Thermal Decomposition Mechanisms of the Methoxyphenols: Formation of Phenol, Cyclopentadienone, Vinylacetylene, and Acetylene

The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR)....

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 115; no. 46; pp. 13381 - 13389
Main Authors Scheer, Adam M, Mukarakate, Calvin, Robichaud, David J, Nimlos, Mark R, Ellison, G. Barney
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50–100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC6H4OCH3 → HOC6H4O + CH3. Decarbonylation of the HOC6H4O radical produces the hydroxycyclopentadienyl radical, C5H4OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C5H4OH radical loses a H atom to produce cyclopentadienone, C5H4O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C5H4O → [CO + 2 HCCH] or [CO + HCC–CHCH2]. The formation of C5H4O, HCCH, and CH2CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C6H5OH in the molecular beam: C6H5OH + λ275.1 nm → [C6H5OH Ã] + λ275.1nm → C6H5OH+. From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH3 + C5H4OH → [CH3–C5H4OH]* → C6H5OH + 2H.
AbstractList The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC sub(6)H sub(4)OCH sub(3)) have been studied using a heated SiC microtubular ( mu -tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC mu -tubular reactor is subject to a free expansion after a residence time of approximately 50-100 mu s. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC sub(6)H sub(4)OCH sub(3 ) arrow right HOC sub(6)H sub(4)O + CH sub(3). Decarbonylation of the HOC sub(6)H sub(4)O radical produces the hydroxycyclopentadienyl radical, C sub(5)H sub(4)OH. As the temperature of the mu -tubular reactor is raised to 1275 K, the C sub(5)H sub(4)OH radical loses a H atom to produce cyclopentadienone, C sub(5)H sub(4)=O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C sub(5)H sub(4)=O arrow right [CO + 2 HC identical with CH] or [CO + HC identical with C-CH=CH sub(2)]. The formation of C sub(5)H sub(4)=O, HCCH, and CH sub(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C sub(6)H sub(5)OH in the molecular beam: C sub(6)H sub(5)OH + lambda sub(275.1 nm) arrow right [C sub(6)H sub(5)OH A] + lambda sub(275.1nm) arrow right C sub(6)H sub(5)OH super(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH sub(3) + C sub(5)H sub(4)OH arrow right [CH sub(3)-C sub(5)H sub(4)OH]* arrow right C sub(6)H sub(5)OH + 2H.
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50–100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC6H4OCH3 → HOC6H4O + CH3. Decarbonylation of the HOC6H4O radical produces the hydroxycyclopentadienyl radical, C5H4OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C5H4OH radical loses a H atom to produce cyclopentadienone, C5H4O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C5H4O → [CO + 2 HCCH] or [CO + HCC–CHCH2]. The formation of C5H4O, HCCH, and CH2CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C6H5OH in the molecular beam: C6H5OH + λ275.1 nm → [C6H5OH Ã] + λ275.1nm → C6H5OH+. From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH3 + C5H4OH → [CH3–C5H4OH]* → C6H5OH + 2H.
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1 nm) → [C(6)H(5)OH Ã] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.
Author Robichaud, David J
Nimlos, Mark R
Scheer, Adam M
Mukarakate, Calvin
Ellison, G. Barney
Author_xml – sequence: 1
  givenname: Adam M
  surname: Scheer
  fullname: Scheer, Adam M
– sequence: 2
  givenname: Calvin
  surname: Mukarakate
  fullname: Mukarakate, Calvin
– sequence: 3
  givenname: David J
  surname: Robichaud
  fullname: Robichaud, David J
– sequence: 4
  givenname: Mark R
  surname: Nimlos
  fullname: Nimlos, Mark R
– sequence: 5
  givenname: G. Barney
  surname: Ellison
  fullname: Ellison, G. Barney
  email: barney@jila.colorado.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21928823$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1259440$$D View this record in Osti.gov
BookMark eNp9kU1v1DAQhi1URD_gwB9AERKCSg31R5zE3KqlpUhFcChcrakzUbxK7DT2SuTAf8fZ7XJAVS-2Z_TMO-N5j8mB8w4Jec3oR0Y5O1-PnJY1rcQzcsQkp7nkTB6kN61VLkuhDslxCGtKKRO8eEEOOVO8rrk4In9uO5wG6LPPaPww-mCj9S77hqYDZ8MQMt9mscOUiZ3_PY8dOt-HT9mVT2VbNgE_ttmzbDWb3o_oIjQWlyHPsl_WzT0YjHOPSwyuyS724UvyvIU-4KuH-4T8vLq8XV3nN9-_fF1d3ORQFDTmTUs51lKoinHJawqMyrKkqpSs4KXE5q5SUHNVCSgFKmihkBVAgpAXNQhxQt7udH2IVgdjY_qf8c6hiTppqtQmQe930Dj5-w2GqAcbDPY9OPSboNXStOK8TuSHJ0lWSSHTQRf0zQO6uRuw0eNkB5hmvXcgAec7wEw-hAlbnabbLjZOYHvNqF481v88ThWn_1XsRR9j3-1YMEGv_WZyac2PcH8BRPiw3g
CitedBy_id crossref_primary_10_1016_j_jaap_2015_07_018
crossref_primary_10_1063_1674_0068_cjcp1811257
crossref_primary_10_1016_j_fuel_2025_134997
crossref_primary_10_1016_j_jaap_2021_105410
crossref_primary_10_1063_1_5046085
crossref_primary_10_1002_cphc_202100808
crossref_primary_10_1016_j_combustflame_2017_05_015
crossref_primary_10_1016_j_fuproc_2018_09_022
crossref_primary_10_1038_s41467_023_40179_z
crossref_primary_10_1021_jp501117n
crossref_primary_10_1063_1_4879615
crossref_primary_10_1021_acs_jpca_2c00766
crossref_primary_10_1021_acs_jpca_2c04966
crossref_primary_10_1016_j_jaap_2016_05_019
crossref_primary_10_1021_acs_jpca_7b08112
crossref_primary_10_1021_acs_jpca_7b07582
crossref_primary_10_1021_jz5010895
crossref_primary_10_1016_j_jaap_2015_08_020
crossref_primary_10_1016_j_fuel_2018_07_105
crossref_primary_10_1021_acs_jpca_5b09004
crossref_primary_10_1039_C9CP03519B
crossref_primary_10_1002_wene_326
crossref_primary_10_1021_jp511390f
crossref_primary_10_1016_j_jaap_2016_07_020
crossref_primary_10_3389_fchem_2019_00326
crossref_primary_10_1016_j_fuel_2018_05_162
crossref_primary_10_1038_ncomms15946
crossref_primary_10_1016_j_biombioe_2017_04_004
crossref_primary_10_1021_acs_jpca_7b09411
crossref_primary_10_1021_acs_iecr_5b01289
crossref_primary_10_1021_jp5036579
crossref_primary_10_1063_1_3675902
crossref_primary_10_1016_j_fuproc_2022_107473
crossref_primary_10_1021_acs_energyfuels_2c01455
crossref_primary_10_1021_ie502002t
crossref_primary_10_1039_D2CP02741K
crossref_primary_10_1016_j_jms_2018_05_001
crossref_primary_10_1016_j_fuel_2018_09_025
crossref_primary_10_1016_j_jaap_2016_12_023
crossref_primary_10_1021_acs_energyfuels_5b02131
crossref_primary_10_1039_D1RA06743E
crossref_primary_10_1134_S0010508218010021
crossref_primary_10_1016_j_biombioe_2018_02_006
crossref_primary_10_1021_acs_jpca_7b02629
crossref_primary_10_1021_acs_jpca_8b03201
crossref_primary_10_1002_chem_201404271
crossref_primary_10_1002_chem_202001388
crossref_primary_10_1016_j_fuel_2013_01_022
crossref_primary_10_1016_j_molstruc_2018_05_098
crossref_primary_10_1016_j_cattod_2022_06_006
crossref_primary_10_1039_D4GC03143A
crossref_primary_10_1063_1_4759050
crossref_primary_10_1021_jp5001804
crossref_primary_10_1002_chem_201700402
crossref_primary_10_1021_acs_energyfuels_1c01712
crossref_primary_10_1021_ja405892y
crossref_primary_10_1016_j_cplett_2014_11_020
crossref_primary_10_1002_cssc_201600105
crossref_primary_10_1016_j_jclepro_2017_06_105
crossref_primary_10_1002_cssc_201400079
crossref_primary_10_1021_acsomega_0c03506
crossref_primary_10_1016_j_apenergy_2013_04_082
crossref_primary_10_1080_0144235X_2014_967951
crossref_primary_10_1039_C9CY02587A
crossref_primary_10_1039_D4SE00878B
crossref_primary_10_1021_acs_jpca_8b06301
crossref_primary_10_1063_1_4867896
crossref_primary_10_1021_acs_jpca_0c02218
crossref_primary_10_1021_ef401760c
crossref_primary_10_1016_j_combustflame_2017_10_020
crossref_primary_10_1016_j_combustflame_2013_11_024
crossref_primary_10_1021_acs_iecr_5b01022
crossref_primary_10_1021_jp411257k
crossref_primary_10_1002_chem_201700639
crossref_primary_10_1007_s12649_017_9925_x
crossref_primary_10_1021_acs_jpca_6b05168
Cites_doi 10.1002/cber.19851180819
10.1021/ar00021a001
10.1073/pnas.0912121107
10.1021/ja00532a055
10.1021/jp903401h
10.1038/380227a0
10.1016/0584-8539(80)80177-2
10.1063/1.1143254
10.1351/pac198658010095
10.1021/ar020230d
10.1038/34602
10.1016/j.theochem.2010.07.036
10.1016/j.rser.2006.07.015
10.1021/jp020782d
10.1063/1.1724828
10.1016/j.proci.2004.07.007
10.1021/j100273a039
10.1021/j100402a014
10.1021/jp0627426
10.1063/1.469801
10.1021/ja00186a042
10.1021/jp982177+
10.1016/0022-2852(67)90105-1
10.1063/1.1724040
10.1021/j100369a031
10.1126/science.1092805
10.1002/kin.550171002
10.1021/ja00462a031
10.1039/c29710000770
10.1002/kin.550210706
10.1016/0022-2860(88)80245-X
10.1007/978-94-009-4099-4
10.1021/jp201817n
10.1016/S0016-2361(01)00059-X
10.1021/jp0454671
10.1063/1.2227378
10.1021/ja00271a008
10.1021/j100275a014
10.1021/jp073999m
10.1021/ja01488a032
10.1016/S1352-2310(96)00105-7
10.1021/ja804198a
10.1021/jp102046p
10.1063/1.1145641
10.1039/b919644g
10.1063/1.1574397
10.1155/1997/53174
10.1016/S0082-0784(00)80584-6
10.1002/mas.10072
10.1021/jp1031064
10.1021/jp806365r
10.1063/1.452303
10.1063/1.477924
10.1016/S1352-2310(97)85197-7
10.1016/j.jaap.2010.02.009
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OTOTI
DOI 10.1021/jp2068073
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 13389
ExternalDocumentID 1259440
21928823
10_1021_jp2068073
c973434672
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a440t-df02e85397125280a10566096514265edb79a82973a63e9afa457aa056e248a33
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Fri May 19 00:41:51 EDT 2023
Fri Jul 11 01:35:27 EDT 2025
Thu Jul 10 22:35:44 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Tue Jul 01 01:27:00 EDT 2025
Thu Aug 27 13:42:44 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a440t-df02e85397125280a10566096514265edb79a82973a63e9afa457aa056e248a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
NREL/JA-5100-53724
USDOE
National Science Foundation (NSF)
AC36-08GO28308
PMID 21928823
PQID 1753517508
PQPubID 23500
PageCount 9
ParticipantIDs osti_scitechconnect_1259440
proquest_miscellaneous_905667228
proquest_miscellaneous_1753517508
pubmed_primary_21928823
crossref_citationtrail_10_1021_jp2068073
crossref_primary_10_1021_jp2068073
acs_journals_10_1021_jp2068073
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-24
PublicationDateYYYYMMDD 2011-11-24
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Matsen F. A. (ref48/cit48) 1945; 13
Blanksby S. J. (ref52/cit52) 2003; 36
Lamprecht A. (ref51/cit51) 2000; 28
Flood W. E. (ref9/cit9) 1967
Friderichsen A. V. (ref30/cit30) 2001; 80
Suryan M. M. (ref32/cit32) 1989; 111
Jenkin M. E. (ref54/cit54) 1997; 31
Nowakowski D. J. (ref6/cit6) 2010; 88
Whitman D. W. (ref43/cit43) 1980; 102
Reale S. (ref5/cit5) 2004; 23
Blush J. A. (ref11/cit11) 1992; 25
Kohn D. W. (ref10/cit10) 1992; 63
Vasiliou A. (ref14/cit14) 2009; 113
Lovell A. B. (ref28/cit28) 1989; 21
Saunders S. M. (ref55/cit55) 1997; 31
Tørneng E. (ref42/cit42) 1980; 36
Chapman O. L. (ref36/cit36) 1971
Yeung L. Y. (ref53/cit53) 2005; 109
Rohrs H. W. (ref12/cit12) 1995; 66
Nix M. G. D. (ref62/cit62) 2006
Maier G. (ref38/cit38) 1986; 58
Montgomery J. A. (ref60/cit60) 1999; 110
Snow T. P. (ref2/cit2) 1998; 391
Mebel A. M. (ref3/cit3) 2008; 130
Scheer A. M. (ref15/cit15) 2010; 114
Claeys M. (ref59/cit59) 2004; 303
Maier G. (ref37/cit37) 1985; 118
Axson J. L. (ref57/cit57) 2010; 107
Chen P. (ref22/cit22) 1987; 86
Lipert R. J. (ref50/cit50) 1990; 94
Cook D. J. (ref1/cit1) 1996; 380
Voter A. F. (ref44/cit44) 1986; 108
Lockyer N. P. (ref25/cit25) 1997; 17
Pedley J. B. (ref63/cit63) 1986
Mebel A. M. (ref41/cit41) 2006; 125
Han J. (ref4/cit4) 2008; 12
Ruscic B. (ref64/cit64) 2005; 34
Shukla B. (ref18/cit18) 2010; 12
Shukla B. (ref20/cit20) 2011; 115
Depuy C. H. (ref35/cit35) 1960; 82
Alsoufi A. (ref33/cit33) 2010; 958
Chen P. (ref23/cit23) 1994
Lin C. Y. (ref27/cit27) 1986; 90
Koenig T. (ref39/cit39) 1977; 99
Carpita N. (ref7/cit7) 2000
Zhang X. (ref13/cit13) 2003; 74
Klein M. T. (ref46/cit46) 1980; 25
ref40/cit40
Chen P. (ref21/cit21) 1986; 90
Bist H. D. (ref49/cit49) 1967; 24
Tylli H. (ref34/cit34) 1988; 176
Hatakeyama S. (ref56/cit56) 1986; 90
Daily J. W. (ref24/cit24) 2011
Dubnikova F. (ref16/cit16) 2002; 106
Gunion R. F. (ref45/cit45) 1995; 103
Croteau R. (ref8/cit8) 2000
Tranter R. S. (ref19/cit19) 2010; 114
Lin C. Y. (ref26/cit26) 1985; 17
Brezinsky K. (ref29/cit29) 1998; 102
Khachatryan L. (ref31/cit31) 2008; 112
Vaida V. (ref58/cit58) 2009; 113
ref47/cit47
Lifshitz A. (ref17/cit17) 2005; 30
Angel L. A. (ref61/cit61) 2006; 110
References_xml – volume: 118
  start-page: 3196
  year: 1985
  ident: ref37/cit37
  publication-title: Chem. Ber.
  doi: 10.1002/cber.19851180819
– volume: 25
  start-page: 385
  year: 1992
  ident: ref11/cit11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00021a001
– volume: 107
  start-page: 6687
  year: 2010
  ident: ref57/cit57
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0912121107
– volume: 102
  start-page: 4272
  year: 1980
  ident: ref43/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00532a055
– volume: 113
  start-page: 8540
  year: 2009
  ident: ref14/cit14
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp903401h
– volume: 380
  start-page: 227
  year: 1996
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/380227a0
– volume: 36
  start-page: 975
  year: 1980
  ident: ref42/cit42
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/0584-8539(80)80177-2
– start-page: 1250
  volume-title: Biochemistry and Molecular Biology of Plants
  year: 2000
  ident: ref8/cit8
– ident: ref47/cit47
– volume: 63
  start-page: 4003
  year: 1992
  ident: ref10/cit10
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1143254
– volume: 58
  start-page: 95
  year: 1986
  ident: ref38/cit38
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198658010095
– volume: 36
  start-page: 255
  year: 2003
  ident: ref52/cit52
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020230d
– volume: 391
  start-page: 259
  year: 1998
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/34602
– volume: 958
  start-page: 106
  year: 2010
  ident: ref33/cit33
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/j.theochem.2010.07.036
– volume: 12
  start-page: 397
  year: 2008
  ident: ref4/cit4
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2006.07.015
– volume: 106
  start-page: 8173
  year: 2002
  ident: ref16/cit16
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp020782d
– ident: ref40/cit40
– volume: 34
  start-page: 573
  year: 2005
  ident: ref64/cit64
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1724828
– volume: 30
  start-page: 1039
  year: 2005
  ident: ref17/cit17
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2004.07.007
– volume: 25
  start-page: 80
  year: 1980
  ident: ref46/cit46
  publication-title: Abstr. Pap. Am. Chem. Soc., Div. Fuel Chem.
– volume: 90
  start-page: 173
  year: 1986
  ident: ref56/cit56
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100273a039
– volume: 90
  start-page: 2319
  year: 1986
  ident: ref21/cit21
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100402a014
– volume: 110
  start-page: 10392
  year: 2006
  ident: ref61/cit61
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0627426
– volume: 103
  start-page: 1250
  year: 1995
  ident: ref45/cit45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469801
– volume: 111
  start-page: 1423
  year: 1989
  ident: ref32/cit32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00186a042
– start-page: 371
  volume-title: Unimolecular and Bimolecular Ion–Molecule Reaction Dynamics
  year: 1994
  ident: ref23/cit23
– volume: 102
  start-page: 8614
  year: 1998
  ident: ref29/cit29
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp982177+
– volume: 24
  start-page: 413
  year: 1967
  ident: ref49/cit49
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(67)90105-1
– volume: 13
  start-page: 309
  year: 1945
  ident: ref48/cit48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1724040
– volume: 94
  start-page: 2358
  year: 1990
  ident: ref50/cit50
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100369a031
– volume: 303
  start-page: 1173
  year: 2004
  ident: ref59/cit59
  publication-title: Science
  doi: 10.1126/science.1092805
– volume: 17
  start-page: 1025
  year: 1985
  ident: ref26/cit26
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550171002
– volume: 99
  start-page: 6663
  year: 1977
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00462a031
– start-page: 770
  year: 1971
  ident: ref36/cit36
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c29710000770
– volume: 21
  start-page: 547
  year: 1989
  ident: ref28/cit28
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550210706
– volume: 176
  start-page: 245
  year: 1988
  ident: ref34/cit34
  publication-title: J. Mol. Struct.
  doi: 10.1016/0022-2860(88)80245-X
– volume-title: Thermochemistry of Organic Compounds
  year: 1986
  ident: ref63/cit63
  doi: 10.1007/978-94-009-4099-4
– volume: 115
  start-page: 5284
  year: 2011
  ident: ref20/cit20
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp201817n
– volume: 80
  start-page: 1747
  year: 2001
  ident: ref30/cit30
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00059-X
– volume: 109
  start-page: 1879
  year: 2005
  ident: ref53/cit53
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0454671
– volume: 125
  year: 2006
  ident: ref41/cit41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2227378
– volume: 108
  start-page: 2830
  year: 1986
  ident: ref44/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00271a008
– volume: 90
  start-page: 425
  year: 1986
  ident: ref27/cit27
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100275a014
– start-page: 125
  year: 2006
  ident: ref62/cit62
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 481
  year: 2008
  ident: ref31/cit31
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp073999m
– start-page: 52
  volume-title: Biochemistry and Molecular Biology of Plants
  year: 2000
  ident: ref7/cit7
– year: 2011
  ident: ref24/cit24
  publication-title: Int. J. Chem. Kinet.
– volume: 82
  start-page: 631
  year: 1960
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01488a032
– volume: 31
  start-page: 81
  year: 1997
  ident: ref54/cit54
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(96)00105-7
– volume: 130
  start-page: 13618
  year: 2008
  ident: ref3/cit3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804198a
– volume: 114
  start-page: 9043
  year: 2010
  ident: ref15/cit15
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp102046p
– volume: 66
  start-page: 2430
  year: 1995
  ident: ref12/cit12
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1145641
– volume: 12
  start-page: 2427
  year: 2010
  ident: ref18/cit18
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b919644g
– volume: 74
  start-page: 3077
  year: 2003
  ident: ref13/cit13
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1574397
– volume: 17
  start-page: 139
  year: 1997
  ident: ref25/cit25
  publication-title: Laser Chem.
  doi: 10.1155/1997/53174
– volume: 28
  start-page: 1817
  year: 2000
  ident: ref51/cit51
  publication-title: Proc. Comb. Inst.
  doi: 10.1016/S0082-0784(00)80584-6
– volume-title: The Dictionary of Chemical Names
  year: 1967
  ident: ref9/cit9
– volume: 23
  start-page: 87
  year: 2004
  ident: ref5/cit5
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.10072
– volume: 114
  start-page: 8240
  year: 2010
  ident: ref19/cit19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp1031064
– volume: 113
  start-page: 5
  year: 2009
  ident: ref58/cit58
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp806365r
– volume: 86
  start-page: 516
  year: 1987
  ident: ref22/cit22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452303
– volume: 110
  start-page: 2822
  year: 1999
  ident: ref60/cit60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477924
– volume: 31
  start-page: 1249
  year: 1997
  ident: ref55/cit55
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)85197-7
– volume: 88
  start-page: 53
  year: 2010
  ident: ref6/cit6
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2010.02.009
SSID ssj0001324
Score 2.3449526
Snippet The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC6H4OCH3) have been studied using a heated SiC microtubular (μ-tubular) reactor. The...
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The...
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC sub(6)H sub(4)OCH sub(3)) have been studied using a heated SiC microtubular ( mu -tubular)...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13381
SubjectTerms 09 BIOMASS FUELS
A: Kinetics, Spectroscopy
Acetylene - analogs & derivatives
Acetylene - chemistry
Cobalt
combustion
Cyclopentanes - chemistry
Decomposition
gas phase
gasification
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Molecular Structure
Phenol
Phenols - chemical synthesis
Phenols - chemistry
Powder injection molding
Radicals
Reactors
Silicon carbide
Spectroscopy
Temperature
thermochemical decomposition
Title Thermal Decomposition Mechanisms of the Methoxyphenols: Formation of Phenol, Cyclopentadienone, Vinylacetylene, and Acetylene
URI http://dx.doi.org/10.1021/jp2068073
https://www.ncbi.nlm.nih.gov/pubmed/21928823
https://www.proquest.com/docview/1753517508
https://www.proquest.com/docview/905667228
https://www.osti.gov/biblio/1259440
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R7YFeaEt5bGmRaXvgQGhwnFdvq4UVQqJCAipukeN4VWBJUJM9bCX-O9_ksWpVll4s2Zoofow939jzIPqSpVnqjw2UHIOiVlC0NtaJQ2CHVGmgVPZGPv0eHF-qkyv_aok-L3jBlwdfb-4l54cIvRf0UgZRyBrWYHg-P26hTqnGij52fMjbLnzQn5-y6DHlX6KnV2ALLYaVtXgZvabDzkmnsSq53Z9W6b75_W_Mxud6_oZWWngpBg0_vKUlm6_S8rDL6vaOHsAXOIsn4tCyNXlrsiVOLXsAX5d3pSjGAqAQLdVP9IVNwIpJ-U2MOi9HJjirW_fEcGYmnH-rqg3HitzuiR_X-Yyv5qsZ5BnqOs_EoKuu0eXo6GJ47LQpGBytlFs52diVFhI9DgGEZORqwLEg4IgxBxDtvs3SMNbsnevpwLOxHmvlh1qDyEoVac9bpx7_fZOE6xsVozX1gcFAF3FqGS2NF9ggU57q0zbWKGm3UJnUr-MS2kk3i33a7ZYvMW0Ac86jMXmK9NOc9L6J2vEU0RbzQAKowfFyDRsWmSrBQGOMvU87HWskWCJ-RtG5LaboGDQ8H4Ub9UksoIl5mkIpQbLRsNW8HxAREmqN9_5_492iV_UFdu34-IF61a-p_QgEVKXb9Q54BA7w_Tc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9B9zBegI2vMhge4oGHZWSOkzS8VR1VB-uExIb2FjmOKwYlmUj6UCT-d37nJN1Am0CKIsW6JGfnnPudfR9Er_Isz8KZgZFjcHIGitbGekkM7JApDZTK0cjT42hyqt6fhWdtmhyOhQETFZ5UuU38y-wC-2--XkguExEHt2kNIESyoTUcfVr9dWFVqcaZPvFCqN0ui9DVW1kDmeoPDdQrMZNuRpdOy4zvNeWKHH_OueTb3qLO9szPv1I3_l8H7tPdFmyKYSMdG3TLFpu0PupqvD2gX5AS_Jnn4sCyb3nrwCWmluOBz6vvlShnAhARLfUXsMQOYeW8eivGXcwjE3x0rbtitDRzrsZVOzeysrC74vN5seSF-noJ7YZrXeRi2F0-pNPxu5PRxGsLMnhaKb_28pkvLfR7EgMWyYGvAc6iiPPH7EPRhzbP4kRzrG6go8AmeqZVGGsNIivVQAfBI-rx25-Q8EOjErRmIRAZ6AZcaEZLE0Q2ylWg-rSNQUzbCVWlbq9cwlbpRrFPr7uvmJo2nTlX1ZhfR_pyRXrR5PC4jmiLRSEF8ODsuYbdjEydoqMJ-t6nnU5CUnwi3lTRhS0XYAz2XoiTP-iTuIEm4WGKpQTJ40a6VnxAYUgYOcHTf_X3Ba1PTqZH6dHh8YctuuOWtnFI9Yx69Y-FfQ5sVGfbblL8BvbMBaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BIgGXUp5dSotBHDg0JXWcZMNttWVVHi2VoKi3yHEc9bFNViR7WCT-O994kxWtWoEURYo1ScbOOPONPQ-iN3mWZ2FhYOQYnJyBorWxXhIDO2RKA6VyNPL-QbR3pD4dh8etocixMGCixpNqt4nPs3qaF22GgZ13Z1PJpSLi4Dbd4e06NraGo2_LPy8sK7VwqE-8EKq3yyT0962shUx9SQv1KsymmxGm0zTjB_R1yaNzMDnfnjXZtvl1JX3j_3dilVZa0CmGCyl5SLds-Yjujbpab4_pN6QFf-iJ2LXsY946col9y3HBp_VFLapCACqipTkBW-wYVk3q92LcxT4ywaFr3RKjuZlwVa7GuZNVpd0SP07LOS_YN3NoOVzrMhfD7vIJHY0_fB_teW1hBk8r5TdeXvjSQs8nMeCRHPgaIC2KOI_MDhR-aPMsTjTH7AY6CmyiC63CWGsQWakGOgieUo_fvkbCD41K0JqFQGagG3DBGS1NENkoV4Hq0yYGMm0nVp26PXMJm6UbxT697b5katq05lxdY3Id6esl6XSRy-M6onUWhxQAhLPoGnY3Mk2Kjiboe59edVKS4hPx5ooubTUDY7D7Qpz8QZ_EDTQJD1MsJUieLSRsyQcUh4SxEzz_V39f0t3D3XH65ePB53W671a4cUj1gnrNz5ndAERqsk03L_4AjPEILw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Decomposition+Mechanisms+of+the+Methoxyphenols%3A+Formation+of+Phenol%2C+Cyclopentadienone%2C+Vinylacetylene%2C+and+Acetylene&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Scheer%2C+Adam+M.&rft.au=Mukarakate%2C+Calvin&rft.au=Robichaud%2C+David+J.&rft.au=Nimlos%2C+Mark+R.&rft.date=2011-11-24&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=115&rft.issue=46&rft.spage=13381&rft.epage=13389&rft_id=info:doi/10.1021%2Fjp2068073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp2068073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon