Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space–Time Approach

We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonu...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 17; no. 4; pp. 2383 - 2393
Main Authors Duchemin, Ivan, Blase, Xavier
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {r k } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {r k } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
AbstractList We present an implementation of the GW space-time approach that allows cubicscaling all-electron calculations with standard Gaussian basis sets without exploiting any localization nor sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a non-uniform distribution of real-space locations {r k } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {r k } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {r k } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {r k } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
We present an implementation of the space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations { } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained { } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {rk} optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {rk} distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
Author Blase, Xavier
Duchemin, Ivan
AuthorAffiliation Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim
Université Grenoble Alpes, CNRS, Inst NEEL
AuthorAffiliation_xml – name: Université Grenoble Alpes, CNRS, Inst NEEL
– name: Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim
Author_xml – sequence: 1
  givenname: Ivan
  orcidid: 0000-0003-4713-1174
  surname: Duchemin
  fullname: Duchemin, Ivan
  email: ivan.duchemin@cea.fr
  organization: Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim
– sequence: 2
  givenname: Xavier
  orcidid: 0000-0002-0201-9093
  surname: Blase
  fullname: Blase, Xavier
  organization: Université Grenoble Alpes, CNRS, Inst NEEL
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33797245$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03211752$$DView record in HAL
BookMark eNp1kcuO0zAUhi00iLnAnhWKxAYkUo5vib2sylyQKrHoIJbWieNQV24SYgc0O96BN-RJSGinCyRWtqzv_32Ovkty1natI-QlhQUFRt-jjYudTXZBLQAF-oRcUCl0rgtWnJ3uVJ2Tyxh3AJwLxp-Rc85LXTIhLwiuxsrbfGMx-PZrtgwhvw7OpqFrs9sv2QqDHQMm37Ux--HTNsNs43ocsAou--Da6NNDfuNTmtObHq37_fPXvd-7bNn3Q4d2-5w8bTBE9-J4XpHPN9f3q7t8_en242q5zlEISLmjdQ1VgVaCcwIprcExjVAXDRS1VYUSVilQIHWhdA0la0QFXGtEKqqm4Vfk7aF3i8H0g9_j8GA69OZuuTbzG3BGaSnZdzqxbw7sNOK30cVk9j5aFwK2rhujYRKULHmpZvT1P-iuG4d22mSimNBSSlZOFBwoO3QxDq45TUDBzKrMpMrMqsxR1RR5dSweq72rT4FHNxPw7gD8jT5--t--P_qMoCs
CitedBy_id crossref_primary_10_1103_PhysRevMaterials_6_064008
crossref_primary_10_1021_acs_jctc_2c00531
crossref_primary_10_1088_2516_1075_acd28e
crossref_primary_10_3389_fchem_2021_751054
crossref_primary_10_1063_5_0089317
crossref_primary_10_1088_2516_1075_ac709a
crossref_primary_10_1021_acs_jctc_2c00617
crossref_primary_10_1021_acs_jctc_4c00085
crossref_primary_10_1021_acs_jpclett_1c02383
crossref_primary_10_1063_5_0156687
crossref_primary_10_3389_fchem_2021_749779
crossref_primary_10_1063_5_0143291
crossref_primary_10_1021_acs_jctc_4c00075
crossref_primary_10_1063_5_0140101
crossref_primary_10_1063_5_0168755
crossref_primary_10_1063_5_0187213
crossref_primary_10_1021_acs_jctc_1c00874
crossref_primary_10_1063_5_0144469
crossref_primary_10_1021_acs_jpca_3c02834
crossref_primary_10_1021_acs_jctc_3c00615
crossref_primary_10_1021_acs_jctc_3c01264
crossref_primary_10_1063_5_0195934
crossref_primary_10_1021_acs_jpca_1c03762
crossref_primary_10_1039_D3CP04467J
crossref_primary_10_1063_5_0088364
crossref_primary_10_1021_acs_jctc_3c01230
crossref_primary_10_21105_joss_05570
crossref_primary_10_1021_acs_chemmater_1c04279
crossref_primary_10_1038_s41524_024_01311_9
crossref_primary_10_1063_5_0130837
crossref_primary_10_1002_wcms_1574
crossref_primary_10_1063_5_0160265
crossref_primary_10_1021_acs_jpclett_2c02051
crossref_primary_10_1063_5_0203818
crossref_primary_10_1039_D3CP00474K
crossref_primary_10_1021_acs_jctc_1c00308
crossref_primary_10_1103_PhysRevMaterials_5_095201
crossref_primary_10_1063_5_0159853
crossref_primary_10_1063_5_0196561
crossref_primary_10_3389_fchem_2021_736591
crossref_primary_10_1103_PhysRevB_109_245101
crossref_primary_10_1038_s41524_023_01136_y
crossref_primary_10_1021_acs_jctc_2c00241
crossref_primary_10_1063_5_0184406
crossref_primary_10_1021_acs_jctc_4c00216
crossref_primary_10_1021_acs_jctc_2c00686
crossref_primary_10_1021_acs_jctc_2c00366
crossref_primary_10_1002_cphc_202400120
crossref_primary_10_1103_PhysRevLett_132_086401
crossref_primary_10_1021_acs_jctc_2c00927
crossref_primary_10_1021_acs_jctc_3c00674
crossref_primary_10_1021_acs_jpclett_3c00836
crossref_primary_10_1021_acs_jctc_3c00555
crossref_primary_10_1021_acs_jctc_3c00512
crossref_primary_10_1021_acs_jctc_3c00156
crossref_primary_10_1021_acs_jctc_3c00281
crossref_primary_10_1063_5_0087498
crossref_primary_10_1103_PhysRevLett_132_126402
crossref_primary_10_1063_5_0203637
Cites_doi 10.1021/acs.jctc.9b00820
10.1021/acs.jctc.9b00333
10.1021/acs.jctc.0c00433
10.1063/1.4768233
10.1021/jz3021606
10.1063/1.4809994
10.1021/acs.jctc.5b01238
10.1016/j.cpc.2018.09.003
10.1021/ct300311x
10.1021/acs.jctc.6b00380
10.1088/0034-4885/61/3/002
10.1021/acs.jctc.6b00114
10.1021/acs.jctc.7b00770
10.1021/acs.jctc.5b00272
10.1103/physrevb.83.144115
10.1103/physrevb.62.12573
10.1021/acs.jpclett.7b02740
10.1063/1.3646921
10.1021/acs.jctc.8b00617
10.1021/acs.jctc.8b00745
10.1063/1.1679012
10.1021/ct5001268
10.1103/physrevmaterials.1.071001
10.1021/acs.jctc.7b00952
10.1063/1.454033
10.1039/c8mh00921j
10.1063/1.438955
10.1103/physrevb.83.115123
10.1103/physrevlett.119.057401
10.1103/physrevb.37.10159
10.1063/1.438728
10.1103/physrevb.101.035139
10.1103/physrevb.90.115130
10.1103/physrevb.87.155148
10.1016/0009-2614(91)80078-c
10.1209/epl/i2006-10266-6
10.1103/physrevlett.82.1959
10.1021/acs.jctc.8b00944
10.1103/physrevb.88.195152
10.1021/acs.jctc.0c01282
10.1021/acs.jctc.6b00163
10.1080/00268976.2015.1025113
10.1103/physrevmaterials.1.025602
10.4310/amsa.2016.v1.n2.a3
10.1021/acs.nanolett.6b01368
10.1039/b515623h
10.1103/physrevb.84.205415
10.1016/s0009-2614(98)00862-8
10.1021/acs.jctc.5b00871
10.1021/acs.jctc.9b01205
10.1103/physrevb.53.3662
10.1103/physrevlett.99.246403
10.1103/physrevb.94.121405
10.1103/physrevlett.109.167801
10.1103/physrevb.83.115103
10.1016/0009-2614(93)89151-7
10.1017/CBO9781139050807
10.1021/ct500958p
10.1103/physrevb.100.075142
10.1021/acs.jctc.7b00586
10.1063/1.5090605
10.1063/1.1461814
10.1039/c3cs00007a
10.1103/physrev.139.a796
10.1016/j.jcp.2015.09.014
10.1088/1367-2630/14/5/053020
10.1021/acs.jctc.9b01067
10.1063/1.1445115
10.1021/ct300835h
10.1103/physrevb.81.085103
10.1103/physrevlett.74.1827
10.1103/physrevb.84.155104
10.1016/0301-0104(73)80059-x
10.1103/physrevapplied.5.034005
10.1021/acs.jctc.9b01235
10.1088/1361-648x/29/10/103003
10.1103/physrevb.77.161306
10.1103/revmodphys.74.601
10.1103/physrevlett.83.4413
10.1021/acs.jctc.6b01150
10.1021/acs.jctc.7b00807
10.1021/acs.jctc.0c00693
10.1103/physrevb.38.7530
10.1088/0953-8984/28/43/433002
10.1063/1.4768241
10.1021/acs.jctc.5b00453
10.1021/acs.jctc.6b01215
10.1021/acs.jctc.7b01113
10.1063/1.4819264
10.1103/physrevb.80.241405
10.1103/physrevb.90.054115
10.1016/j.cpc.2020.107502
10.1016/j.chemphys.2008.10.036
10.1021/ct300648t
10.1103/physrevb.34.5390
10.1021/acs.jctc.6b00774
10.1103/physrevlett.45.290
10.1038/nnano.2015.242
10.1021/acs.jctc.6b00074
10.1021/acs.jctc.9b01025
10.1063/1.3624731
10.1103/PhysRevLett.96.226402
10.1063/1.5094244
10.3389/fchem.2019.00377
10.1103/physrevb.86.041110
10.1021/acs.jctc.9b01019
10.1021/acs.jctc.8b00458
10.1103/physrevb.89.155417
10.1021/acs.jctc.0c00896
10.1103/physrevb.94.165109
10.1063/1.462485
10.1007/978-3-319-93701-4_48
10.1021/acs.jctc.9b00436
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Apr 13, 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Apr 13, 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1021/acs.jctc.1c00101
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1549-9626
EndPage 2393
ExternalDocumentID oai_HAL_hal_03211752v1
10_1021_acs_jctc_1c00101
33797245
c500590061
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACIWK
ACS
ACSAX
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
1XC
EJD
IHE
LG6
VOOES
ID FETCH-LOGICAL-a440t-e1dd0b6ac50ee4a11d0e29a0d6f06dc8684c8808059689d072f4b0399aa14bff3
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Wed Sep 04 07:24:58 EDT 2024
Fri Aug 16 22:25:21 EDT 2024
Thu Oct 10 19:55:24 EDT 2024
Fri Aug 23 02:39:04 EDT 2024
Sat Sep 28 08:23:20 EDT 2024
Thu Apr 15 04:07:07 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a440t-e1dd0b6ac50ee4a11d0e29a0d6f06dc8684c8808059689d072f4b0399aa14bff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0201-9093
0000-0003-4713-1174
OpenAccessLink https://hal.science/hal-03211752
PMID 33797245
PQID 2524955527
PQPubID 2048741
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03211752v1
proquest_miscellaneous_2508573781
proquest_journals_2524955527
crossref_primary_10_1021_acs_jctc_1c00101
pubmed_primary_33797245
acs_journals_10_1021_acs_jctc_1c00101
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
ACSAX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-04-13
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref110/cit110
ref111/cit111
ref2/cit2
ref77/cit77
ref113/cit113
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
Farid B. (ref7/cit7) 1999
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
Martin R. (ref10/cit10) 2016
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
References_xml – ident: ref93/cit93
  doi: 10.1021/acs.jctc.9b00820
– ident: ref51/cit51
  doi: 10.1021/acs.jctc.9b00333
– ident: ref54/cit54
  doi: 10.1021/acs.jctc.0c00433
– ident: ref83/cit83
  doi: 10.1063/1.4768233
– ident: ref69/cit69
  doi: 10.1021/jz3021606
– ident: ref31/cit31
  doi: 10.1063/1.4809994
– ident: ref37/cit37
  doi: 10.1021/acs.jctc.5b01238
– ident: ref67/cit67
  doi: 10.1016/j.cpc.2018.09.003
– ident: ref26/cit26
  doi: 10.1021/ct300311x
– ident: ref38/cit38
  doi: 10.1021/acs.jctc.6b00380
– ident: ref6/cit6
  doi: 10.1088/0034-4885/61/3/002
– ident: ref40/cit40
  doi: 10.1021/acs.jctc.6b00114
– ident: ref42/cit42
  doi: 10.1021/acs.jctc.7b00770
– ident: ref85/cit85
  doi: 10.1021/acs.jctc.5b00272
– ident: ref110/cit110
  doi: 10.1103/physrevb.83.144115
– ident: ref114/cit114
  doi: 10.1103/physrevb.62.12573
– ident: ref71/cit71
  doi: 10.1021/acs.jpclett.7b02740
– ident: ref81/cit81
  doi: 10.1063/1.3646921
– ident: ref49/cit49
  doi: 10.1021/acs.jctc.8b00617
– ident: ref48/cit48
  doi: 10.1021/acs.jctc.8b00745
– ident: ref57/cit57
  doi: 10.1063/1.1679012
– ident: ref100/cit100
  doi: 10.1021/ct5001268
– ident: ref109/cit109
  doi: 10.1103/physrevmaterials.1.071001
– ident: ref47/cit47
  doi: 10.1021/acs.jctc.7b00952
– ident: ref99/cit99
  doi: 10.1063/1.454033
– ident: ref52/cit52
  doi: 10.1039/c8mh00921j
– ident: ref111/cit111
  doi: 10.1063/1.438955
– ident: ref22/cit22
  doi: 10.1103/physrevb.83.115123
– ident: ref108/cit108
  doi: 10.1103/physrevlett.119.057401
– ident: ref4/cit4
  doi: 10.1103/physrevb.37.10159
– ident: ref59/cit59
  doi: 10.1063/1.438728
– ident: ref73/cit73
  doi: 10.1103/physrevb.101.035139
– ident: ref33/cit33
  doi: 10.1103/physrevb.90.115130
– ident: ref29/cit29
  doi: 10.1103/physrevb.87.155148
– ident: ref77/cit77
  doi: 10.1016/0009-2614(91)80078-c
– ident: ref17/cit17
  doi: 10.1209/epl/i2006-10266-6
– ident: ref16/cit16
  doi: 10.1103/physrevlett.82.1959
– ident: ref92/cit92
  doi: 10.1021/acs.jctc.8b00944
– ident: ref32/cit32
  doi: 10.1103/physrevb.88.195152
– ident: ref76/cit76
  doi: 10.1021/acs.jctc.0c01282
– ident: ref39/cit39
  doi: 10.1021/acs.jctc.6b00163
– ident: ref35/cit35
  doi: 10.1080/00268976.2015.1025113
– ident: ref66/cit66
  doi: 10.1103/physrevmaterials.1.025602
– ident: ref87/cit87
  doi: 10.4310/amsa.2016.v1.n2.a3
– ident: ref107/cit107
  doi: 10.1021/acs.nanolett.6b01368
– ident: ref113/cit113
  doi: 10.1039/b515623h
– ident: ref25/cit25
  doi: 10.1103/physrevb.84.205415
– ident: ref96/cit96
  doi: 10.1016/s0009-2614(98)00862-8
– ident: ref41/cit41
  doi: 10.1021/acs.jctc.5b00871
– ident: ref103/cit103
  doi: 10.1021/acs.jctc.9b01205
– ident: ref14/cit14
  doi: 10.1103/physrevb.53.3662
– ident: ref13/cit13
  doi: 10.1103/physrevlett.99.246403
– ident: ref106/cit106
  doi: 10.1103/physrevb.94.121405
– ident: ref64/cit64
  doi: 10.1103/physrevlett.109.167801
– ident: ref21/cit21
  doi: 10.1103/physrevb.83.115103
– ident: ref60/cit60
  doi: 10.1016/0009-2614(93)89151-7
– volume-title: Interacting Electrons: Theory and Computational Approaches
  year: 2016
  ident: ref10/cit10
  doi: 10.1017/CBO9781139050807
  contributor:
    fullname: Martin R.
– ident: ref65/cit65
  doi: 10.1021/ct500958p
– ident: ref97/cit97
  doi: 10.1103/physrevb.100.075142
– ident: ref44/cit44
  doi: 10.1021/acs.jctc.7b00586
– ident: ref94/cit94
  doi: 10.1063/1.5090605
– ident: ref61/cit61
  doi: 10.1063/1.1461814
– ident: ref9/cit9
  doi: 10.1039/c3cs00007a
– volume-title: Electron Correlation in the Solid State
  year: 1999
  ident: ref7/cit7
  contributor:
    fullname: Farid B.
– ident: ref1/cit1
  doi: 10.1103/physrev.139.a796
– ident: ref86/cit86
  doi: 10.1016/j.jcp.2015.09.014
– ident: ref62/cit62
  doi: 10.1088/1367-2630/14/5/053020
– ident: ref55/cit55
  doi: 10.1021/acs.jctc.9b01067
– ident: ref95/cit95
  doi: 10.1063/1.1445115
– ident: ref28/cit28
  doi: 10.1021/ct300835h
– ident: ref20/cit20
  doi: 10.1103/physrevb.81.085103
– ident: ref68/cit68
  doi: 10.1103/physrevlett.74.1827
– ident: ref23/cit23
  doi: 10.1103/physrevb.84.155104
– ident: ref58/cit58
  doi: 10.1016/0301-0104(73)80059-x
– ident: ref105/cit105
  doi: 10.1103/physrevapplied.5.034005
– ident: ref98/cit98
  doi: 10.1021/acs.jctc.9b01235
– ident: ref45/cit45
  doi: 10.1088/1361-648x/29/10/103003
– ident: ref18/cit18
  doi: 10.1103/physrevb.77.161306
– ident: ref8/cit8
  doi: 10.1103/revmodphys.74.601
– ident: ref15/cit15
  doi: 10.1103/physrevlett.83.4413
– ident: ref43/cit43
  doi: 10.1021/acs.jctc.6b01150
– ident: ref88/cit88
  doi: 10.1021/acs.jctc.7b00807
– ident: ref75/cit75
  doi: 10.1021/acs.jctc.0c00693
– ident: ref5/cit5
  doi: 10.1103/physrevb.38.7530
– ident: ref115/cit115
  doi: 10.1088/0953-8984/28/43/433002
– ident: ref84/cit84
  doi: 10.1063/1.4768241
– ident: ref36/cit36
  doi: 10.1021/acs.jctc.5b00453
– ident: ref63/cit63
  doi: 10.1021/acs.jctc.6b01215
– ident: ref89/cit89
  doi: 10.1021/acs.jctc.7b01113
– ident: ref82/cit82
  doi: 10.1063/1.4819264
– ident: ref19/cit19
  doi: 10.1103/physrevb.80.241405
– ident: ref79/cit79
  doi: 10.1103/physrevb.90.054115
– ident: ref74/cit74
  doi: 10.1016/j.cpc.2020.107502
– ident: ref80/cit80
  doi: 10.1016/j.chemphys.2008.10.036
– ident: ref30/cit30
  doi: 10.1021/ct300648t
– ident: ref3/cit3
  doi: 10.1103/physrevb.34.5390
– ident: ref101/cit101
  doi: 10.1021/acs.jctc.6b00774
– ident: ref2/cit2
  doi: 10.1103/physrevlett.45.290
– ident: ref104/cit104
  doi: 10.1038/nnano.2015.242
– ident: ref102/cit102
  doi: 10.1021/acs.jctc.6b00074
– ident: ref72/cit72
  doi: 10.1021/acs.jctc.9b01025
– ident: ref24/cit24
  doi: 10.1063/1.3624731
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.96.226402
– ident: ref50/cit50
  doi: 10.1063/1.5094244
– ident: ref11/cit11
  doi: 10.3389/fchem.2019.00377
– ident: ref27/cit27
  doi: 10.1103/physrevb.86.041110
– ident: ref91/cit91
  doi: 10.1021/acs.jctc.9b01019
– ident: ref46/cit46
  doi: 10.1021/acs.jctc.8b00458
– ident: ref34/cit34
  doi: 10.1103/physrevb.89.155417
– ident: ref56/cit56
  doi: 10.1021/acs.jctc.0c00896
– ident: ref70/cit70
  doi: 10.1103/physrevb.94.165109
– ident: ref78/cit78
  doi: 10.1063/1.462485
– ident: ref90/cit90
  doi: 10.1007/978-3-319-93701-4_48
– ident: ref53/cit53
  doi: 10.1021/acs.jctc.9b00436
SSID ssj0033423
Score 2.6021855
Snippet We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without...
We present an implementation of the space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without...
We present an implementation of the GW space-time approach that allows cubicscaling all-electron calculations with standard Gaussian basis sets without...
SourceID hal
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2383
SubjectTerms Chemical Sciences
Condensed Matter
Coulomb potential
Crossovers
Electrons
Flakes (defects)
Mathematical analysis
or physical chemistry
Physics
Scaling
Spectroscopy and Excited States
Theoretical and
Title Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space–Time Approach
URI http://dx.doi.org/10.1021/acs.jctc.1c00101
https://www.ncbi.nlm.nih.gov/pubmed/33797245
https://www.proquest.com/docview/2524955527
https://search.proquest.com/docview/2508573781
https://hal.science/hal-03211752
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEICtdnuAS2nLowvbykVw4ODFdhwnOUZptysEXJaK3iI_RelqWzXZSnDiP_AP-SX1JNld8ar26oxs2WNnxpnJNwi9otInznpBvPKSCM4tAQo5CZaPu9h4azV87_jwUY7PxLvz-HyFyfkzgs_ZW2Wq4VdTmyEzDRBtE23xJJwNcIOKyeKtGwHJrmGjCiBOsrQLSf6rBzBEpvrNEG1-gTTI__mYja0ZPWqLFlUNohBSTC6H81oPzfe_AY5rTGMHbXcuJ87bPbKLNtxsDz0oFpXeHiNVzPWFIZOgrmDIcD6dkpOuOg4-_YwLNTVdka8Kw3dbrPDEATNcTx0-hgz4-hsZXTQZ1HgSLuHu14-f8G8Jzjti-RN0Njr5VIxJV3qBKCFoTRyzlmqpTEydE4oxSx3PFLXSU2lNKlNhUkBSxplMM0sT7oWmwdlRigntffQU9WZXM7ePMDXOUgW331QJxmVw6XWmVfCbnAfYTh-9DmtTdkenKpuoOGdl0xgWrOwWrI_eLPRVXrckjntkXwaFLsUAoT3O35fQRiMOdFJ-G4QGC32vRucxFOMGLF0fHS0fB31AHEXN3NUcZKAsQJSkoYtn7T5ZDhVFSZZwET9fc1Yv0EMOWTJAj4wGqFffzN1BcHNqfdjs7zsFjvWm
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEIBHbTmUC-_HQgGD4MDBW9txnOS4Cl0W2PbAtqK3yE_RdrVFJIsEJ_4D_5BfgiebbAUCBFfHsh2Pkxl7xt8APGUqZN4FSYMOikohHEUKOY2aT_jUBucMnnfsH6jJkXx9nB5vAO_vwsRB1LGlunXiX9AF-C6WndrGDrltuWibcCnNor5Ea6ic9T_fBIF2LSJVIniS551n8nctoD6y9U_6aPM9RkP-ydRsVc74KrxdD7aNNDkbLhsztF9-4Tj-19tcgyudAUpGqxVzHTb84gZsl33et5ugy6U5sXQWhRfVGhnN53Svy5VDXr4jpZ7bLuVXTfAUl2gy80gQN3NPXmA8fPOZjk_aeGoyi1ty__3rN7xpQkYdv_wWHI33DssJ7RIxUC0la6jnzjGjtE2Z91Jz7pgXhWZOBaaczVUubY6AyrRQeeFYJoI0LJo-WnNpQkhuw9bifOHvAmHWO6ZxL5xryYWKBr4pjI5WlA-I3hnAszg3Vfch1VXrIxe8agvjhFXdhA3geS-26sOKy_GXuk-iXNfVEKg9GU0rLGOJQFap-BQr7fRiv-hdpJiaGyF1A3i8fhzlgV4VvfDnS6yDSQKSLI9N3Fktl3VXSZIVmZDpvX98q0ewPTncn1bTVwdv7sNlgfEzyJVMdmCr-bj0D6IB1JiH7ZL_AQYS_gs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEICttkjAhf_CQgGD4MDBi-04TnKM0i4LlAppKfQW-VcUVtuKZJHgxDvwhjwJHq-zCAQIrs7IiT1OZuyZfIPQAyp94awXxCsvieDcEqCQk2D5uMuNt1bDeceLAzk9FM-O8qMNlA__woSH6EJPXQziw1t9an0iDLDH0P7O9GbMTGSjbaIzecFidLZuZsMHOAOoXcSkCoBPsjJFJ3_XA9gk0_1kkzbfQkbkn9zNaHYmF9Hr9QPHbJP342Wvx-bzLyzH_x7RJXQhOaK4Xq2cy2jDLa6gc81Q_-0qUs1SHxsyC0oM5g3X8znZSzVz8JM3uFFzk0p_dRhOc7HCMwckcT13eBfy4vtPZHIc86rxLGzN3bcvX-GPE1wnjvk1dDjZe9VMSSrIQJQQtCeOWUu1VCanzgnFmKWOV4pa6am0ppSlMCWAKvNKlpWlBfdC0-ACKcWE9j7bRluLk4W7gTA1zlIFe-JSCcZlcPR1pVXwppwHBM8IPQxz06YXqmtjrJyzNjaGCWvThI3Qo0F17emKz_EX2ftBt2sxAGtP6_0W2mjGgVnKPwahnUH1P-7OcyjRDbC6Ebq3vhz0AdEVtXAnS5CBYgFZUYYurq-WzPpWWVZUBRf5zX8c1V109uXupN1_evD8FjrPIY0G8JLZDtrqPyzd7eAH9fpOXPXfATqJAJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubic-Scaling+All-Electron+GW+Calculations+with+a+Separable+Density-Fitting+Space%E2%80%93Time+Approach&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Duchemin%2C+Ivan&rft.au=Blase%2C+Xavier&rft.date=2021-04-13&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=17&rft.issue=4&rft.spage=2383&rft.epage=2393&rft_id=info:doi/10.1021%2Facs.jctc.1c00101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_1c00101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon