rise
Structural integrity
Thinning
Trends
Title Antarctic calving loss rivals ice-shelf thinning
URI https://link.springer.com/article/10.1038/s41586-022-05037-w
https://www.proquest.com/docview/2720476070
https://www.proquest.com/docview/2701073750
Volume 609
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UIfgibirOj1HBB0WDrk2T9El0bA5BEXGwt9LmA4XRqe3Yv-8ly5wK7qUvbRK478tdfwdwolQWZ3FCCaYThlBJDRES9coYabTWmWi7GUsPj6w_oPfDeOgv3ErfVjm3ic5Qq7G0d-SXtl5IOUMJvX7_IHZqlK2u-hEaq1Brow222Pmi86PF4w8Ks_9p5ioSlyU6LmHbb0NiEVE4mf52TIto80-B1Pmd3hZs-oAxuJlxuA4rumjAumvclGUD6l45y-DUI0ifbcPVTVGhAOOKAFlgrwyCEZ4ZfL6hXJUB2gZSvuqRCarXNzeyaAcGve5Lp0_8aASSYfxSkTDiFlCWhVqoXOUMFVMbFeYipooy27opMbPD2Aa9tYgZj1QSMplQqhjHnCCLdmGtGBd6DwIR4RZMUpqwnBrGE4NJTS5YLBPFJA-b0J7TJZUeN9yOrxilrn4diXRGyxRpmTpaptMmnH-veZ-hZiz9-nBO7tRrUJku-N2E4-_XKPu2oJEVejyx32A2ySMMeppwMWfTYov_T9xffuIBbIROMhISJoewVn1O9BHGHlXeglU-5C0nZvbZu2tB7bb7-PT8BbUV1GY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD5YpbQvUrWlW7VNoUJLG9Qkk2QeShGtrPXypOBbOpMLCsvsdmdk8U_5Gz3Jzrgq1DefJ5PAyZdzyTn5DsAX54qsyHJBMZwIVFgRqLZ4rkKwwXtf6O3UY-n4RPbPxJ_z7HwObrq3MLGsstOJSVG7oY135JsxXyiURIT-Gv2jsWtUzK52LTSmsDj01xMM2eqfB3u4vxuM7f8-3e3TtqsALdD0N5RxFblYJfPala6UiGkfHCt1JpyQserRYlCEbgEaOp1JxV3OpM2FcFKhO11wnPcFLAjOVeTq17v3SkoesT63j3S2uN6s0VDqWO7LaGRgUXTy0BDOvNtHCdlk5_bfwGLroJKdKaKWYM5Xy_AyFYraehmWWmVQk68tY_W3FdjaqRqUDP5BcMvjFQUZ4JpkfIk4rgnqIlpf-EEgzcVlapH0Fs6eRWjvYL4aVv49EM1xCmmFyGUpglR5wCCq1DKzuZNWsR5sd3IxtuUpj-0yBibly7k2U1kalKVJsjSTHny_-2c0Zel4cvRaJ27TntjazPDVg893n_GsxQRKUfnhVRyD0avi6GT14Ee3TbMp_r_ih6dX_ASv-qfHR-bo4ORwFV6zhJKcsnwN5pvxlV9Hv6cpPyawEfj73Oi-BeUzCnY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD5Yi8WX4hXXqk3BgqJhNZNJMg8iUrt4qdKHCvsWZ3JBYZm1zsjSv-av8yQ746JQ33zODU6-c8s5OQdg09o8zdOMU3QnPOWGe6oM8pX3xjvncrUfeyxdXIqTK37WT_tT8Nj-hQlpla1MjILaDk14I--GeCGXAhHa9U1axO_j3uHdXxo6SIVIa9tOYwyRc_dvhO5bdXB6jHf9nbHezz8_TmjTYYDmaAbUlCUy1GUVzClb2EIgvp23rFApt1yEDEiDDhKaCKj0VCpkYjMmTMa5FRJN6zzBfT_AR5mg2kRekn05SS95VQG6-bCzl6huhUpThdRfRkM1FklHL5XixNJ9FZyNOq83B58bY5UcjdE1D1OuXICZmDRqqgWYbwRDRbaa6tXbi7B3VNZIGVxB8PrDcwUZ4Jnk_hYxXRGUS7S6cQNP6pvb2C5pCa7ehWjLMF0OS7cCRCW4hTCcZ6LgXsjMo0NVKJGazAojWQf2W7po09QsD60zBjrGzhOlx7TUSEsdaalHHdh5XnM3rtjx5uy1lty64d5KT7DWgW_Pw8h3IZiSl274EOagJysTNLg6sNte02SL_5-4-vaJX-ET4lr_Or08_wKzLIIkoyxbg-n6_sGtowlUFxsRawSu3xvcT-iSDtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antarctic+calving+loss+rivals+ice-shelf+thinning&rft.jtitle=Nature+%28London%29&rft.au=Greene%2C+Chad+A&rft.au=Gardner%2C+Alex+S&rft.au=Schlegel%2C+Nicole-Jeanne&rft.au=Fraser%2C+Alexander+D&rft.date=2022-09-29&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=609&rft.issue=7929&rft.spage=948&rft_id=info:doi/10.1038%2Fs41586-022-05037-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon