A Simple Thermodynamic Model for Melting of Peridotite in the System NCFMASOCr
A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Ca...
Saved in:
Published in | Journal of petrology Vol. 56; no. 5; pp. 869 - 892 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Calculations in the program thermocalc illustrate mantle phase relationships and melting conditions, specifically for the peridotite composition KLB-1. The garnet-spinel transition zone intersects the solidus at 21.4-21.7kbar, where both Fe super(3+) and Cr increase spinel stability, expanding the width of the transition. Orthopyroxene is lost at the solidus at 42kbar in KLB-1, although this pressure is very sensitive to bulk composition. Calculated oxidation states are in excellent agreement with measured log fO sub(2) for xenolith suites with mantle Fe sub(2)O sub(3) contents in the range 0.1-0.3wt %. It appears that mantle oxidation state is not just a simple function of P and T, but depends on phase assemblage, and may vary in a complex way within a single assemblage. The liquid model performs well, such that calculated solidus, melt productivity and liquid compositions compare favourably with those of experimental studies, permitting its use in interpolating between, and extrapolating from, experimental P-T conditions. Experimentally challenging but geologically useful regimes can be explored, such as subsolidus samples and very low melt fractions, with application to both mantle xenoliths and the origin of basalt. |
---|---|
AbstractList | A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Calculations in the program thermocalc illustrate mantle phase relationships and melting conditions, specifically for the peridotite composition KLB-1. The garnet-spinel transition zone intersects the solidus at 21.4-21.7kbar, where both Fe super(3+) and Cr increase spinel stability, expanding the width of the transition. Orthopyroxene is lost at the solidus at 42kbar in KLB-1, although this pressure is very sensitive to bulk composition. Calculated oxidation states are in excellent agreement with measured log fO sub(2) for xenolith suites with mantle Fe sub(2)O sub(3) contents in the range 0.1-0.3wt %. It appears that mantle oxidation state is not just a simple function of P and T, but depends on phase assemblage, and may vary in a complex way within a single assemblage. The liquid model performs well, such that calculated solidus, melt productivity and liquid compositions compare favourably with those of experimental studies, permitting its use in interpolating between, and extrapolating from, experimental P-T conditions. Experimentally challenging but geologically useful regimes can be explored, such as subsolidus samples and very low melt fractions, with application to both mantle xenoliths and the origin of basalt. |
Author | Holland, Tim J. B. Jennings, Eleanor S. |
Author_xml | – sequence: 1 givenname: Eleanor S. surname: Jennings fullname: Jennings, Eleanor S. – sequence: 2 givenname: Tim J. B. surname: Holland fullname: Holland, Tim J. B. |
BookMark | eNqNkE1LAzEQQINUsK3ePeboZe1kk-zHsSxWhX4Irecl3Z20kd1NTVJh_72VigdB8DQwvDcDb0QGne2QkFsG9wxyPjlgcLaxu36Cuw-I4YIMmUggigWTAzIEiOOISw5XZOT9GwA77WFIllO6Nu2hQbrZo2tt3XeqNRVd2Bobqq2jC2yC6XbUavqCztQ2mIDUdDTska57H7Cly2K2mK5Xhbsml1o1Hm--55i8zh42xVM0Xz0-F9N5pISAENWS84Tn22SbVTnTCLUQTOhUxEymMok1ZKlKNVQYixy5TGuttjyrNGhkGQc-Jnfnuwdn34_oQ9kaX2HTqA7t0Zcsg4xnsTz9-QcKggspsxOanNHKWe8d6rIyQQVju-CUaUoG5Vfr8qd1eW59EuGXeHCmVa7_W_kEwoqHSg |
CitedBy_id | crossref_primary_10_1016_j_precamres_2021_106330 crossref_primary_10_1007_s00410_019_1579_1 crossref_primary_10_1016_j_epsl_2019_05_005 crossref_primary_10_1007_s00410_023_01997_y crossref_primary_10_1016_j_epsl_2019_116007 crossref_primary_10_1016_j_lithos_2019_01_009 crossref_primary_10_1038_s41561_020_0640_z crossref_primary_10_1144_SP478_13 crossref_primary_10_1016_j_jseaes_2022_105078 crossref_primary_10_2138_am_2017_6154 crossref_primary_10_1002_gj_3883 crossref_primary_10_1093_petrology_egy110 crossref_primary_10_1007_s00531_022_02171_8 crossref_primary_10_1093_petrology_egaa011 crossref_primary_10_1007_s00126_023_01238_z crossref_primary_10_1016_j_lithos_2019_01_011 crossref_primary_10_1038_s41598_018_34669_0 crossref_primary_10_1093_petrology_egab077 crossref_primary_10_1007_s00410_021_01870_w crossref_primary_10_1016_j_chemer_2017_12_003 crossref_primary_10_1016_j_jsames_2024_105317 crossref_primary_10_1016_j_lithos_2018_09_032 crossref_primary_10_2138_am_2019_6602 crossref_primary_10_1007_s00410_023_02080_2 crossref_primary_10_1029_2022GC010329 crossref_primary_10_1111_jmg_12754 crossref_primary_10_1016_j_earscirev_2017_09_014 crossref_primary_10_1007_s11214_018_0563_9 crossref_primary_10_1016_j_oregeorev_2021_104483 crossref_primary_10_2138_am_2018_6392 crossref_primary_10_1093_petrology_egw047 crossref_primary_10_1016_j_chemgeo_2021_120180 crossref_primary_10_1016_j_earscirev_2022_104153 crossref_primary_10_1007_s00410_016_1229_9 crossref_primary_10_1016_j_epsl_2022_117500 crossref_primary_10_1029_2024GC012028 crossref_primary_10_1093_petrology_egy105 crossref_primary_10_1093_petrology_egaa029 crossref_primary_10_3847_2041_8213_abf7ca crossref_primary_10_1016_j_jseaes_2020_104554 crossref_primary_10_3389_feart_2017_00081 crossref_primary_10_1016_j_epsl_2015_10_035 crossref_primary_10_1029_2023JE008234 crossref_primary_10_1130_GES02467_1 crossref_primary_10_3847_0004_637X_824_2_103 crossref_primary_10_1002_2015JB012762 crossref_primary_10_1038_s41598_019_43605_9 crossref_primary_10_1130_B36380_1 crossref_primary_10_1130_B37289_1 crossref_primary_10_1016_j_lithos_2019_05_040 crossref_primary_10_1007_s00410_024_02108_1 crossref_primary_10_1016_j_lithos_2024_107670 crossref_primary_10_1029_2020GC009157 crossref_primary_10_1016_j_lithos_2019_105194 crossref_primary_10_1130_B35456_1 crossref_primary_10_1007_s12594_021_1675_5 crossref_primary_10_1111_jmg_12211 crossref_primary_10_1126_sciadv_adf6216 crossref_primary_10_1093_petrology_egy096 crossref_primary_10_1016_j_earscirev_2019_02_011 crossref_primary_10_1016_j_jafrearsci_2020_103816 crossref_primary_10_1016_j_precamres_2024_107487 crossref_primary_10_1038_s41467_025_58324_1 crossref_primary_10_1144_SP478_6 crossref_primary_10_1016_j_lithos_2022_106852 crossref_primary_10_1144_SP474_6 crossref_primary_10_1139_cjes_2023_0005 crossref_primary_10_1029_2023GC011072 crossref_primary_10_1016_j_gca_2021_09_008 crossref_primary_10_1016_j_lithos_2019_105344 crossref_primary_10_1016_j_lithos_2023_107385 crossref_primary_10_1029_2022GC010421 crossref_primary_10_1007_s00410_018_1525_7 crossref_primary_10_1007_s11430_021_9839_2 crossref_primary_10_1016_j_gsf_2017_07_008 crossref_primary_10_1016_j_epsl_2023_118311 crossref_primary_10_1007_s00410_019_1580_8 crossref_primary_10_1016_j_precamres_2021_106183 crossref_primary_10_1002_2017GC007251 crossref_primary_10_1002_gj_4124 crossref_primary_10_1016_j_epsl_2019_115781 crossref_primary_10_1093_petrology_egw065 crossref_primary_10_1029_2021GC009637 crossref_primary_10_1093_petrology_egad069 crossref_primary_10_1002_2015GC006242 crossref_primary_10_1093_petrology_egaa084 crossref_primary_10_1016_j_gsf_2017_05_003 crossref_primary_10_1007_s00410_024_02144_x crossref_primary_10_1007_s00410_021_01823_3 crossref_primary_10_1016_j_jsames_2022_103883 crossref_primary_10_1111_jmg_12746 crossref_primary_10_1111_jmg_12626 crossref_primary_10_1016_j_earscirev_2020_103172 crossref_primary_10_1111_jmg_12743 crossref_primary_10_1029_2019GC008303 crossref_primary_10_2139_ssrn_4105366 crossref_primary_10_1029_2018GC007559 crossref_primary_10_1016_j_epsl_2020_116464 crossref_primary_10_1029_2020GL091957 crossref_primary_10_1093_mnras_stad2486 crossref_primary_10_1016_j_jseaes_2021_104861 crossref_primary_10_1016_j_pepi_2020_106559 crossref_primary_10_1029_2020GC009624 crossref_primary_10_1016_j_jsames_2025_105357 crossref_primary_10_1016_j_chemer_2025_126248 crossref_primary_10_1016_j_gca_2020_03_035 crossref_primary_10_1134_S0038094624700370 crossref_primary_10_1016_j_gca_2022_08_014 crossref_primary_10_1093_petrology_egab037 crossref_primary_10_1016_j_chemgeo_2021_120532 crossref_primary_10_1016_j_pepi_2020_106430 crossref_primary_10_1111_jmg_12679 crossref_primary_10_1038_s41467_021_22323_9 crossref_primary_10_1016_j_epsl_2022_117946 crossref_primary_10_1016_j_lithos_2019_02_007 crossref_primary_10_5575_geosoc_2019_0018 crossref_primary_10_1016_j_gsf_2021_101225 crossref_primary_10_1111_jmg_12557 crossref_primary_10_1029_2023GC011235 crossref_primary_10_1007_s00410_021_01796_3 crossref_primary_10_1029_2023GC011234 crossref_primary_10_1016_j_precamres_2021_106480 crossref_primary_10_1017_S0016756819001171 crossref_primary_10_1029_2019JB018133 crossref_primary_10_1051_bsgf_2022021 crossref_primary_10_2138_am_2020_7162 crossref_primary_10_1093_petrology_egaa067 crossref_primary_10_1016_j_precamres_2021_106122 crossref_primary_10_1093_petrology_egac110 crossref_primary_10_1029_2018JB016179 crossref_primary_10_3390_min9110685 crossref_primary_10_1038_s41586_024_07603_w crossref_primary_10_1093_petrology_egad049 crossref_primary_10_1126_sciadv_adr2613 crossref_primary_10_1126_sciadv_abc7394 crossref_primary_10_1016_j_epsl_2020_116721 crossref_primary_10_1016_j_lithos_2021_106046 crossref_primary_10_1016_j_geogeo_2021_100012 crossref_primary_10_1111_maps_13472 crossref_primary_10_1029_2022GC010657 crossref_primary_10_1029_2021GC009650 crossref_primary_10_1016_j_gca_2022_04_023 crossref_primary_10_1029_2018GC008027 crossref_primary_10_1016_j_precamres_2024_107606 crossref_primary_10_1017_S0016756822000607 crossref_primary_10_1093_petrology_egw037 crossref_primary_10_1144_SP491_2018_160 crossref_primary_10_2138_am_2022_8211 crossref_primary_10_1093_petrology_egae081 crossref_primary_10_1016_j_precamres_2023_107042 crossref_primary_10_1002_gj_2890 crossref_primary_10_1016_j_lithos_2022_106810 crossref_primary_10_21105_joss_05389 crossref_primary_10_1016_j_precamres_2022_106671 crossref_primary_10_1080_00206814_2024_2389566 crossref_primary_10_1093_petrology_egab012 crossref_primary_10_1093_petrology_egae006 crossref_primary_10_1038_s41467_020_20514_4 crossref_primary_10_1038_s41561_023_01127_0 crossref_primary_10_1029_2020GC009560 crossref_primary_10_2138_am_2022_8735 crossref_primary_10_1016_j_geogeo_2022_100041 crossref_primary_10_1130_GES02689_1 crossref_primary_10_1029_2023GC011275 crossref_primary_10_1016_j_precamres_2022_106708 crossref_primary_10_1093_petrology_egy048 crossref_primary_10_1007_s00410_021_01799_0 crossref_primary_10_1016_j_lithos_2018_11_005 crossref_primary_10_1029_2022GC010485 crossref_primary_10_1038_s41467_024_51476_6 crossref_primary_10_1016_j_chemgeo_2019_02_011 crossref_primary_10_1144_SP472_4 crossref_primary_10_1016_j_lithos_2017_08_001 crossref_primary_10_1111_maps_13535 crossref_primary_10_1029_2021GC009717 crossref_primary_10_1017_S0016756822000164 crossref_primary_10_1093_gji_ggaa413 crossref_primary_10_1016_j_gca_2021_12_008 crossref_primary_10_1016_j_lithos_2023_107111 crossref_primary_10_1029_2021JB021890 crossref_primary_10_1016_j_lithos_2023_107112 crossref_primary_10_1016_j_lithos_2021_106102 crossref_primary_10_1016_j_chemgeo_2019_119287 crossref_primary_10_1038_s41586_022_05665_2 crossref_primary_10_1029_2020GC009334 crossref_primary_10_1016_j_lithos_2023_107192 crossref_primary_10_1111_ter_12599 crossref_primary_10_1134_S0869591122020059 crossref_primary_10_1144_jgs2023_004 crossref_primary_10_31857_S0320930X24050017 |
Cites_doi | 10.1007/BF00371276 10.1093/petroj/39.1.29 10.1093/petrology/37.3.609 10.1029/96JB00170 10.1016/0012-821X(73)90176-3 10.2138/am.2009.2984 10.1146/annurev.earth.36.031207.124322 10.1016/j.lithos.2009.05.007 10.1111/j.1525-1314.2012.00981.x 10.1007/s00269-013-0653-x 10.1130/0091-7613(1976)4<69:DCCPMI>2.0.CO;2 10.1093/petrology/egt035 10.1029/2002GC000433 10.1029/2001GC000204 10.1007/s00410-004-0629-4 10.1029/94JB01406 10.1016/0016-7037(84)90072-3 10.1029/2000GC000089 10.1093/petrology/egi046 10.1111/j.1525-1314.1998.00157.x 10.1093/petrology/43.10.1857 10.1029/96JB00988 10.2475/ajs.290.10.1093 10.1016/0016-7037(84)90073-5 10.1016/j.lithos.2009.04.009 10.1029/95JB00954 10.2138/am-1998-9-1022 10.1007/s004100050240 10.1007/BF00371708 10.1029/JB095iB10p15779 10.1029/2006GC001390 10.1007/BF00375219 10.1016/0016-7037(77)90264-2 10.2138/am-2004-11-1203 10.1093/petrology/egp079 10.1111/j.1525-1314.2010.00923.x 10.1029/JB091iB09p09367 10.1007/s002690050138 10.1016/0016-7037(80)90283-5 10.1007/BF01166769 10.1007/BF00307281 10.1007/s00410-003-0464-z 10.1016/j.lithos.2004.03.017 10.2138/am.2005.1929 10.1093/petrology/egn009 10.1007/s004100050396 10.1016/j.epsl.2011.03.014 10.1016/S0012-821X(03)00379-0 10.2138/am.2012.4163 10.1007/s00410-014-1101-8 10.1029/2000GC000070 10.1093/petrology/42.4.673 10.1007/s004100050560 10.1007/BF00307328 10.1086/629273 10.1016/0012-821X(92)90171-Q 10.1029/2001GC000217 10.1016/0012-821X(94)90268-2 10.1016/j.epsl.2011.06.008 10.1093/petrology/29.3.625 10.1093/petrology/egq089 10.1029/2011GC003516 10.1016/0012-821X(93)90077-M 10.1007/s00410-013-0899-9 10.1007/BF00310717 10.1007/BF01164525 10.1111/j.1525-1314.2012.00982.x 10.1016/j.gca.2005.09.022 10.1111/jmg.12070 10.1016/S0012-821X(97)00162-3 10.1007/BF00371405 10.4324/9780203428498 10.1016/j.epsl.2010.06.039 10.1007/s00410-013-0907-0 10.1029/91JB02840 10.2138/am.2012.4103 10.1016/S0012-821X(98)00213-1 10.1016/j.jvolgeores.2004.10.007 10.1029/2004GC000816 10.1002/2014GC005546 10.1029/2011JB009044 10.1093/petrology/egg090 10.1098/rsta.1993.0008 10.1016/0098-3004(93)90020-6 10.1016/0016-7037(87)90353-X |
ContentType | Journal Article |
DBID | AAYXX CITATION 8BQ 8FD FR3 H8D JG9 KR7 L7M 7UA C1K F1W H96 L.G |
DOI | 10.1093/petrology/egv020 |
DatabaseName | CrossRef METADEX Technology Research Database Engineering Research Database Aerospace Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Civil Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace METADEX Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1460-2415 |
EndPage | 892 |
ExternalDocumentID | 10_1093_petrology_egv020 |
GroupedDBID | -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29L 2WC 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAYXX ABAZT ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJIA ABJNI ABLJU ABMNT ABNKS ABPQP ABPTD ABQLI ABVGC ABVLG ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUTJ ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHXPO AIAGR AIJHB AJBYB AJEEA AJEUX AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ARIXL ATGXG AXUDD AYOIW AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQDIO BQUQU BSWAC BTQHN CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K E3Z EBS EE~ EJD F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HH5 HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O9- OAWHX OBOKY OCL ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO S10 TEORI TJP TLC TN5 TR2 UHB W8F WH7 X7H YAYTL YKOAZ YSK YXANX ZCA ZKX ~02 ~91 8BQ 8FD FR3 H8D JG9 KR7 L7M 7UA C1K F1W H96 L.G |
ID | FETCH-LOGICAL-a440t-d533639b6b8c91fe0d4414f742157562f087a7f0ce249e357dfab38cf0fe18303 |
ISSN | 0022-3530 |
IngestDate | Fri Jul 11 11:31:46 EDT 2025 Fri Jul 11 08:19:16 EDT 2025 Tue Jul 01 02:08:03 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a440t-d533639b6b8c91fe0d4414f742157562f087a7f0ce249e357dfab38cf0fe18303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/petrology/article-pdf/56/5/869/16677774/egv020.pdf |
PQID | 1800434558 |
PQPubID | 23500 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1808382553 proquest_miscellaneous_1800434558 crossref_citationtrail_10_1093_petrology_egv020 crossref_primary_10_1093_petrology_egv020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of petrology |
PublicationYear | 2015 |
References | O’Neill ( key 20170508172054_egv020-B67) 2006; 91 Canil ( key 20170508172054_egv020-B7) 1996; 37 Grove ( key 20170508172054_egv020-B33) 2013; 166 Geiger ( key 20170508172054_egv020-B26) 1987; 51 Herzberg ( key 20170508172054_egv020-B36) 1990; 95 Canil ( key 20170508172054_egv020-B6) 1992; 111 Longhi ( key 20170508172054_egv020-B58) 1991; 76 Koziol ( key 20170508172054_egv020-B56) 1992; 77 Herzberg ( key 20170508172054_egv020-B35) 2002; 43 Herzberg ( key 20170508172054_egv020-B38) 2007; 8 Wood ( key 20170508172054_egv020-B85) 1988; 96 Roeder ( key 20170508172054_egv020-B74) 1970; 29 Eggler ( key 20170508172054_egv020-B17) 1976; 4 Ghiorso ( key 20170508172054_egv020-B28) 2002; 3 Holland ( key 20170508172054_egv020-B44) 2013; 54 Davenport ( key 20170508172054_egv020-B13) 2014 Newton ( key 20170508172054_egv020-B65) 1980; 44 Klemme ( key 20170508172054_egv020-B52) 2004; 77 Davis ( key 20170508172054_egv020-B16) 2011; 308 Foulger ( key 20170508172054_egv020-B19) 2005; 141 Herzberg ( key 20170508172054_egv020-B37) 2000; 1 Dasgupta ( key 20170508172054_egv020-B12) 2010; 298 Takahashi ( key 20170508172054_egv020-B76) 1983; 68 Cottrell ( key 20170508172054_egv020-B9) 2011; 305 Ghiorso ( key 20170508172054_egv020-B27) 1995; 119 Wood ( key 20170508172054_egv020-B86) 1984; 48 Kinzler ( key 20170508172054_egv020-B50) 1997; 102 Hackler ( key 20170508172054_egv020-B34) 1989; 74 Takahashi ( key 20170508172054_egv020-B96) 1986; 91 Kinzler ( key 20170508172054_egv020-B51) 1992; 97 Longhi ( key 20170508172054_egv020-B59) 2002; 3 Katz ( key 20170508172054_egv020-B49) 2003; 4 Tuff ( key 20170508172054_egv020-B81) 2005; 46 Holland ( key 20170508172054_egv020-B41) 2001; 42 Kress ( key 20170508172054_egv020-B57) 1991; 108 Bryndzia ( key 20170508172054_egv020-B5) 1990; 290 Holland ( key 20170508172054_egv020-B42) 2003; 145 Zhang ( key 20170508172054_egv020-B91) 1994; 99 Green ( key 20170508172054_egv020-B32) 2012; 30 Klemme ( key 20170508172054_egv020-B53) 2000; 138 Woodland ( key 20170508172054_egv020-B89) 1993; 78 Takahashi ( key 20170508172054_egv020-B77) 1993; 342 Blundy ( key 20170508172054_egv020-B3) 1995; 100 Green ( key 20170508172054_egv020-B29) 1973; 19 Powell ( key 20170508172054_egv020-B69) 1998; 16 Frost ( key 20170508172054_egv020-B20) 2008; 36 Borghini ( key 20170508172054_egv020-B4) 2010; 51 Taura ( key 20170508172054_egv020-B78) 1998; 25 Till ( key 20170508172054_egv020-B79) 2012; 117 Davis ( key 20170508172054_egv020-B15) 2009; 94 Ganguly ( key 20170508172054_egv020-B22) 1996; 126 Toplis ( key 20170508172054_egv020-B80) 2005; 149 Nimis ( key 20170508172054_egv020-B66) 2015; 169 Powell ( key 20170508172054_egv020-B70) 2014; 32 Ariskin ( key 20170508172054_egv020-B1) 1993; 19 Woodland ( key 20170508172054_egv020-B88) 2003; 214 Koziol ( key 20170508172054_egv020-B55) 1990; 75 Canil ( key 20170508172054_egv020-B8) 1994; 123 Davis ( key 20170508172054_egv020-B14) 2013; 166 Pownceby ( key 20170508172054_egv020-B71) 1987; 97 Matzen ( key 20170508172054_egv020-B61) 2011; 52 Hirschmann ( key 20170508172054_egv020-B40) 2000; 1 Gaetani ( key 20170508172054_egv020-B21) 1998; 131 Gasparik ( key 20170508172054_egv020-B24) 1984; 87 Green ( key 20170508172054_egv020-B31) 2012; 30 Jenkins ( key 20170508172054_egv020-B47) 1979; 68 Ionov ( key 20170508172054_egv020-B45) 2004; 45 Newton ( key 20170508172054_egv020-B64) 1977; 41 Gaskell ( key 20170508172054_egv020-B23) 2012 Walter ( key 20170508172054_egv020-B83) 1998; 39 Perkins ( key 20170508172054_egv020-B68) 1980; 75 Herzberg ( key 20170508172054_egv020-B93) 1996; 101 Wijbrans ( key 20170508172054_egv020-B84) 2014; 41 Danyushevsky ( key 20170508172054_egv020-B11) 2011; 12 McKenzie ( key 20170508172054_egv020-B62) 1988; 29 Asimow ( key 20170508172054_egv020-B2) 1998; 83 Mattioli ( key 20170508172054_egv020-B60) 1984; 48 Mibe ( key 20170508172054_egv020-B63) 2006; 70 Kantor ( key 20170508172054_egv020-B48) 2012; 97 Hirose ( key 20170508172054_egv020-B39) 1993; 114 Woodland ( key 20170508172054_egv020-B87) 2009; 112S Holland ( key 20170508172054_egv020-B43) 2011; 29 Robie ( key 20170508172054_egv020-B72) 1978 Robinson ( key 20170508172054_egv020-B73) 1998; 164 Ueki ( key 20170508172054_egv020-B82) 2014; 15 Woodland ( key 20170508172054_egv020-B90) 1999 Miller ( key 20170508172054_egv020-B94) 2015 Falloon ( key 20170508172054_egv020-B18) 2008; 49 Klemme ( key 20170508172054_egv020-B54) 2009; 112 Gasparik ( key 20170508172054_egv020-B25) 1984; 85 Robinson ( key 20170508172054_egv020-B95) 1998; 155 Gudmundsson ( key 20170508172054_egv020-B92) 1995; 119 Jayasuriya ( key 20170508172054_egv020-B46) 2004; 89 Dachs ( key 20170508172054_egv020-B10) 2012; 97 Smith ( key 20170508172054_egv020-B75) 2005; 6 |
References_xml | – volume: 29 start-page: 275 year: 1970 ident: key 20170508172054_egv020-B74 article-title: Olivine–liquid equilibrium publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00371276 – volume: 39 start-page: 29 year: 1998 ident: key 20170508172054_egv020-B83 article-title: Melting of garnet peridotite and the origin of komatiite and depleted lithosphere publication-title: Journal of Petrology doi: 10.1093/petroj/39.1.29 – volume: 77 start-page: 765 year: 1992 ident: key 20170508172054_egv020-B56 article-title: Solution properties of almandine–pyrope garnet as determined by phase equilibrium experiments publication-title: American Mineralogist – volume: 68 start-page: 859 year: 1983 ident: key 20170508172054_egv020-B76 article-title: Melting of a dry peridotite at high pressures and basalt magma genesis publication-title: American Mineralogist – volume: 37 start-page: 609 year: 1996 ident: key 20170508172054_egv020-B7 article-title: Distribution of ferric iron in some upper-mantle assemblages publication-title: Journal of Petrology doi: 10.1093/petrology/37.3.609 – volume: 74 start-page: 994 year: 1989 ident: key 20170508172054_egv020-B34 article-title: Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe–Mg mixing properties in garnet publication-title: American Mineralogist – volume: 101 start-page: 8271 year: 1996 ident: key 20170508172054_egv020-B93 article-title: Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone publication-title: Journal of Geophysical Research doi: 10.1029/96JB00170 – start-page: 456 volume-title: US Geological Survey Bulletin year: 1978 ident: key 20170508172054_egv020-B72 article-title: Thermodynamic properties of minerals and related substances at 298·15 K and 1 bar (105 Pascals) pressure and at higher temperatures – volume: 19 start-page: 37 year: 1973 ident: key 20170508172054_egv020-B29 article-title: Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(73)90176-3 – volume: 94 start-page: 176 year: 2009 ident: key 20170508172054_egv020-B15 article-title: The composition of KLB-1 peridotite publication-title: American Mineralogist doi: 10.2138/am.2009.2984 – volume: 36 start-page: 389 year: 2008 ident: key 20170508172054_egv020-B20 article-title: The redox state of Earth’s mantle publication-title: Annual Review of Earth and Planetary Sciences doi: 10.1146/annurev.earth.36.031207.124322 – volume: 112 start-page: 986 year: 2009 ident: key 20170508172054_egv020-B54 article-title: Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths publication-title: Lithos doi: 10.1016/j.lithos.2009.05.007 – volume: 30 start-page: 561 year: 2012 ident: key 20170508172054_egv020-B31 article-title: Garnet and spinel lherzolite assemblages in MgO–Al2O3–SiO2 and CaO–MgO–Al2O3–SiO2: thermodynamic models and an experimental conflict publication-title: Journal of Metamorphic Geology doi: 10.1111/j.1525-1314.2012.00981.x – volume: 41 start-page: 341 year: 2014 ident: key 20170508172054_egv020-B84 article-title: Thermodynamic and magnetic properties of knorringite garnet (Mg3Cr2Si3O12) based on low-temperature calorimetry and magnetic susceptibility measurements publication-title: Physics and Chemistry of Minerals doi: 10.1007/s00269-013-0653-x – volume: 4 start-page: 69 year: 1976 ident: key 20170508172054_egv020-B17 article-title: Does CO2 cause partial melting in the low-velocity layer of the mantle? publication-title: Geology doi: 10.1130/0091-7613(1976)4<69:DCCPMI>2.0.CO;2 – volume: 54 start-page: 1901 year: 2013 ident: key 20170508172054_egv020-B44 article-title: New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle publication-title: Journal of Petrology doi: 10.1093/petrology/egt035 – volume: 4 year: 2003 ident: key 20170508172054_egv020-B49 article-title: A new parameterization of hydrous mantle melting publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2002GC000433 – volume: 3 year: 2002 ident: key 20170508172054_egv020-B59 article-title: Some phase equilibrium systematics of lherzolite melting: I publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2001GC000204 – volume: 149 start-page: 22 year: 2005 ident: key 20170508172054_egv020-B80 article-title: The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-004-0629-4 – volume: 99 start-page: 17729 year: 1994 ident: key 20170508172054_egv020-B91 article-title: Melting experiments on anhydrous peridotite KLB-1 from 5·0 to 22·5 GPa publication-title: Journal of Geophysical Research doi: 10.1029/94JB01406 – volume: 48 start-page: 1367 year: 1984 ident: key 20170508172054_egv020-B60 article-title: Experimental determination of the chromium–aluminum mixing parameter in garnet publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(84)90072-3 – volume: 1 year: 2000 ident: key 20170508172054_egv020-B37 article-title: New experimental observations on the anhydrous solidus for peridotite KLB-1 publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2000GC000089 – volume: 46 start-page: 2023 year: 2005 ident: key 20170508172054_egv020-B81 article-title: Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts publication-title: Journal of Petrology doi: 10.1093/petrology/egi046 – volume: 16 start-page: 577 year: 1998 ident: key 20170508172054_egv020-B69 article-title: Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC publication-title: Journal of Metamorphic Geology doi: 10.1111/j.1525-1314.1998.00157.x – volume: 43 start-page: 1857 year: 2002 ident: key 20170508172054_egv020-B35 article-title: Plume-associated ultramafic magmas of Phanerozoic age publication-title: Journal of Petrology doi: 10.1093/petrology/43.10.1857 – volume: 102 start-page: 853 year: 1997 ident: key 20170508172054_egv020-B50 article-title: Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis publication-title: Journal of Geophysical Research doi: 10.1029/96JB00988 – volume: 290 start-page: 1093 year: 1990 ident: key 20170508172054_egv020-B5 article-title: Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C–O–H volatile composition of the Earth’s sub-oceanic upper mantle publication-title: American Journal of Science doi: 10.2475/ajs.290.10.1093 – volume: 48 start-page: 1373 year: 1984 ident: key 20170508172054_egv020-B86 article-title: Chromium–aluminum mixing in garnet: A thermochemical study publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(84)90073-5 – volume: 112S start-page: 1143 year: 2009 ident: key 20170508172054_egv020-B87 article-title: Ferric iron contents of clinopyroxene from cratonic mantle and partitioning behaviour with garnet publication-title: Lithos doi: 10.1016/j.lithos.2009.04.009 – volume: 100 start-page: 15501 year: 1995 ident: key 20170508172054_egv020-B3 article-title: Sodium partitioning between clinopyroxene and silicate melts publication-title: Journal of Geophysical Research doi: 10.1029/95JB00954 – volume: 83 start-page: 1127 year: 1998 ident: key 20170508172054_egv020-B2 article-title: Algorithmic modifications extending MELTS to calculate subsolidus phase relations publication-title: American Mineralogist doi: 10.2138/am-1998-9-1022 – volume: 126 start-page: 137 year: 1996 ident: key 20170508172054_egv020-B22 article-title: Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100050240 – volume: 85 start-page: 186 year: 1984 ident: key 20170508172054_egv020-B25 article-title: The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2 publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00371708 – volume: 95 start-page: 15779 year: 1990 ident: key 20170508172054_egv020-B36 article-title: Origin of mantle peridotite: Constraints from melting experiments to 16·5 GPa publication-title: Journal of Geophysical Research doi: 10.1029/JB095iB10p15779 – volume: 8 year: 2007 ident: key 20170508172054_egv020-B38 article-title: Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2006GC001390 – volume: 97 start-page: 116 year: 1987 ident: key 20170508172054_egv020-B71 article-title: Fe–Mn partitioning between garnet and ilmenite: experimental calibration and applications publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00375219 – volume: 41 start-page: 369 year: 1977 ident: key 20170508172054_egv020-B64 article-title: Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO–MgO–Al2O3–SiO2 publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(77)90264-2 – volume: 89 start-page: 1597 year: 2004 ident: key 20170508172054_egv020-B46 article-title: A Mossbauer study of the oxidation state of Fe in silicate melts publication-title: American Mineralogist doi: 10.2138/am-2004-11-1203 – volume: 51 start-page: 229 year: 2010 ident: key 20170508172054_egv020-B4 article-title: The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite publication-title: Journal of Petrology doi: 10.1093/petrology/egp079 – volume: 29 start-page: 333 year: 2011 ident: key 20170508172054_egv020-B43 article-title: An improved and extended internally-consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids publication-title: Journal of Metamorphic Geology doi: 10.1111/j.1525-1314.2010.00923.x – volume: 91 start-page: 9367 year: 1986 ident: key 20170508172054_egv020-B96 article-title: Melting of a Dry Peridotite KLB-1 up to 14 GPa: Implications on the Origin of Peridotitic Upper Mantle publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1029/JB091iB09p09367 – volume: 25 start-page: 469 year: 1998 ident: key 20170508172054_egv020-B78 article-title: Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts publication-title: Physics and Chemistry of Minerals doi: 10.1007/s002690050138 – volume: 44 start-page: 933 year: 1980 ident: key 20170508172054_egv020-B65 article-title: Thermochemistry of the high structural state plagioclases publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(80)90283-5 – volume: 75 start-page: 291 year: 1980 ident: key 20170508172054_egv020-B68 article-title: The compositions of coexisting pyroxenes and garnet in the system CaO–MgO–Al2O3–SiO2 at 900–1100°C and high pressures publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF01166769 – volume: 119 start-page: 197 year: 1995 ident: key 20170508172054_egv020-B27 article-title: Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00307281 – volume: 145 start-page: 492 year: 2003 ident: key 20170508172054_egv020-B42 article-title: Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-003-0464-z – volume: 77 start-page: 639 year: 2004 ident: key 20170508172054_egv020-B52 article-title: The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling publication-title: Lithos doi: 10.1016/j.lithos.2004.03.017 – volume: 91 start-page: 404 year: 2006 ident: key 20170508172054_egv020-B67 article-title: An experimental determination of the effect of pressure on the Fe3+/ΣFe ratio of an anhydrous silicate melt to 3·0 GPa publication-title: American Mineralogist doi: 10.2138/am.2005.1929 – volume: 49 start-page: 591 year: 2008 ident: key 20170508172054_egv020-B18 article-title: The composition of near-solidus partial melts of fertile peridotite at 1 and 1·5 GPa: implications for the petrogenesis of MORB publication-title: Journal of Petrology doi: 10.1093/petrology/egn009 – volume: 131 start-page: 323 year: 1998 ident: key 20170508172054_egv020-B21 article-title: The influence of water on melting of mantle peridotite publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100050396 – volume: 305 start-page: 270 year: 2011 ident: key 20170508172054_egv020-B9 article-title: The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2011.03.014 – volume: 214 start-page: 295 year: 2003 ident: key 20170508172054_egv020-B88 article-title: Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(03)00379-0 – volume: 97 start-page: 1771 year: 2012 ident: key 20170508172054_egv020-B10 article-title: Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties publication-title: American Mineralogist doi: 10.2138/am.2012.4163 – volume: 169 start-page: 6 year: 2015 ident: key 20170508172054_egv020-B66 article-title: Fe3+ partitioning systematics between orthopyroxene and garnet in mantle peridotite xenoliths and implications for thermobarometry of oxidized and reduced mantle rocks publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-014-1101-8 – start-page: 1111 year: 2014 ident: key 20170508172054_egv020-B13 article-title: Simulating planetary igneous crystallization environments (SPICEs): A suite of igneous crystallization programs – volume: 1 year: 2000 ident: key 20170508172054_egv020-B40 article-title: Mantle solidus: Experimental constraints and the effects of peridotite composition publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2000GC000070 – volume: 42 start-page: 673 year: 2001 ident: key 20170508172054_egv020-B41 article-title: Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset publication-title: Journal of Petrology doi: 10.1093/petrology/42.4.673 – volume: 138 start-page: 237 year: 2000 ident: key 20170508172054_egv020-B53 article-title: The near-solidus transition from garnet lherzolite to spinel lherzolite publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100050560 – volume: 108 start-page: 82 year: 1991 ident: key 20170508172054_egv020-B57 article-title: The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00307328 – volume: 96 start-page: 721 year: 1988 ident: key 20170508172054_egv020-B85 article-title: Activity measurements and excess entropy–volume relationships for pyrope–grossular garnets publication-title: Journal of Geology doi: 10.1086/629273 – volume: 111 start-page: 83 year: 1992 ident: key 20170508172054_egv020-B6 article-title: Orthopyroxene stability along the peridotite solidus and the origin of cratonic lithosphere beneath southern Africa publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(92)90171-Q – volume: 75 start-page: 319 year: 1990 ident: key 20170508172054_egv020-B55 article-title: Activity–composition relationships of binary Ca–Fe and Ca–Mn garnets determined by reversed, displaced equilibrium experiments publication-title: American Mineralogist – volume: 3 year: 2002 ident: key 20170508172054_egv020-B28 article-title: The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2001GC000217 – volume: 123 start-page: 205 year: 1994 ident: key 20170508172054_egv020-B8 article-title: Ferric iron in peridotites and mantle oxidation states publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(94)90268-2 – volume: 308 start-page: 380 year: 2011 ident: key 20170508172054_egv020-B16 article-title: The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2011.06.008 – volume: 29 start-page: 625 year: 1988 ident: key 20170508172054_egv020-B62 article-title: The volume and composition of melt generated by extension of the lithosphere publication-title: Journal of Petrology doi: 10.1093/petrology/29.3.625 – volume: 52 start-page: 1243 year: 2011 ident: key 20170508172054_egv020-B61 article-title: Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids publication-title: Journal of Petrology doi: 10.1093/petrology/egq089 – year: 2015 ident: key 20170508172054_egv020-B94 article-title: Multiple-reaction oxygen barometry for mantle peridotite: an internally-consistent thermodynamic model for reactions and garnet solid-solutions, with applications to the oxidation state of lithospheric mantle publication-title: Contributions to Mineralogy & Petrology – year: 1999 ident: key 20170508172054_egv020-B90 article-title: Ferric iron contents of garnet and clinopyroxene and estimated oxygen fugacities of peridotite xenoliths from the Eastern Finland Kimberlite Province – volume: 12 start-page: Q07021 year: 2011 ident: key 20170508172054_egv020-B11 article-title: Petrolog3: integrated software for modeling crystallization processes publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2011GC003516 – volume: 114 start-page: 477 year: 1993 ident: key 20170508172054_egv020-B39 article-title: Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(93)90077-M – volume: 166 start-page: 887 year: 2013 ident: key 20170508172054_egv020-B33 article-title: Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-013-0899-9 – volume: 119 start-page: 56 year: 1995 ident: key 20170508172054_egv020-B92 article-title: Experimental Tests of Garnet Peridotite Oxygen Barometry publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00310717 – volume: 68 start-page: 407 year: 1979 ident: key 20170508172054_egv020-B47 article-title: Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1000°C in the system CaO–MgO–Al2O3–SiO2, and at 900°C with natural garnet and olivine publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF01164525 – volume: 30 start-page: 579 year: 2012 ident: key 20170508172054_egv020-B32 article-title: A thermodynamic model for silicate melt in CaO–MgO–Al2O3–SiO2 to 50 kbar and 1800°C publication-title: Journal of Metamorphic Geology doi: 10.1111/j.1525-1314.2012.00982.x – volume: 70 start-page: 757 year: 2006 ident: key 20170508172054_egv020-B63 article-title: Mg–Fe partitioning between olivine and ultramafic melts at high pressures publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2005.09.022 – volume: 32 start-page: 245 year: 2014 ident: key 20170508172054_egv020-B70 article-title: On parameterizing thermodynamic descriptions of minerals for petrological calculations publication-title: Journal of Metamorphic Geology doi: 10.1111/jmg.12070 – volume: 155 start-page: 97 year: 1998 ident: key 20170508172054_egv020-B95 article-title: The Beginning of Melting of Fertile and Depleted Peridotite at 1.5 GPa publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(97)00162-3 – volume: 87 start-page: 87 year: 1984 ident: key 20170508172054_egv020-B24 article-title: Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2 publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00371405 – volume-title: Introduction to the Thermodynamics of Materials year: 2012 ident: key 20170508172054_egv020-B23 doi: 10.4324/9780203428498 – volume: 298 start-page: 1 year: 2010 ident: key 20170508172054_egv020-B12 article-title: The deep carbon cycle and melting in Earth’s interior publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2010.06.039 – volume: 166 start-page: 1029 year: 2013 ident: key 20170508172054_egv020-B14 article-title: The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-013-0907-0 – volume: 97 start-page: 6885 year: 1992 ident: key 20170508172054_egv020-B51 article-title: Primary magmas of mid-ocean ridge basalts 1. Experiments and methods publication-title: Journal of Geophysical Research doi: 10.1029/91JB02840 – volume: 97 start-page: 1764 year: 2012 ident: key 20170508172054_egv020-B48 article-title: High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction publication-title: American Mineralogist doi: 10.2138/am.2012.4103 – volume: 164 start-page: 277 year: 1998 ident: key 20170508172054_egv020-B73 article-title: The depth of the spinel to garnet transition at the peridotite solidus publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(98)00213-1 – volume: 141 start-page: 1 year: 2005 ident: key 20170508172054_egv020-B19 article-title: A cool model for the Iceland hotspot publication-title: Journal of Volcanology and Geothermal Research doi: 10.1016/j.jvolgeores.2004.10.007 – volume: 78 start-page: 1002 year: 1993 ident: key 20170508172054_egv020-B89 article-title: Synthesis and stability of Fe2+3Fe3+2Si3O12 garnet and phase relations with Fe3Al2Si3O12–Fe2+3Fe3+2Si3O12 solutions publication-title: American Mineralogist – volume: 6 year: 2005 ident: key 20170508172054_egv020-B75 article-title: Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2004GC000816 – volume: 15 start-page: 5015 year: 2014 ident: key 20170508172054_egv020-B82 article-title: Thermodynamic calculations of the polybaric melting phase relations of spinel lherzolite publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1002/2014GC005546 – volume: 117 start-page: B06206 year: 2012 ident: key 20170508172054_egv020-B79 article-title: A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields publication-title: Journal of Geophysical Research doi: 10.1029/2011JB009044 – volume: 45 start-page: 343 year: 2004 ident: key 20170508172054_egv020-B45 article-title: Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet facies upper mantle publication-title: Journal of Petrology doi: 10.1093/petrology/egg090 – volume: 342 start-page: 105 year: 1993 ident: key 20170508172054_egv020-B77 article-title: Melting study of a peridotite KLB-1 to 6·5 GPa, and the origin of basaltic magmas publication-title: Philosophical Transactions of the Royal Society of London, Series A doi: 10.1098/rsta.1993.0008 – volume: 19 start-page: 1155 year: 1993 ident: key 20170508172054_egv020-B1 article-title: COMAGMAT—A FORTRAN program to model magma differentiation processes publication-title: Computers and Geosciences doi: 10.1016/0098-3004(93)90020-6 – volume: 51 start-page: 1755 year: 1987 ident: key 20170508172054_egv020-B26 article-title: Enthalpy of mixing of synthetic almandine–grossular and almandine–pyrope garnets from high-temperature solution calorimetry publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(87)90353-X – volume: 76 start-page: 785 year: 1991 ident: key 20170508172054_egv020-B58 article-title: Comparative liquidus equilibria of hypersthene-normative basalts at low pressure publication-title: American Mineralogist |
SSID | ssj0014150 |
Score | 2.550891 |
Snippet | A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 869 |
SubjectTerms | Liquids Mantle Mathematical models Melting Melts Peridotite Solidus Thermodynamic models |
Title | A Simple Thermodynamic Model for Melting of Peridotite in the System NCFMASOCr |
URI | https://www.proquest.com/docview/1800434558 https://www.proquest.com/docview/1808382553 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2Avpbuxrt3QYC_DOJEt3_KYhXalkGyQFvpmJOtoFDJnZGmh_fU9kmw5Xi-sezHG2MeX8_ncdQ4hn5WMkcsjFUaQiRA1lAoFqolQp5kQBgJSmnjHdJYdnSbHZ-lZ157Ari5Zy0F1fee6kv_hKh5DvppVso_grCeKB3Af-Ytb5DBu_4nH42B-brr7mrqJ1a-lctPl7XwzuywxmMKiLWv-gQ-kTOEdtKWNrll5MJscTsfz75PVPXYqmtWrXuzdFsTULqR-sABR443mA48PAywXrUYcBMeD4OtgM7QQpV0hX6_Uv0mcgJOQScZCo_Y3RajrDd5AJd2Qh4Wbw9KqVjf27pbUdh2t_OsYXv68ZDHrdFSbl_9LdfmCQpdK56WnUToKT8mzGP2H2Eps7xdF-PjMt5HH92vy10hh6CkMHYW-vdJX19YGOdkh2w1T6Ngh4SV5AvUr8vybHc589ZrMxtThgfbwQC0eKOKBNnigS007PNDzmiIeqMMD9Xh4Q04PD04mR2EzLyMUScLWoULTHQ1OmcmiGkUamEJbN9F5gmZdjnauZkUucs0qQJ8beJorLSQvKs00oGRn_C3Zqpc1vCNUj2IGsYo05-hCKymAKyaqpEpND02AXTJsv0pZNc3kzUyTRXkfJ3bJF3_Fb9dI5YFzP7UfukRpZ1JYooblxZ8yKkzqOknT4sFzCl6gq8zfP-Kee-RF9wvsk6316gI-oL25lh8tdm4AeTKFYw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Thermodynamic+Model+for+Melting+of+Peridotite+in+the+System+NCFMASOCr&rft.jtitle=Journal+of+petrology&rft.au=Jennings%2C+Eleanor+S.&rft.au=Holland%2C+Tim+J.+B.&rft.date=2015-05-01&rft.issn=0022-3530&rft.eissn=1460-2415&rft.volume=56&rft.issue=5&rft.spage=869&rft.epage=892&rft_id=info:doi/10.1093%2Fpetrology%2Fegv020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_petrology_egv020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3530&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3530&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3530&client=summon |