Thermal Decomposition Mechanisms of the Methoxyphenols: Formation of Phenol, Cyclopentadienone, Vinylacetylene, and Acetylene
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR)....
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 115; no. 46; pp. 13381 - 13389 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50–100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC6H4OCH3 → HOC6H4O + CH3. Decarbonylation of the HOC6H4O radical produces the hydroxycyclopentadienyl radical, C5H4OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C5H4OH radical loses a H atom to produce cyclopentadienone, C5H4O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C5H4O → [CO + 2 HCCH] or [CO + HCC–CHCH2]. The formation of C5H4O, HCCH, and CH2CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C6H5OH in the molecular beam: C6H5OH + λ275.1 nm → [C6H5OH Ã] + λ275.1nm → C6H5OH+. From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH3 + C5H4OH → [CH3–C5H4OH]* → C6H5OH + 2H. |
---|---|
AbstractList | The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC sub(6)H sub(4)OCH sub(3)) have been studied using a heated SiC microtubular ( mu -tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC mu -tubular reactor is subject to a free expansion after a residence time of approximately 50-100 mu s. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC sub(6)H sub(4)OCH sub(3 ) arrow right HOC sub(6)H sub(4)O + CH sub(3). Decarbonylation of the HOC sub(6)H sub(4)O radical produces the hydroxycyclopentadienyl radical, C sub(5)H sub(4)OH. As the temperature of the mu -tubular reactor is raised to 1275 K, the C sub(5)H sub(4)OH radical loses a H atom to produce cyclopentadienone, C sub(5)H sub(4)=O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C sub(5)H sub(4)=O arrow right [CO + 2 HC identical with CH] or [CO + HC identical with C-CH=CH sub(2)]. The formation of C sub(5)H sub(4)=O, HCCH, and CH sub(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C sub(6)H sub(5)OH in the molecular beam: C sub(6)H sub(5)OH + lambda sub(275.1 nm) arrow right [C sub(6)H sub(5)OH A] + lambda sub(275.1nm) arrow right C sub(6)H sub(5)OH super(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH sub(3) + C sub(5)H sub(4)OH arrow right [CH sub(3)-C sub(5)H sub(4)OH]* arrow right C sub(6)H sub(5)OH + 2H. The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H. The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50–100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC6H4OCH3 → HOC6H4O + CH3. Decarbonylation of the HOC6H4O radical produces the hydroxycyclopentadienyl radical, C5H4OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C5H4OH radical loses a H atom to produce cyclopentadienone, C5H4O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C5H4O → [CO + 2 HCCH] or [CO + HCC–CHCH2]. The formation of C5H4O, HCCH, and CH2CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C6H5OH in the molecular beam: C6H5OH + λ275.1 nm → [C6H5OH Ã] + λ275.1nm → C6H5OH+. From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH3 + C5H4OH → [CH3–C5H4OH]* → C6H5OH + 2H. The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H. |
Author | Robichaud, David J Nimlos, Mark R Scheer, Adam M Mukarakate, Calvin Ellison, G. Barney |
Author_xml | – sequence: 1 givenname: Adam M surname: Scheer fullname: Scheer, Adam M – sequence: 2 givenname: Calvin surname: Mukarakate fullname: Mukarakate, Calvin – sequence: 3 givenname: David J surname: Robichaud fullname: Robichaud, David J – sequence: 4 givenname: Mark R surname: Nimlos fullname: Nimlos, Mark R – sequence: 5 givenname: G. Barney surname: Ellison fullname: Ellison, G. Barney email: barney@jila.colorado.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21928823$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1259440$$D View this record in Osti.gov |
BookMark | eNp9kU1v1DAQhi1URD_gwB9AERKCSg31R5zE3KqlpUhFcChcrakzUbxK7DT2SuTAf8fZ7XJAVS-2Z_TMO-N5j8mB8w4Jec3oR0Y5O1-PnJY1rcQzcsQkp7nkTB6kN61VLkuhDslxCGtKKRO8eEEOOVO8rrk4In9uO5wG6LPPaPww-mCj9S77hqYDZ8MQMt9mscOUiZ3_PY8dOt-HT9mVT2VbNgE_ttmzbDWb3o_oIjQWlyHPsl_WzT0YjHOPSwyuyS724UvyvIU-4KuH-4T8vLq8XV3nN9-_fF1d3ORQFDTmTUs51lKoinHJawqMyrKkqpSs4KXE5q5SUHNVCSgFKmihkBVAgpAXNQhxQt7udH2IVgdjY_qf8c6hiTppqtQmQe930Dj5-w2GqAcbDPY9OPSboNXStOK8TuSHJ0lWSSHTQRf0zQO6uRuw0eNkB5hmvXcgAec7wEw-hAlbnabbLjZOYHvNqF481v88ThWn_1XsRR9j3-1YMEGv_WZyac2PcH8BRPiw3g |
CitedBy_id | crossref_primary_10_1016_j_jaap_2015_07_018 crossref_primary_10_1063_1674_0068_cjcp1811257 crossref_primary_10_1016_j_fuel_2025_134997 crossref_primary_10_1016_j_jaap_2021_105410 crossref_primary_10_1063_1_5046085 crossref_primary_10_1002_cphc_202100808 crossref_primary_10_1016_j_combustflame_2017_05_015 crossref_primary_10_1016_j_fuproc_2018_09_022 crossref_primary_10_1038_s41467_023_40179_z crossref_primary_10_1021_jp501117n crossref_primary_10_1063_1_4879615 crossref_primary_10_1021_acs_jpca_2c00766 crossref_primary_10_1021_acs_jpca_2c04966 crossref_primary_10_1016_j_jaap_2016_05_019 crossref_primary_10_1021_acs_jpca_7b08112 crossref_primary_10_1021_acs_jpca_7b07582 crossref_primary_10_1021_jz5010895 crossref_primary_10_1016_j_jaap_2015_08_020 crossref_primary_10_1016_j_fuel_2018_07_105 crossref_primary_10_1021_acs_jpca_5b09004 crossref_primary_10_1039_C9CP03519B crossref_primary_10_1002_wene_326 crossref_primary_10_1021_jp511390f crossref_primary_10_1016_j_jaap_2016_07_020 crossref_primary_10_3389_fchem_2019_00326 crossref_primary_10_1016_j_fuel_2018_05_162 crossref_primary_10_1038_ncomms15946 crossref_primary_10_1016_j_biombioe_2017_04_004 crossref_primary_10_1021_acs_jpca_7b09411 crossref_primary_10_1021_acs_iecr_5b01289 crossref_primary_10_1021_jp5036579 crossref_primary_10_1063_1_3675902 crossref_primary_10_1016_j_fuproc_2022_107473 crossref_primary_10_1021_acs_energyfuels_2c01455 crossref_primary_10_1021_ie502002t crossref_primary_10_1039_D2CP02741K crossref_primary_10_1016_j_jms_2018_05_001 crossref_primary_10_1016_j_fuel_2018_09_025 crossref_primary_10_1016_j_jaap_2016_12_023 crossref_primary_10_1021_acs_energyfuels_5b02131 crossref_primary_10_1039_D1RA06743E crossref_primary_10_1134_S0010508218010021 crossref_primary_10_1016_j_biombioe_2018_02_006 crossref_primary_10_1021_acs_jpca_7b02629 crossref_primary_10_1021_acs_jpca_8b03201 crossref_primary_10_1002_chem_201404271 crossref_primary_10_1002_chem_202001388 crossref_primary_10_1016_j_fuel_2013_01_022 crossref_primary_10_1016_j_molstruc_2018_05_098 crossref_primary_10_1016_j_cattod_2022_06_006 crossref_primary_10_1039_D4GC03143A crossref_primary_10_1063_1_4759050 crossref_primary_10_1021_jp5001804 crossref_primary_10_1002_chem_201700402 crossref_primary_10_1021_acs_energyfuels_1c01712 crossref_primary_10_1021_ja405892y crossref_primary_10_1016_j_cplett_2014_11_020 crossref_primary_10_1002_cssc_201600105 crossref_primary_10_1016_j_jclepro_2017_06_105 crossref_primary_10_1002_cssc_201400079 crossref_primary_10_1021_acsomega_0c03506 crossref_primary_10_1016_j_apenergy_2013_04_082 crossref_primary_10_1080_0144235X_2014_967951 crossref_primary_10_1039_C9CY02587A crossref_primary_10_1039_D4SE00878B crossref_primary_10_1021_acs_jpca_8b06301 crossref_primary_10_1063_1_4867896 crossref_primary_10_1021_acs_jpca_0c02218 crossref_primary_10_1021_ef401760c crossref_primary_10_1016_j_combustflame_2017_10_020 crossref_primary_10_1016_j_combustflame_2013_11_024 crossref_primary_10_1021_acs_iecr_5b01022 crossref_primary_10_1021_jp411257k crossref_primary_10_1002_chem_201700639 crossref_primary_10_1007_s12649_017_9925_x crossref_primary_10_1021_acs_jpca_6b05168 |
Cites_doi | 10.1002/cber.19851180819 10.1021/ar00021a001 10.1073/pnas.0912121107 10.1021/ja00532a055 10.1021/jp903401h 10.1038/380227a0 10.1016/0584-8539(80)80177-2 10.1063/1.1143254 10.1351/pac198658010095 10.1021/ar020230d 10.1038/34602 10.1016/j.theochem.2010.07.036 10.1016/j.rser.2006.07.015 10.1021/jp020782d 10.1063/1.1724828 10.1016/j.proci.2004.07.007 10.1021/j100273a039 10.1021/j100402a014 10.1021/jp0627426 10.1063/1.469801 10.1021/ja00186a042 10.1021/jp982177+ 10.1016/0022-2852(67)90105-1 10.1063/1.1724040 10.1021/j100369a031 10.1126/science.1092805 10.1002/kin.550171002 10.1021/ja00462a031 10.1039/c29710000770 10.1002/kin.550210706 10.1016/0022-2860(88)80245-X 10.1007/978-94-009-4099-4 10.1021/jp201817n 10.1016/S0016-2361(01)00059-X 10.1021/jp0454671 10.1063/1.2227378 10.1021/ja00271a008 10.1021/j100275a014 10.1021/jp073999m 10.1021/ja01488a032 10.1016/S1352-2310(96)00105-7 10.1021/ja804198a 10.1021/jp102046p 10.1063/1.1145641 10.1039/b919644g 10.1063/1.1574397 10.1155/1997/53174 10.1016/S0082-0784(00)80584-6 10.1002/mas.10072 10.1021/jp1031064 10.1021/jp806365r 10.1063/1.452303 10.1063/1.477924 10.1016/S1352-2310(97)85197-7 10.1016/j.jaap.2010.02.009 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
CorporateAuthor | National Renewable Energy Lab. (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – name: National Renewable Energy Lab. (NREL), Golden, CO (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 OTOTI |
DOI | 10.1021/jp2068073 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 13389 |
ExternalDocumentID | 1259440 21928823 10_1021_jp2068073 c973434672 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a440t-df02e85397125280a10566096514265edb79a82973a63e9afa457aa056e248a33 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Fri May 19 00:41:51 EDT 2023 Fri Jul 11 01:35:27 EDT 2025 Thu Jul 10 22:35:44 EDT 2025 Thu Apr 03 07:09:27 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Tue Jul 01 01:27:00 EDT 2025 Thu Aug 27 13:42:44 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a440t-df02e85397125280a10566096514265edb79a82973a63e9afa457aa056e248a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 NREL/JA-5100-53724 USDOE National Science Foundation (NSF) AC36-08GO28308 |
PMID | 21928823 |
PQID | 1753517508 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1259440 proquest_miscellaneous_905667228 proquest_miscellaneous_1753517508 pubmed_primary_21928823 crossref_citationtrail_10_1021_jp2068073 crossref_primary_10_1021_jp2068073 acs_journals_10_1021_jp2068073 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-24 |
PublicationDateYYYYMMDD | 2011-11-24 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Matsen F. A. (ref48/cit48) 1945; 13 Blanksby S. J. (ref52/cit52) 2003; 36 Lamprecht A. (ref51/cit51) 2000; 28 Flood W. E. (ref9/cit9) 1967 Friderichsen A. V. (ref30/cit30) 2001; 80 Suryan M. M. (ref32/cit32) 1989; 111 Jenkin M. E. (ref54/cit54) 1997; 31 Nowakowski D. J. (ref6/cit6) 2010; 88 Whitman D. W. (ref43/cit43) 1980; 102 Reale S. (ref5/cit5) 2004; 23 Blush J. A. (ref11/cit11) 1992; 25 Kohn D. W. (ref10/cit10) 1992; 63 Vasiliou A. (ref14/cit14) 2009; 113 Lovell A. B. (ref28/cit28) 1989; 21 Saunders S. M. (ref55/cit55) 1997; 31 Tørneng E. (ref42/cit42) 1980; 36 Chapman O. L. (ref36/cit36) 1971 Yeung L. Y. (ref53/cit53) 2005; 109 Rohrs H. W. (ref12/cit12) 1995; 66 Nix M. G. D. (ref62/cit62) 2006 Maier G. (ref38/cit38) 1986; 58 Montgomery J. A. (ref60/cit60) 1999; 110 Snow T. P. (ref2/cit2) 1998; 391 Mebel A. M. (ref3/cit3) 2008; 130 Scheer A. M. (ref15/cit15) 2010; 114 Claeys M. (ref59/cit59) 2004; 303 Maier G. (ref37/cit37) 1985; 118 Axson J. L. (ref57/cit57) 2010; 107 Chen P. (ref22/cit22) 1987; 86 Lipert R. J. (ref50/cit50) 1990; 94 Cook D. J. (ref1/cit1) 1996; 380 Voter A. F. (ref44/cit44) 1986; 108 Lockyer N. P. (ref25/cit25) 1997; 17 Pedley J. B. (ref63/cit63) 1986 Mebel A. M. (ref41/cit41) 2006; 125 Han J. (ref4/cit4) 2008; 12 Ruscic B. (ref64/cit64) 2005; 34 Shukla B. (ref18/cit18) 2010; 12 Shukla B. (ref20/cit20) 2011; 115 Depuy C. H. (ref35/cit35) 1960; 82 Alsoufi A. (ref33/cit33) 2010; 958 Chen P. (ref23/cit23) 1994 Lin C. Y. (ref27/cit27) 1986; 90 Koenig T. (ref39/cit39) 1977; 99 Carpita N. (ref7/cit7) 2000 Zhang X. (ref13/cit13) 2003; 74 Klein M. T. (ref46/cit46) 1980; 25 ref40/cit40 Chen P. (ref21/cit21) 1986; 90 Bist H. D. (ref49/cit49) 1967; 24 Tylli H. (ref34/cit34) 1988; 176 Hatakeyama S. (ref56/cit56) 1986; 90 Daily J. W. (ref24/cit24) 2011 Dubnikova F. (ref16/cit16) 2002; 106 Gunion R. F. (ref45/cit45) 1995; 103 Croteau R. (ref8/cit8) 2000 Tranter R. S. (ref19/cit19) 2010; 114 Lin C. Y. (ref26/cit26) 1985; 17 Brezinsky K. (ref29/cit29) 1998; 102 Khachatryan L. (ref31/cit31) 2008; 112 Vaida V. (ref58/cit58) 2009; 113 ref47/cit47 Lifshitz A. (ref17/cit17) 2005; 30 Angel L. A. (ref61/cit61) 2006; 110 |
References_xml | – volume: 118 start-page: 3196 year: 1985 ident: ref37/cit37 publication-title: Chem. Ber. doi: 10.1002/cber.19851180819 – volume: 25 start-page: 385 year: 1992 ident: ref11/cit11 publication-title: Acc. Chem. Res. doi: 10.1021/ar00021a001 – volume: 107 start-page: 6687 year: 2010 ident: ref57/cit57 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0912121107 – volume: 102 start-page: 4272 year: 1980 ident: ref43/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00532a055 – volume: 113 start-page: 8540 year: 2009 ident: ref14/cit14 publication-title: J. Phys. Chem. A doi: 10.1021/jp903401h – volume: 380 start-page: 227 year: 1996 ident: ref1/cit1 publication-title: Nature doi: 10.1038/380227a0 – volume: 36 start-page: 975 year: 1980 ident: ref42/cit42 publication-title: Spectrochim. Acta, Part A doi: 10.1016/0584-8539(80)80177-2 – start-page: 1250 volume-title: Biochemistry and Molecular Biology of Plants year: 2000 ident: ref8/cit8 – ident: ref47/cit47 – volume: 63 start-page: 4003 year: 1992 ident: ref10/cit10 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1143254 – volume: 58 start-page: 95 year: 1986 ident: ref38/cit38 publication-title: Pure Appl. Chem. doi: 10.1351/pac198658010095 – volume: 36 start-page: 255 year: 2003 ident: ref52/cit52 publication-title: Acc. Chem. Res. doi: 10.1021/ar020230d – volume: 391 start-page: 259 year: 1998 ident: ref2/cit2 publication-title: Nature doi: 10.1038/34602 – volume: 958 start-page: 106 year: 2010 ident: ref33/cit33 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/j.theochem.2010.07.036 – volume: 12 start-page: 397 year: 2008 ident: ref4/cit4 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2006.07.015 – volume: 106 start-page: 8173 year: 2002 ident: ref16/cit16 publication-title: J. Phys. Chem. A doi: 10.1021/jp020782d – ident: ref40/cit40 – volume: 34 start-page: 573 year: 2005 ident: ref64/cit64 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.1724828 – volume: 30 start-page: 1039 year: 2005 ident: ref17/cit17 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2004.07.007 – volume: 25 start-page: 80 year: 1980 ident: ref46/cit46 publication-title: Abstr. Pap. Am. Chem. Soc., Div. Fuel Chem. – volume: 90 start-page: 173 year: 1986 ident: ref56/cit56 publication-title: J. Phys. Chem. doi: 10.1021/j100273a039 – volume: 90 start-page: 2319 year: 1986 ident: ref21/cit21 publication-title: J. Phys. Chem. doi: 10.1021/j100402a014 – volume: 110 start-page: 10392 year: 2006 ident: ref61/cit61 publication-title: J. Phys. Chem. A doi: 10.1021/jp0627426 – volume: 103 start-page: 1250 year: 1995 ident: ref45/cit45 publication-title: J. Chem. Phys. doi: 10.1063/1.469801 – volume: 111 start-page: 1423 year: 1989 ident: ref32/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00186a042 – start-page: 371 volume-title: Unimolecular and Bimolecular Ion–Molecule Reaction Dynamics year: 1994 ident: ref23/cit23 – volume: 102 start-page: 8614 year: 1998 ident: ref29/cit29 publication-title: J. Phys. Chem. A doi: 10.1021/jp982177+ – volume: 24 start-page: 413 year: 1967 ident: ref49/cit49 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(67)90105-1 – volume: 13 start-page: 309 year: 1945 ident: ref48/cit48 publication-title: J. Chem. Phys. doi: 10.1063/1.1724040 – volume: 94 start-page: 2358 year: 1990 ident: ref50/cit50 publication-title: J. Phys. Chem. doi: 10.1021/j100369a031 – volume: 303 start-page: 1173 year: 2004 ident: ref59/cit59 publication-title: Science doi: 10.1126/science.1092805 – volume: 17 start-page: 1025 year: 1985 ident: ref26/cit26 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.550171002 – volume: 99 start-page: 6663 year: 1977 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00462a031 – start-page: 770 year: 1971 ident: ref36/cit36 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c29710000770 – volume: 21 start-page: 547 year: 1989 ident: ref28/cit28 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.550210706 – volume: 176 start-page: 245 year: 1988 ident: ref34/cit34 publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(88)80245-X – volume-title: Thermochemistry of Organic Compounds year: 1986 ident: ref63/cit63 doi: 10.1007/978-94-009-4099-4 – volume: 115 start-page: 5284 year: 2011 ident: ref20/cit20 publication-title: J. Phys. Chem. A doi: 10.1021/jp201817n – volume: 80 start-page: 1747 year: 2001 ident: ref30/cit30 publication-title: Fuel doi: 10.1016/S0016-2361(01)00059-X – volume: 109 start-page: 1879 year: 2005 ident: ref53/cit53 publication-title: J. Phys. Chem. A doi: 10.1021/jp0454671 – volume: 125 year: 2006 ident: ref41/cit41 publication-title: J. Chem. Phys. doi: 10.1063/1.2227378 – volume: 108 start-page: 2830 year: 1986 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00271a008 – volume: 90 start-page: 425 year: 1986 ident: ref27/cit27 publication-title: J. Phys. Chem. doi: 10.1021/j100275a014 – start-page: 125 year: 2006 ident: ref62/cit62 publication-title: J. Chem. Phys. – volume: 112 start-page: 481 year: 2008 ident: ref31/cit31 publication-title: J. Phys. Chem. A doi: 10.1021/jp073999m – start-page: 52 volume-title: Biochemistry and Molecular Biology of Plants year: 2000 ident: ref7/cit7 – year: 2011 ident: ref24/cit24 publication-title: Int. J. Chem. Kinet. – volume: 82 start-page: 631 year: 1960 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01488a032 – volume: 31 start-page: 81 year: 1997 ident: ref54/cit54 publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(96)00105-7 – volume: 130 start-page: 13618 year: 2008 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804198a – volume: 114 start-page: 9043 year: 2010 ident: ref15/cit15 publication-title: J. Phys. Chem. A doi: 10.1021/jp102046p – volume: 66 start-page: 2430 year: 1995 ident: ref12/cit12 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1145641 – volume: 12 start-page: 2427 year: 2010 ident: ref18/cit18 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b919644g – volume: 74 start-page: 3077 year: 2003 ident: ref13/cit13 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1574397 – volume: 17 start-page: 139 year: 1997 ident: ref25/cit25 publication-title: Laser Chem. doi: 10.1155/1997/53174 – volume: 28 start-page: 1817 year: 2000 ident: ref51/cit51 publication-title: Proc. Comb. Inst. doi: 10.1016/S0082-0784(00)80584-6 – volume-title: The Dictionary of Chemical Names year: 1967 ident: ref9/cit9 – volume: 23 start-page: 87 year: 2004 ident: ref5/cit5 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.10072 – volume: 114 start-page: 8240 year: 2010 ident: ref19/cit19 publication-title: J. Phys. Chem. A doi: 10.1021/jp1031064 – volume: 113 start-page: 5 year: 2009 ident: ref58/cit58 publication-title: J. Phys. Chem. A doi: 10.1021/jp806365r – volume: 86 start-page: 516 year: 1987 ident: ref22/cit22 publication-title: J. Chem. Phys. doi: 10.1063/1.452303 – volume: 110 start-page: 2822 year: 1999 ident: ref60/cit60 publication-title: J. Chem. Phys. doi: 10.1063/1.477924 – volume: 31 start-page: 1249 year: 1997 ident: ref55/cit55 publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(97)85197-7 – volume: 88 start-page: 53 year: 2010 ident: ref6/cit6 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2010.02.009 |
SSID | ssj0001324 |
Score | 2.3449526 |
Snippet | The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The... The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The... The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC sub(6)H sub(4)OCH sub(3)) have been studied using a heated SiC microtubular ( mu -tubular)... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13381 |
SubjectTerms | 09 BIOMASS FUELS A: Kinetics, Spectroscopy Acetylene - analogs & derivatives Acetylene - chemistry Cobalt combustion Cyclopentanes - chemistry Decomposition gas phase gasification INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Molecular Structure Phenol Phenols - chemical synthesis Phenols - chemistry Powder injection molding Radicals Reactors Silicon carbide Spectroscopy Temperature thermochemical decomposition |
Title | Thermal Decomposition Mechanisms of the Methoxyphenols: Formation of Phenol, Cyclopentadienone, Vinylacetylene, and Acetylene |
URI | http://dx.doi.org/10.1021/jp2068073 https://www.ncbi.nlm.nih.gov/pubmed/21928823 https://www.proquest.com/docview/1753517508 https://www.proquest.com/docview/905667228 https://www.osti.gov/biblio/1259440 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R7YFeaEt5bGmRaXvgQGhwnFdvq4UVQqJCAipukeN4VWBJUJM9bCX-O9_ksWpVll4s2Zoofow939jzIPqSpVnqjw2UHIOiVlC0NtaJQ2CHVGmgVPZGPv0eHF-qkyv_aok-L3jBlwdfb-4l54cIvRf0UgZRyBrWYHg-P26hTqnGij52fMjbLnzQn5-y6DHlX6KnV2ALLYaVtXgZvabDzkmnsSq53Z9W6b75_W_Mxud6_oZWWngpBg0_vKUlm6_S8rDL6vaOHsAXOIsn4tCyNXlrsiVOLXsAX5d3pSjGAqAQLdVP9IVNwIpJ-U2MOi9HJjirW_fEcGYmnH-rqg3HitzuiR_X-Yyv5qsZ5BnqOs_EoKuu0eXo6GJ47LQpGBytlFs52diVFhI9DgGEZORqwLEg4IgxBxDtvs3SMNbsnevpwLOxHmvlh1qDyEoVac9bpx7_fZOE6xsVozX1gcFAF3FqGS2NF9ggU57q0zbWKGm3UJnUr-MS2kk3i33a7ZYvMW0Ac86jMXmK9NOc9L6J2vEU0RbzQAKowfFyDRsWmSrBQGOMvU87HWskWCJ-RtG5LaboGDQ8H4Ub9UksoIl5mkIpQbLRsNW8HxAREmqN9_5_492iV_UFdu34-IF61a-p_QgEVKXb9Q54BA7w_Tc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9B9zBegI2vMhge4oGHZWSOkzS8VR1VB-uExIb2FjmOKwYlmUj6UCT-d37nJN1Am0CKIsW6JGfnnPudfR9Er_Isz8KZgZFjcHIGitbGekkM7JApDZTK0cjT42hyqt6fhWdtmhyOhQETFZ5UuU38y-wC-2--XkguExEHt2kNIESyoTUcfVr9dWFVqcaZPvFCqN0ui9DVW1kDmeoPDdQrMZNuRpdOy4zvNeWKHH_OueTb3qLO9szPv1I3_l8H7tPdFmyKYSMdG3TLFpu0PupqvD2gX5AS_Jnn4sCyb3nrwCWmluOBz6vvlShnAhARLfUXsMQOYeW8eivGXcwjE3x0rbtitDRzrsZVOzeysrC74vN5seSF-noJ7YZrXeRi2F0-pNPxu5PRxGsLMnhaKb_28pkvLfR7EgMWyYGvAc6iiPPH7EPRhzbP4kRzrG6go8AmeqZVGGsNIivVQAfBI-rx25-Q8EOjErRmIRAZ6AZcaEZLE0Q2ylWg-rSNQUzbCVWlbq9cwlbpRrFPr7uvmJo2nTlX1ZhfR_pyRXrR5PC4jmiLRSEF8ODsuYbdjEydoqMJ-t6nnU5CUnwi3lTRhS0XYAz2XoiTP-iTuIEm4WGKpQTJ40a6VnxAYUgYOcHTf_X3Ba1PTqZH6dHh8YctuuOWtnFI9Yx69Y-FfQ5sVGfbblL8BvbMBaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BIgGXUp5dSotBHDg0JXWcZMNttWVVHi2VoKi3yHEc9bFNViR7WCT-O994kxWtWoEURYo1ScbOOPONPQ-iN3mWZ2FhYOQYnJyBorWxXhIDO2RKA6VyNPL-QbR3pD4dh8etocixMGCixpNqt4nPs3qaF22GgZ13Z1PJpSLi4Dbd4e06NraGo2_LPy8sK7VwqE-8EKq3yyT0962shUx9SQv1KsymmxGm0zTjB_R1yaNzMDnfnjXZtvl1JX3j_3dilVZa0CmGCyl5SLds-Yjujbpab4_pN6QFf-iJ2LXsY946col9y3HBp_VFLapCACqipTkBW-wYVk3q92LcxT4ywaFr3RKjuZlwVa7GuZNVpd0SP07LOS_YN3NoOVzrMhfD7vIJHY0_fB_teW1hBk8r5TdeXvjSQs8nMeCRHPgaIC2KOI_MDhR-aPMsTjTH7AY6CmyiC63CWGsQWakGOgieUo_fvkbCD41K0JqFQGagG3DBGS1NENkoV4Hq0yYGMm0nVp26PXMJm6UbxT697b5katq05lxdY3Id6esl6XSRy-M6onUWhxQAhLPoGnY3Mk2Kjiboe59edVKS4hPx5ooubTUDY7D7Qpz8QZ_EDTQJD1MsJUieLSRsyQcUh4SxEzz_V39f0t3D3XH65ePB53W671a4cUj1gnrNz5ndAERqsk03L_4AjPEILw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Decomposition+Mechanisms+of+the+Methoxyphenols%3A+Formation+of+Phenol%2C+Cyclopentadienone%2C+Vinylacetylene%2C+and+Acetylene&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Scheer%2C+Adam+M.&rft.au=Mukarakate%2C+Calvin&rft.au=Robichaud%2C+David+J.&rft.au=Nimlos%2C+Mark+R.&rft.date=2011-11-24&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=115&rft.issue=46&rft.spage=13381&rft.epage=13389&rft_id=info:doi/10.1021%2Fjp2068073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp2068073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |