Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space–Time Approach
We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonu...
Saved in:
Published in | Journal of chemical theory and computation Vol. 17; no. 4; pp. 2383 - 2393 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {r k } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {r k } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons. |
---|---|
AbstractList | We present an implementation of the GW space-time approach that allows cubicscaling all-electron calculations with standard Gaussian basis sets without exploiting any localization nor sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a non-uniform distribution of real-space locations {r k } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {r k } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons. We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {r k } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {r k } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons. We present an implementation of the space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations { } optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained { } distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons. We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {rk} optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {rk} distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons. |
Author | Blase, Xavier Duchemin, Ivan |
AuthorAffiliation | Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim Université Grenoble Alpes, CNRS, Inst NEEL |
AuthorAffiliation_xml | – name: Université Grenoble Alpes, CNRS, Inst NEEL – name: Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim |
Author_xml | – sequence: 1 givenname: Ivan orcidid: 0000-0003-4713-1174 surname: Duchemin fullname: Duchemin, Ivan email: ivan.duchemin@cea.fr organization: Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim – sequence: 2 givenname: Xavier orcidid: 0000-0002-0201-9093 surname: Blase fullname: Blase, Xavier organization: Université Grenoble Alpes, CNRS, Inst NEEL |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33797245$$D View this record in MEDLINE/PubMed https://hal.science/hal-03211752$$DView record in HAL |
BookMark | eNp1kcuO0zAUhi00iLnAnhWKxAYkUo5vib2sylyQKrHoIJbWieNQV24SYgc0O96BN-RJSGinCyRWtqzv_32Ovkty1natI-QlhQUFRt-jjYudTXZBLQAF-oRcUCl0rgtWnJ3uVJ2Tyxh3AJwLxp-Rc85LXTIhLwiuxsrbfGMx-PZrtgwhvw7OpqFrs9sv2QqDHQMm37Ux--HTNsNs43ocsAou--Da6NNDfuNTmtObHq37_fPXvd-7bNn3Q4d2-5w8bTBE9-J4XpHPN9f3q7t8_en242q5zlEISLmjdQ1VgVaCcwIprcExjVAXDRS1VYUSVilQIHWhdA0la0QFXGtEKqqm4Vfk7aF3i8H0g9_j8GA69OZuuTbzG3BGaSnZdzqxbw7sNOK30cVk9j5aFwK2rhujYRKULHmpZvT1P-iuG4d22mSimNBSSlZOFBwoO3QxDq45TUDBzKrMpMrMqsxR1RR5dSweq72rT4FHNxPw7gD8jT5--t--P_qMoCs |
CitedBy_id | crossref_primary_10_1103_PhysRevMaterials_6_064008 crossref_primary_10_1021_acs_jctc_2c00531 crossref_primary_10_1088_2516_1075_acd28e crossref_primary_10_3389_fchem_2021_751054 crossref_primary_10_1063_5_0089317 crossref_primary_10_1088_2516_1075_ac709a crossref_primary_10_1021_acs_jctc_2c00617 crossref_primary_10_1021_acs_jctc_4c00085 crossref_primary_10_1021_acs_jpclett_1c02383 crossref_primary_10_1063_5_0156687 crossref_primary_10_3389_fchem_2021_749779 crossref_primary_10_1063_5_0143291 crossref_primary_10_1021_acs_jctc_4c00075 crossref_primary_10_1063_5_0140101 crossref_primary_10_1063_5_0168755 crossref_primary_10_1063_5_0187213 crossref_primary_10_1021_acs_jctc_1c00874 crossref_primary_10_1063_5_0144469 crossref_primary_10_1021_acs_jpca_3c02834 crossref_primary_10_1021_acs_jctc_3c00615 crossref_primary_10_1021_acs_jctc_3c01264 crossref_primary_10_1063_5_0195934 crossref_primary_10_1021_acs_jpca_1c03762 crossref_primary_10_1039_D3CP04467J crossref_primary_10_1063_5_0088364 crossref_primary_10_1021_acs_jctc_3c01230 crossref_primary_10_21105_joss_05570 crossref_primary_10_1021_acs_chemmater_1c04279 crossref_primary_10_1038_s41524_024_01311_9 crossref_primary_10_1063_5_0130837 crossref_primary_10_1002_wcms_1574 crossref_primary_10_1063_5_0160265 crossref_primary_10_1021_acs_jpclett_2c02051 crossref_primary_10_1063_5_0203818 crossref_primary_10_1039_D3CP00474K crossref_primary_10_1021_acs_jctc_1c00308 crossref_primary_10_1103_PhysRevMaterials_5_095201 crossref_primary_10_1063_5_0159853 crossref_primary_10_1063_5_0196561 crossref_primary_10_3389_fchem_2021_736591 crossref_primary_10_1103_PhysRevB_109_245101 crossref_primary_10_1038_s41524_023_01136_y crossref_primary_10_1021_acs_jctc_2c00241 crossref_primary_10_1063_5_0184406 crossref_primary_10_1021_acs_jctc_4c00216 crossref_primary_10_1021_acs_jctc_2c00686 crossref_primary_10_1021_acs_jctc_2c00366 crossref_primary_10_1002_cphc_202400120 crossref_primary_10_1103_PhysRevLett_132_086401 crossref_primary_10_1021_acs_jctc_2c00927 crossref_primary_10_1021_acs_jctc_3c00674 crossref_primary_10_1021_acs_jpclett_3c00836 crossref_primary_10_1021_acs_jctc_3c00555 crossref_primary_10_1021_acs_jctc_3c00512 crossref_primary_10_1021_acs_jctc_3c00156 crossref_primary_10_1021_acs_jctc_3c00281 crossref_primary_10_1063_5_0087498 crossref_primary_10_1103_PhysRevLett_132_126402 crossref_primary_10_1063_5_0203637 |
Cites_doi | 10.1021/acs.jctc.9b00820 10.1021/acs.jctc.9b00333 10.1021/acs.jctc.0c00433 10.1063/1.4768233 10.1021/jz3021606 10.1063/1.4809994 10.1021/acs.jctc.5b01238 10.1016/j.cpc.2018.09.003 10.1021/ct300311x 10.1021/acs.jctc.6b00380 10.1088/0034-4885/61/3/002 10.1021/acs.jctc.6b00114 10.1021/acs.jctc.7b00770 10.1021/acs.jctc.5b00272 10.1103/physrevb.83.144115 10.1103/physrevb.62.12573 10.1021/acs.jpclett.7b02740 10.1063/1.3646921 10.1021/acs.jctc.8b00617 10.1021/acs.jctc.8b00745 10.1063/1.1679012 10.1021/ct5001268 10.1103/physrevmaterials.1.071001 10.1021/acs.jctc.7b00952 10.1063/1.454033 10.1039/c8mh00921j 10.1063/1.438955 10.1103/physrevb.83.115123 10.1103/physrevlett.119.057401 10.1103/physrevb.37.10159 10.1063/1.438728 10.1103/physrevb.101.035139 10.1103/physrevb.90.115130 10.1103/physrevb.87.155148 10.1016/0009-2614(91)80078-c 10.1209/epl/i2006-10266-6 10.1103/physrevlett.82.1959 10.1021/acs.jctc.8b00944 10.1103/physrevb.88.195152 10.1021/acs.jctc.0c01282 10.1021/acs.jctc.6b00163 10.1080/00268976.2015.1025113 10.1103/physrevmaterials.1.025602 10.4310/amsa.2016.v1.n2.a3 10.1021/acs.nanolett.6b01368 10.1039/b515623h 10.1103/physrevb.84.205415 10.1016/s0009-2614(98)00862-8 10.1021/acs.jctc.5b00871 10.1021/acs.jctc.9b01205 10.1103/physrevb.53.3662 10.1103/physrevlett.99.246403 10.1103/physrevb.94.121405 10.1103/physrevlett.109.167801 10.1103/physrevb.83.115103 10.1016/0009-2614(93)89151-7 10.1017/CBO9781139050807 10.1021/ct500958p 10.1103/physrevb.100.075142 10.1021/acs.jctc.7b00586 10.1063/1.5090605 10.1063/1.1461814 10.1039/c3cs00007a 10.1103/physrev.139.a796 10.1016/j.jcp.2015.09.014 10.1088/1367-2630/14/5/053020 10.1021/acs.jctc.9b01067 10.1063/1.1445115 10.1021/ct300835h 10.1103/physrevb.81.085103 10.1103/physrevlett.74.1827 10.1103/physrevb.84.155104 10.1016/0301-0104(73)80059-x 10.1103/physrevapplied.5.034005 10.1021/acs.jctc.9b01235 10.1088/1361-648x/29/10/103003 10.1103/physrevb.77.161306 10.1103/revmodphys.74.601 10.1103/physrevlett.83.4413 10.1021/acs.jctc.6b01150 10.1021/acs.jctc.7b00807 10.1021/acs.jctc.0c00693 10.1103/physrevb.38.7530 10.1088/0953-8984/28/43/433002 10.1063/1.4768241 10.1021/acs.jctc.5b00453 10.1021/acs.jctc.6b01215 10.1021/acs.jctc.7b01113 10.1063/1.4819264 10.1103/physrevb.80.241405 10.1103/physrevb.90.054115 10.1016/j.cpc.2020.107502 10.1016/j.chemphys.2008.10.036 10.1021/ct300648t 10.1103/physrevb.34.5390 10.1021/acs.jctc.6b00774 10.1103/physrevlett.45.290 10.1038/nnano.2015.242 10.1021/acs.jctc.6b00074 10.1021/acs.jctc.9b01025 10.1063/1.3624731 10.1103/PhysRevLett.96.226402 10.1063/1.5094244 10.3389/fchem.2019.00377 10.1103/physrevb.86.041110 10.1021/acs.jctc.9b01019 10.1021/acs.jctc.8b00458 10.1103/physrevb.89.155417 10.1021/acs.jctc.0c00896 10.1103/physrevb.94.165109 10.1063/1.462485 10.1007/978-3-319-93701-4_48 10.1021/acs.jctc.9b00436 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society Copyright American Chemical Society Apr 13, 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Apr 13, 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 1XC VOOES |
DOI | 10.1021/acs.jctc.1c00101 |
DatabaseName | PubMed CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1549-9626 |
EndPage | 2393 |
ExternalDocumentID | oai_HAL_hal_03211752v1 10_1021_acs_jctc_1c00101 33797245 c500590061 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACIWK ACS ACSAX AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 1XC EJD IHE LG6 VOOES |
ID | FETCH-LOGICAL-a440t-e1dd0b6ac50ee4a11d0e29a0d6f06dc8684c8808059689d072f4b0399aa14bff3 |
IEDL.DBID | ACS |
ISSN | 1549-9618 |
IngestDate | Wed Sep 04 07:24:58 EDT 2024 Fri Aug 16 22:25:21 EDT 2024 Thu Oct 10 19:55:24 EDT 2024 Fri Aug 23 02:39:04 EDT 2024 Sat Sep 28 08:23:20 EDT 2024 Thu Apr 15 04:07:07 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a440t-e1dd0b6ac50ee4a11d0e29a0d6f06dc8684c8808059689d072f4b0399aa14bff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0201-9093 0000-0003-4713-1174 |
OpenAccessLink | https://hal.science/hal-03211752 |
PMID | 33797245 |
PQID | 2524955527 |
PQPubID | 2048741 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_03211752v1 proquest_miscellaneous_2508573781 proquest_journals_2524955527 crossref_primary_10_1021_acs_jctc_1c00101 pubmed_primary_33797245 acs_journals_10_1021_acs_jctc_1c00101 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX ACSAX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-13 |
PublicationDateYYYYMMDD | 2021-04-13 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref110/cit110 ref111/cit111 ref2/cit2 ref77/cit77 ref113/cit113 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 Farid B. (ref7/cit7) 1999 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 Martin R. (ref10/cit10) 2016 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 |
References_xml | – ident: ref93/cit93 doi: 10.1021/acs.jctc.9b00820 – ident: ref51/cit51 doi: 10.1021/acs.jctc.9b00333 – ident: ref54/cit54 doi: 10.1021/acs.jctc.0c00433 – ident: ref83/cit83 doi: 10.1063/1.4768233 – ident: ref69/cit69 doi: 10.1021/jz3021606 – ident: ref31/cit31 doi: 10.1063/1.4809994 – ident: ref37/cit37 doi: 10.1021/acs.jctc.5b01238 – ident: ref67/cit67 doi: 10.1016/j.cpc.2018.09.003 – ident: ref26/cit26 doi: 10.1021/ct300311x – ident: ref38/cit38 doi: 10.1021/acs.jctc.6b00380 – ident: ref6/cit6 doi: 10.1088/0034-4885/61/3/002 – ident: ref40/cit40 doi: 10.1021/acs.jctc.6b00114 – ident: ref42/cit42 doi: 10.1021/acs.jctc.7b00770 – ident: ref85/cit85 doi: 10.1021/acs.jctc.5b00272 – ident: ref110/cit110 doi: 10.1103/physrevb.83.144115 – ident: ref114/cit114 doi: 10.1103/physrevb.62.12573 – ident: ref71/cit71 doi: 10.1021/acs.jpclett.7b02740 – ident: ref81/cit81 doi: 10.1063/1.3646921 – ident: ref49/cit49 doi: 10.1021/acs.jctc.8b00617 – ident: ref48/cit48 doi: 10.1021/acs.jctc.8b00745 – ident: ref57/cit57 doi: 10.1063/1.1679012 – ident: ref100/cit100 doi: 10.1021/ct5001268 – ident: ref109/cit109 doi: 10.1103/physrevmaterials.1.071001 – ident: ref47/cit47 doi: 10.1021/acs.jctc.7b00952 – ident: ref99/cit99 doi: 10.1063/1.454033 – ident: ref52/cit52 doi: 10.1039/c8mh00921j – ident: ref111/cit111 doi: 10.1063/1.438955 – ident: ref22/cit22 doi: 10.1103/physrevb.83.115123 – ident: ref108/cit108 doi: 10.1103/physrevlett.119.057401 – ident: ref4/cit4 doi: 10.1103/physrevb.37.10159 – ident: ref59/cit59 doi: 10.1063/1.438728 – ident: ref73/cit73 doi: 10.1103/physrevb.101.035139 – ident: ref33/cit33 doi: 10.1103/physrevb.90.115130 – ident: ref29/cit29 doi: 10.1103/physrevb.87.155148 – ident: ref77/cit77 doi: 10.1016/0009-2614(91)80078-c – ident: ref17/cit17 doi: 10.1209/epl/i2006-10266-6 – ident: ref16/cit16 doi: 10.1103/physrevlett.82.1959 – ident: ref92/cit92 doi: 10.1021/acs.jctc.8b00944 – ident: ref32/cit32 doi: 10.1103/physrevb.88.195152 – ident: ref76/cit76 doi: 10.1021/acs.jctc.0c01282 – ident: ref39/cit39 doi: 10.1021/acs.jctc.6b00163 – ident: ref35/cit35 doi: 10.1080/00268976.2015.1025113 – ident: ref66/cit66 doi: 10.1103/physrevmaterials.1.025602 – ident: ref87/cit87 doi: 10.4310/amsa.2016.v1.n2.a3 – ident: ref107/cit107 doi: 10.1021/acs.nanolett.6b01368 – ident: ref113/cit113 doi: 10.1039/b515623h – ident: ref25/cit25 doi: 10.1103/physrevb.84.205415 – ident: ref96/cit96 doi: 10.1016/s0009-2614(98)00862-8 – ident: ref41/cit41 doi: 10.1021/acs.jctc.5b00871 – ident: ref103/cit103 doi: 10.1021/acs.jctc.9b01205 – ident: ref14/cit14 doi: 10.1103/physrevb.53.3662 – ident: ref13/cit13 doi: 10.1103/physrevlett.99.246403 – ident: ref106/cit106 doi: 10.1103/physrevb.94.121405 – ident: ref64/cit64 doi: 10.1103/physrevlett.109.167801 – ident: ref21/cit21 doi: 10.1103/physrevb.83.115103 – ident: ref60/cit60 doi: 10.1016/0009-2614(93)89151-7 – volume-title: Interacting Electrons: Theory and Computational Approaches year: 2016 ident: ref10/cit10 doi: 10.1017/CBO9781139050807 contributor: fullname: Martin R. – ident: ref65/cit65 doi: 10.1021/ct500958p – ident: ref97/cit97 doi: 10.1103/physrevb.100.075142 – ident: ref44/cit44 doi: 10.1021/acs.jctc.7b00586 – ident: ref94/cit94 doi: 10.1063/1.5090605 – ident: ref61/cit61 doi: 10.1063/1.1461814 – ident: ref9/cit9 doi: 10.1039/c3cs00007a – volume-title: Electron Correlation in the Solid State year: 1999 ident: ref7/cit7 contributor: fullname: Farid B. – ident: ref1/cit1 doi: 10.1103/physrev.139.a796 – ident: ref86/cit86 doi: 10.1016/j.jcp.2015.09.014 – ident: ref62/cit62 doi: 10.1088/1367-2630/14/5/053020 – ident: ref55/cit55 doi: 10.1021/acs.jctc.9b01067 – ident: ref95/cit95 doi: 10.1063/1.1445115 – ident: ref28/cit28 doi: 10.1021/ct300835h – ident: ref20/cit20 doi: 10.1103/physrevb.81.085103 – ident: ref68/cit68 doi: 10.1103/physrevlett.74.1827 – ident: ref23/cit23 doi: 10.1103/physrevb.84.155104 – ident: ref58/cit58 doi: 10.1016/0301-0104(73)80059-x – ident: ref105/cit105 doi: 10.1103/physrevapplied.5.034005 – ident: ref98/cit98 doi: 10.1021/acs.jctc.9b01235 – ident: ref45/cit45 doi: 10.1088/1361-648x/29/10/103003 – ident: ref18/cit18 doi: 10.1103/physrevb.77.161306 – ident: ref8/cit8 doi: 10.1103/revmodphys.74.601 – ident: ref15/cit15 doi: 10.1103/physrevlett.83.4413 – ident: ref43/cit43 doi: 10.1021/acs.jctc.6b01150 – ident: ref88/cit88 doi: 10.1021/acs.jctc.7b00807 – ident: ref75/cit75 doi: 10.1021/acs.jctc.0c00693 – ident: ref5/cit5 doi: 10.1103/physrevb.38.7530 – ident: ref115/cit115 doi: 10.1088/0953-8984/28/43/433002 – ident: ref84/cit84 doi: 10.1063/1.4768241 – ident: ref36/cit36 doi: 10.1021/acs.jctc.5b00453 – ident: ref63/cit63 doi: 10.1021/acs.jctc.6b01215 – ident: ref89/cit89 doi: 10.1021/acs.jctc.7b01113 – ident: ref82/cit82 doi: 10.1063/1.4819264 – ident: ref19/cit19 doi: 10.1103/physrevb.80.241405 – ident: ref79/cit79 doi: 10.1103/physrevb.90.054115 – ident: ref74/cit74 doi: 10.1016/j.cpc.2020.107502 – ident: ref80/cit80 doi: 10.1016/j.chemphys.2008.10.036 – ident: ref30/cit30 doi: 10.1021/ct300648t – ident: ref3/cit3 doi: 10.1103/physrevb.34.5390 – ident: ref101/cit101 doi: 10.1021/acs.jctc.6b00774 – ident: ref2/cit2 doi: 10.1103/physrevlett.45.290 – ident: ref104/cit104 doi: 10.1038/nnano.2015.242 – ident: ref102/cit102 doi: 10.1021/acs.jctc.6b00074 – ident: ref72/cit72 doi: 10.1021/acs.jctc.9b01025 – ident: ref24/cit24 doi: 10.1063/1.3624731 – ident: ref12/cit12 doi: 10.1103/PhysRevLett.96.226402 – ident: ref50/cit50 doi: 10.1063/1.5094244 – ident: ref11/cit11 doi: 10.3389/fchem.2019.00377 – ident: ref27/cit27 doi: 10.1103/physrevb.86.041110 – ident: ref91/cit91 doi: 10.1021/acs.jctc.9b01019 – ident: ref46/cit46 doi: 10.1021/acs.jctc.8b00458 – ident: ref34/cit34 doi: 10.1103/physrevb.89.155417 – ident: ref56/cit56 doi: 10.1021/acs.jctc.0c00896 – ident: ref70/cit70 doi: 10.1103/physrevb.94.165109 – ident: ref78/cit78 doi: 10.1063/1.462485 – ident: ref90/cit90 doi: 10.1007/978-3-319-93701-4_48 – ident: ref53/cit53 doi: 10.1021/acs.jctc.9b00436 |
SSID | ssj0033423 |
Score | 2.6021855 |
Snippet | We present an implementation of the GW space–time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without... We present an implementation of the space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without... We present an implementation of the GW space-time approach that allows cubicscaling all-electron calculations with standard Gaussian basis sets without... |
SourceID | hal proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2383 |
SubjectTerms | Chemical Sciences Condensed Matter Coulomb potential Crossovers Electrons Flakes (defects) Mathematical analysis or physical chemistry Physics Scaling Spectroscopy and Excited States Theoretical and |
Title | Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space–Time Approach |
URI | http://dx.doi.org/10.1021/acs.jctc.1c00101 https://www.ncbi.nlm.nih.gov/pubmed/33797245 https://www.proquest.com/docview/2524955527 https://search.proquest.com/docview/2508573781 https://hal.science/hal-03211752 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEICtdnuAS2nLowvbykVw4ODFdhwnOUZptysEXJaK3iI_RelqWzXZSnDiP_AP-SX1JNld8ar26oxs2WNnxpnJNwi9otInznpBvPKSCM4tAQo5CZaPu9h4azV87_jwUY7PxLvz-HyFyfkzgs_ZW2Wq4VdTmyEzDRBtE23xJJwNcIOKyeKtGwHJrmGjCiBOsrQLSf6rBzBEpvrNEG1-gTTI__mYja0ZPWqLFlUNohBSTC6H81oPzfe_AY5rTGMHbXcuJ87bPbKLNtxsDz0oFpXeHiNVzPWFIZOgrmDIcD6dkpOuOg4-_YwLNTVdka8Kw3dbrPDEATNcTx0-hgz4-hsZXTQZ1HgSLuHu14-f8G8Jzjti-RN0Njr5VIxJV3qBKCFoTRyzlmqpTEydE4oxSx3PFLXSU2lNKlNhUkBSxplMM0sT7oWmwdlRigntffQU9WZXM7ePMDXOUgW331QJxmVw6XWmVfCbnAfYTh-9DmtTdkenKpuoOGdl0xgWrOwWrI_eLPRVXrckjntkXwaFLsUAoT3O35fQRiMOdFJ-G4QGC32vRucxFOMGLF0fHS0fB31AHEXN3NUcZKAsQJSkoYtn7T5ZDhVFSZZwET9fc1Yv0EMOWTJAj4wGqFffzN1BcHNqfdjs7zsFjvWm |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEIBHbTmUC-_HQgGD4MDBW9txnOS4Cl0W2PbAtqK3yE_RdrVFJIsEJ_4D_5BfgiebbAUCBFfHsh2Pkxl7xt8APGUqZN4FSYMOikohHEUKOY2aT_jUBucMnnfsH6jJkXx9nB5vAO_vwsRB1LGlunXiX9AF-C6WndrGDrltuWibcCnNor5Ea6ic9T_fBIF2LSJVIniS551n8nctoD6y9U_6aPM9RkP-ydRsVc74KrxdD7aNNDkbLhsztF9-4Tj-19tcgyudAUpGqxVzHTb84gZsl33et5ugy6U5sXQWhRfVGhnN53Svy5VDXr4jpZ7bLuVXTfAUl2gy80gQN3NPXmA8fPOZjk_aeGoyi1ty__3rN7xpQkYdv_wWHI33DssJ7RIxUC0la6jnzjGjtE2Z91Jz7pgXhWZOBaaczVUubY6AyrRQeeFYJoI0LJo-WnNpQkhuw9bifOHvAmHWO6ZxL5xryYWKBr4pjI5WlA-I3hnAszg3Vfch1VXrIxe8agvjhFXdhA3geS-26sOKy_GXuk-iXNfVEKg9GU0rLGOJQFap-BQr7fRiv-hdpJiaGyF1A3i8fhzlgV4VvfDnS6yDSQKSLI9N3Fktl3VXSZIVmZDpvX98q0ewPTncn1bTVwdv7sNlgfEzyJVMdmCr-bj0D6IB1JiH7ZL_AQYS_gs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEICttkjAhf_CQgGD4MDBi-04TnKM0i4LlAppKfQW-VcUVtuKZJHgxDvwhjwJHq-zCAQIrs7IiT1OZuyZfIPQAyp94awXxCsvieDcEqCQk2D5uMuNt1bDeceLAzk9FM-O8qMNlA__woSH6EJPXQziw1t9an0iDLDH0P7O9GbMTGSjbaIzecFidLZuZsMHOAOoXcSkCoBPsjJFJ3_XA9gk0_1kkzbfQkbkn9zNaHYmF9Hr9QPHbJP342Wvx-bzLyzH_x7RJXQhOaK4Xq2cy2jDLa6gc81Q_-0qUs1SHxsyC0oM5g3X8znZSzVz8JM3uFFzk0p_dRhOc7HCMwckcT13eBfy4vtPZHIc86rxLGzN3bcvX-GPE1wnjvk1dDjZe9VMSSrIQJQQtCeOWUu1VCanzgnFmKWOV4pa6am0ppSlMCWAKvNKlpWlBfdC0-ACKcWE9j7bRluLk4W7gTA1zlIFe-JSCcZlcPR1pVXwppwHBM8IPQxz06YXqmtjrJyzNjaGCWvThI3Qo0F17emKz_EX2ftBt2sxAGtP6_0W2mjGgVnKPwahnUH1P-7OcyjRDbC6Ebq3vhz0AdEVtXAnS5CBYgFZUYYurq-WzPpWWVZUBRf5zX8c1V109uXupN1_evD8FjrPIY0G8JLZDtrqPyzd7eAH9fpOXPXfATqJAJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubic-Scaling+All-Electron+GW+Calculations+with+a+Separable+Density-Fitting+Space%E2%80%93Time+Approach&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Duchemin%2C+Ivan&rft.au=Blase%2C+Xavier&rft.date=2021-04-13&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=17&rft.issue=4&rft.spage=2383&rft.epage=2393&rft_id=info:doi/10.1021%2Facs.jctc.1c00101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_1c00101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |