A Simple Thermodynamic Model for Melting of Peridotite in the System NCFMASOCr

A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Ca...

Full description

Saved in:
Bibliographic Details
Published inJournal of petrology Vol. 56; no. 5; pp. 869 - 892
Main Authors Jennings, Eleanor S., Holland, Tim J. B.
Format Journal Article
LanguageEnglish
Published 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Calculations in the program thermocalc illustrate mantle phase relationships and melting conditions, specifically for the peridotite composition KLB-1. The garnet-spinel transition zone intersects the solidus at 21.4-21.7kbar, where both Fe super(3+) and Cr increase spinel stability, expanding the width of the transition. Orthopyroxene is lost at the solidus at 42kbar in KLB-1, although this pressure is very sensitive to bulk composition. Calculated oxidation states are in excellent agreement with measured log fO sub(2) for xenolith suites with mantle Fe sub(2)O sub(3) contents in the range 0.1-0.3wt %. It appears that mantle oxidation state is not just a simple function of P and T, but depends on phase assemblage, and may vary in a complex way within a single assemblage. The liquid model performs well, such that calculated solidus, melt productivity and liquid compositions compare favourably with those of experimental studies, permitting its use in interpolating between, and extrapolating from, experimental P-T conditions. Experimentally challenging but geologically useful regimes can be explored, such as subsolidus samples and very low melt fractions, with application to both mantle xenoliths and the origin of basalt.
AbstractList A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Calculations in the program thermocalc illustrate mantle phase relationships and melting conditions, specifically for the peridotite composition KLB-1. The garnet-spinel transition zone intersects the solidus at 21.4-21.7kbar, where both Fe super(3+) and Cr increase spinel stability, expanding the width of the transition. Orthopyroxene is lost at the solidus at 42kbar in KLB-1, although this pressure is very sensitive to bulk composition. Calculated oxidation states are in excellent agreement with measured log fO sub(2) for xenolith suites with mantle Fe sub(2)O sub(3) contents in the range 0.1-0.3wt %. It appears that mantle oxidation state is not just a simple function of P and T, but depends on phase assemblage, and may vary in a complex way within a single assemblage. The liquid model performs well, such that calculated solidus, melt productivity and liquid compositions compare favourably with those of experimental studies, permitting its use in interpolating between, and extrapolating from, experimental P-T conditions. Experimentally challenging but geologically useful regimes can be explored, such as subsolidus samples and very low melt fractions, with application to both mantle xenoliths and the origin of basalt.
Author Holland, Tim J. B.
Jennings, Eleanor S.
Author_xml – sequence: 1
  givenname: Eleanor S.
  surname: Jennings
  fullname: Jennings, Eleanor S.
– sequence: 2
  givenname: Tim J. B.
  surname: Holland
  fullname: Holland, Tim J. B.
BookMark eNqNkE1LAzEQQINUsK3ePeboZe1kk-zHsSxWhX4Irecl3Z20kd1NTVJh_72VigdB8DQwvDcDb0QGne2QkFsG9wxyPjlgcLaxu36Cuw-I4YIMmUggigWTAzIEiOOISw5XZOT9GwA77WFIllO6Nu2hQbrZo2tt3XeqNRVd2Bobqq2jC2yC6XbUavqCztQ2mIDUdDTska57H7Cly2K2mK5Xhbsml1o1Hm--55i8zh42xVM0Xz0-F9N5pISAENWS84Tn22SbVTnTCLUQTOhUxEymMok1ZKlKNVQYixy5TGuttjyrNGhkGQc-Jnfnuwdn34_oQ9kaX2HTqA7t0Zcsg4xnsTz9-QcKggspsxOanNHKWe8d6rIyQQVju-CUaUoG5Vfr8qd1eW59EuGXeHCmVa7_W_kEwoqHSg
CitedBy_id crossref_primary_10_1016_j_precamres_2021_106330
crossref_primary_10_1007_s00410_019_1579_1
crossref_primary_10_1016_j_epsl_2019_05_005
crossref_primary_10_1007_s00410_023_01997_y
crossref_primary_10_1016_j_epsl_2019_116007
crossref_primary_10_1016_j_lithos_2019_01_009
crossref_primary_10_1038_s41561_020_0640_z
crossref_primary_10_1144_SP478_13
crossref_primary_10_1016_j_jseaes_2022_105078
crossref_primary_10_2138_am_2017_6154
crossref_primary_10_1002_gj_3883
crossref_primary_10_1093_petrology_egy110
crossref_primary_10_1007_s00531_022_02171_8
crossref_primary_10_1093_petrology_egaa011
crossref_primary_10_1007_s00126_023_01238_z
crossref_primary_10_1016_j_lithos_2019_01_011
crossref_primary_10_1038_s41598_018_34669_0
crossref_primary_10_1093_petrology_egab077
crossref_primary_10_1007_s00410_021_01870_w
crossref_primary_10_1016_j_chemer_2017_12_003
crossref_primary_10_1016_j_jsames_2024_105317
crossref_primary_10_1016_j_lithos_2018_09_032
crossref_primary_10_2138_am_2019_6602
crossref_primary_10_1007_s00410_023_02080_2
crossref_primary_10_1029_2022GC010329
crossref_primary_10_1111_jmg_12754
crossref_primary_10_1016_j_earscirev_2017_09_014
crossref_primary_10_1007_s11214_018_0563_9
crossref_primary_10_1016_j_oregeorev_2021_104483
crossref_primary_10_2138_am_2018_6392
crossref_primary_10_1093_petrology_egw047
crossref_primary_10_1016_j_chemgeo_2021_120180
crossref_primary_10_1016_j_earscirev_2022_104153
crossref_primary_10_1007_s00410_016_1229_9
crossref_primary_10_1016_j_epsl_2022_117500
crossref_primary_10_1029_2024GC012028
crossref_primary_10_1093_petrology_egy105
crossref_primary_10_1093_petrology_egaa029
crossref_primary_10_3847_2041_8213_abf7ca
crossref_primary_10_1016_j_jseaes_2020_104554
crossref_primary_10_3389_feart_2017_00081
crossref_primary_10_1016_j_epsl_2015_10_035
crossref_primary_10_1029_2023JE008234
crossref_primary_10_1130_GES02467_1
crossref_primary_10_3847_0004_637X_824_2_103
crossref_primary_10_1002_2015JB012762
crossref_primary_10_1038_s41598_019_43605_9
crossref_primary_10_1130_B36380_1
crossref_primary_10_1130_B37289_1
crossref_primary_10_1016_j_lithos_2019_05_040
crossref_primary_10_1007_s00410_024_02108_1
crossref_primary_10_1016_j_lithos_2024_107670
crossref_primary_10_1029_2020GC009157
crossref_primary_10_1016_j_lithos_2019_105194
crossref_primary_10_1130_B35456_1
crossref_primary_10_1007_s12594_021_1675_5
crossref_primary_10_1111_jmg_12211
crossref_primary_10_1126_sciadv_adf6216
crossref_primary_10_1093_petrology_egy096
crossref_primary_10_1016_j_earscirev_2019_02_011
crossref_primary_10_1016_j_jafrearsci_2020_103816
crossref_primary_10_1016_j_precamres_2024_107487
crossref_primary_10_1038_s41467_025_58324_1
crossref_primary_10_1144_SP478_6
crossref_primary_10_1016_j_lithos_2022_106852
crossref_primary_10_1144_SP474_6
crossref_primary_10_1139_cjes_2023_0005
crossref_primary_10_1029_2023GC011072
crossref_primary_10_1016_j_gca_2021_09_008
crossref_primary_10_1016_j_lithos_2019_105344
crossref_primary_10_1016_j_lithos_2023_107385
crossref_primary_10_1029_2022GC010421
crossref_primary_10_1007_s00410_018_1525_7
crossref_primary_10_1007_s11430_021_9839_2
crossref_primary_10_1016_j_gsf_2017_07_008
crossref_primary_10_1016_j_epsl_2023_118311
crossref_primary_10_1007_s00410_019_1580_8
crossref_primary_10_1016_j_precamres_2021_106183
crossref_primary_10_1002_2017GC007251
crossref_primary_10_1002_gj_4124
crossref_primary_10_1016_j_epsl_2019_115781
crossref_primary_10_1093_petrology_egw065
crossref_primary_10_1029_2021GC009637
crossref_primary_10_1093_petrology_egad069
crossref_primary_10_1002_2015GC006242
crossref_primary_10_1093_petrology_egaa084
crossref_primary_10_1016_j_gsf_2017_05_003
crossref_primary_10_1007_s00410_024_02144_x
crossref_primary_10_1007_s00410_021_01823_3
crossref_primary_10_1016_j_jsames_2022_103883
crossref_primary_10_1111_jmg_12746
crossref_primary_10_1111_jmg_12626
crossref_primary_10_1016_j_earscirev_2020_103172
crossref_primary_10_1111_jmg_12743
crossref_primary_10_1029_2019GC008303
crossref_primary_10_2139_ssrn_4105366
crossref_primary_10_1029_2018GC007559
crossref_primary_10_1016_j_epsl_2020_116464
crossref_primary_10_1029_2020GL091957
crossref_primary_10_1093_mnras_stad2486
crossref_primary_10_1016_j_jseaes_2021_104861
crossref_primary_10_1016_j_pepi_2020_106559
crossref_primary_10_1029_2020GC009624
crossref_primary_10_1016_j_jsames_2025_105357
crossref_primary_10_1016_j_chemer_2025_126248
crossref_primary_10_1016_j_gca_2020_03_035
crossref_primary_10_1134_S0038094624700370
crossref_primary_10_1016_j_gca_2022_08_014
crossref_primary_10_1093_petrology_egab037
crossref_primary_10_1016_j_chemgeo_2021_120532
crossref_primary_10_1016_j_pepi_2020_106430
crossref_primary_10_1111_jmg_12679
crossref_primary_10_1038_s41467_021_22323_9
crossref_primary_10_1016_j_epsl_2022_117946
crossref_primary_10_1016_j_lithos_2019_02_007
crossref_primary_10_5575_geosoc_2019_0018
crossref_primary_10_1016_j_gsf_2021_101225
crossref_primary_10_1111_jmg_12557
crossref_primary_10_1029_2023GC011235
crossref_primary_10_1007_s00410_021_01796_3
crossref_primary_10_1029_2023GC011234
crossref_primary_10_1016_j_precamres_2021_106480
crossref_primary_10_1017_S0016756819001171
crossref_primary_10_1029_2019JB018133
crossref_primary_10_1051_bsgf_2022021
crossref_primary_10_2138_am_2020_7162
crossref_primary_10_1093_petrology_egaa067
crossref_primary_10_1016_j_precamres_2021_106122
crossref_primary_10_1093_petrology_egac110
crossref_primary_10_1029_2018JB016179
crossref_primary_10_3390_min9110685
crossref_primary_10_1038_s41586_024_07603_w
crossref_primary_10_1093_petrology_egad049
crossref_primary_10_1126_sciadv_adr2613
crossref_primary_10_1126_sciadv_abc7394
crossref_primary_10_1016_j_epsl_2020_116721
crossref_primary_10_1016_j_lithos_2021_106046
crossref_primary_10_1016_j_geogeo_2021_100012
crossref_primary_10_1111_maps_13472
crossref_primary_10_1029_2022GC010657
crossref_primary_10_1029_2021GC009650
crossref_primary_10_1016_j_gca_2022_04_023
crossref_primary_10_1029_2018GC008027
crossref_primary_10_1016_j_precamres_2024_107606
crossref_primary_10_1017_S0016756822000607
crossref_primary_10_1093_petrology_egw037
crossref_primary_10_1144_SP491_2018_160
crossref_primary_10_2138_am_2022_8211
crossref_primary_10_1093_petrology_egae081
crossref_primary_10_1016_j_precamres_2023_107042
crossref_primary_10_1002_gj_2890
crossref_primary_10_1016_j_lithos_2022_106810
crossref_primary_10_21105_joss_05389
crossref_primary_10_1016_j_precamres_2022_106671
crossref_primary_10_1080_00206814_2024_2389566
crossref_primary_10_1093_petrology_egab012
crossref_primary_10_1093_petrology_egae006
crossref_primary_10_1038_s41467_020_20514_4
crossref_primary_10_1038_s41561_023_01127_0
crossref_primary_10_1029_2020GC009560
crossref_primary_10_2138_am_2022_8735
crossref_primary_10_1016_j_geogeo_2022_100041
crossref_primary_10_1130_GES02689_1
crossref_primary_10_1029_2023GC011275
crossref_primary_10_1016_j_precamres_2022_106708
crossref_primary_10_1093_petrology_egy048
crossref_primary_10_1007_s00410_021_01799_0
crossref_primary_10_1016_j_lithos_2018_11_005
crossref_primary_10_1029_2022GC010485
crossref_primary_10_1038_s41467_024_51476_6
crossref_primary_10_1016_j_chemgeo_2019_02_011
crossref_primary_10_1144_SP472_4
crossref_primary_10_1016_j_lithos_2017_08_001
crossref_primary_10_1111_maps_13535
crossref_primary_10_1029_2021GC009717
crossref_primary_10_1017_S0016756822000164
crossref_primary_10_1093_gji_ggaa413
crossref_primary_10_1016_j_gca_2021_12_008
crossref_primary_10_1016_j_lithos_2023_107111
crossref_primary_10_1029_2021JB021890
crossref_primary_10_1016_j_lithos_2023_107112
crossref_primary_10_1016_j_lithos_2021_106102
crossref_primary_10_1016_j_chemgeo_2019_119287
crossref_primary_10_1038_s41586_022_05665_2
crossref_primary_10_1029_2020GC009334
crossref_primary_10_1016_j_lithos_2023_107192
crossref_primary_10_1111_ter_12599
crossref_primary_10_1134_S0869591122020059
crossref_primary_10_1144_jgs2023_004
crossref_primary_10_31857_S0320930X24050017
Cites_doi 10.1007/BF00371276
10.1093/petroj/39.1.29
10.1093/petrology/37.3.609
10.1029/96JB00170
10.1016/0012-821X(73)90176-3
10.2138/am.2009.2984
10.1146/annurev.earth.36.031207.124322
10.1016/j.lithos.2009.05.007
10.1111/j.1525-1314.2012.00981.x
10.1007/s00269-013-0653-x
10.1130/0091-7613(1976)4<69:DCCPMI>2.0.CO;2
10.1093/petrology/egt035
10.1029/2002GC000433
10.1029/2001GC000204
10.1007/s00410-004-0629-4
10.1029/94JB01406
10.1016/0016-7037(84)90072-3
10.1029/2000GC000089
10.1093/petrology/egi046
10.1111/j.1525-1314.1998.00157.x
10.1093/petrology/43.10.1857
10.1029/96JB00988
10.2475/ajs.290.10.1093
10.1016/0016-7037(84)90073-5
10.1016/j.lithos.2009.04.009
10.1029/95JB00954
10.2138/am-1998-9-1022
10.1007/s004100050240
10.1007/BF00371708
10.1029/JB095iB10p15779
10.1029/2006GC001390
10.1007/BF00375219
10.1016/0016-7037(77)90264-2
10.2138/am-2004-11-1203
10.1093/petrology/egp079
10.1111/j.1525-1314.2010.00923.x
10.1029/JB091iB09p09367
10.1007/s002690050138
10.1016/0016-7037(80)90283-5
10.1007/BF01166769
10.1007/BF00307281
10.1007/s00410-003-0464-z
10.1016/j.lithos.2004.03.017
10.2138/am.2005.1929
10.1093/petrology/egn009
10.1007/s004100050396
10.1016/j.epsl.2011.03.014
10.1016/S0012-821X(03)00379-0
10.2138/am.2012.4163
10.1007/s00410-014-1101-8
10.1029/2000GC000070
10.1093/petrology/42.4.673
10.1007/s004100050560
10.1007/BF00307328
10.1086/629273
10.1016/0012-821X(92)90171-Q
10.1029/2001GC000217
10.1016/0012-821X(94)90268-2
10.1016/j.epsl.2011.06.008
10.1093/petrology/29.3.625
10.1093/petrology/egq089
10.1029/2011GC003516
10.1016/0012-821X(93)90077-M
10.1007/s00410-013-0899-9
10.1007/BF00310717
10.1007/BF01164525
10.1111/j.1525-1314.2012.00982.x
10.1016/j.gca.2005.09.022
10.1111/jmg.12070
10.1016/S0012-821X(97)00162-3
10.1007/BF00371405
10.4324/9780203428498
10.1016/j.epsl.2010.06.039
10.1007/s00410-013-0907-0
10.1029/91JB02840
10.2138/am.2012.4103
10.1016/S0012-821X(98)00213-1
10.1016/j.jvolgeores.2004.10.007
10.1029/2004GC000816
10.1002/2014GC005546
10.1029/2011JB009044
10.1093/petrology/egg090
10.1098/rsta.1993.0008
10.1016/0098-3004(93)90020-6
10.1016/0016-7037(87)90353-X
ContentType Journal Article
DBID AAYXX
CITATION
8BQ
8FD
FR3
H8D
JG9
KR7
L7M
7UA
C1K
F1W
H96
L.G
DOI 10.1093/petrology/egv020
DatabaseName CrossRef
METADEX
Technology Research Database
Engineering Research Database
Aerospace Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1460-2415
EndPage 892
ExternalDocumentID 10_1093_petrology_egv020
GroupedDBID -DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29L
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAYXX
ABAZT
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJIA
ABJNI
ABLJU
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABVLG
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUTJ
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQDIO
BQUQU
BSWAC
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HH5
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
OBOKY
OCL
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
S10
TEORI
TJP
TLC
TN5
TR2
UHB
W8F
WH7
X7H
YAYTL
YKOAZ
YSK
YXANX
ZCA
ZKX
~02
~91
8BQ
8FD
FR3
H8D
JG9
KR7
L7M
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a440t-d533639b6b8c91fe0d4414f742157562f087a7f0ce249e357dfab38cf0fe18303
ISSN 0022-3530
IngestDate Fri Jul 11 11:31:46 EDT 2025
Fri Jul 11 08:19:16 EDT 2025
Tue Jul 01 02:08:03 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a440t-d533639b6b8c91fe0d4414f742157562f087a7f0ce249e357dfab38cf0fe18303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/petrology/article-pdf/56/5/869/16677774/egv020.pdf
PQID 1800434558
PQPubID 23500
PageCount 24
ParticipantIDs proquest_miscellaneous_1808382553
proquest_miscellaneous_1800434558
crossref_citationtrail_10_1093_petrology_egv020
crossref_primary_10_1093_petrology_egv020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of petrology
PublicationYear 2015
References O’Neill ( key 20170508172054_egv020-B67) 2006; 91
Canil ( key 20170508172054_egv020-B7) 1996; 37
Grove ( key 20170508172054_egv020-B33) 2013; 166
Geiger ( key 20170508172054_egv020-B26) 1987; 51
Herzberg ( key 20170508172054_egv020-B36) 1990; 95
Canil ( key 20170508172054_egv020-B6) 1992; 111
Longhi ( key 20170508172054_egv020-B58) 1991; 76
Koziol ( key 20170508172054_egv020-B56) 1992; 77
Herzberg ( key 20170508172054_egv020-B35) 2002; 43
Herzberg ( key 20170508172054_egv020-B38) 2007; 8
Wood ( key 20170508172054_egv020-B85) 1988; 96
Roeder ( key 20170508172054_egv020-B74) 1970; 29
Eggler ( key 20170508172054_egv020-B17) 1976; 4
Ghiorso ( key 20170508172054_egv020-B28) 2002; 3
Holland ( key 20170508172054_egv020-B44) 2013; 54
Davenport ( key 20170508172054_egv020-B13) 2014
Newton ( key 20170508172054_egv020-B65) 1980; 44
Klemme ( key 20170508172054_egv020-B52) 2004; 77
Davis ( key 20170508172054_egv020-B16) 2011; 308
Foulger ( key 20170508172054_egv020-B19) 2005; 141
Herzberg ( key 20170508172054_egv020-B37) 2000; 1
Dasgupta ( key 20170508172054_egv020-B12) 2010; 298
Takahashi ( key 20170508172054_egv020-B76) 1983; 68
Cottrell ( key 20170508172054_egv020-B9) 2011; 305
Ghiorso ( key 20170508172054_egv020-B27) 1995; 119
Wood ( key 20170508172054_egv020-B86) 1984; 48
Kinzler ( key 20170508172054_egv020-B50) 1997; 102
Hackler ( key 20170508172054_egv020-B34) 1989; 74
Takahashi ( key 20170508172054_egv020-B96) 1986; 91
Kinzler ( key 20170508172054_egv020-B51) 1992; 97
Longhi ( key 20170508172054_egv020-B59) 2002; 3
Katz ( key 20170508172054_egv020-B49) 2003; 4
Tuff ( key 20170508172054_egv020-B81) 2005; 46
Holland ( key 20170508172054_egv020-B41) 2001; 42
Kress ( key 20170508172054_egv020-B57) 1991; 108
Bryndzia ( key 20170508172054_egv020-B5) 1990; 290
Holland ( key 20170508172054_egv020-B42) 2003; 145
Zhang ( key 20170508172054_egv020-B91) 1994; 99
Green ( key 20170508172054_egv020-B32) 2012; 30
Klemme ( key 20170508172054_egv020-B53) 2000; 138
Woodland ( key 20170508172054_egv020-B89) 1993; 78
Takahashi ( key 20170508172054_egv020-B77) 1993; 342
Blundy ( key 20170508172054_egv020-B3) 1995; 100
Green ( key 20170508172054_egv020-B29) 1973; 19
Powell ( key 20170508172054_egv020-B69) 1998; 16
Frost ( key 20170508172054_egv020-B20) 2008; 36
Borghini ( key 20170508172054_egv020-B4) 2010; 51
Taura ( key 20170508172054_egv020-B78) 1998; 25
Till ( key 20170508172054_egv020-B79) 2012; 117
Davis ( key 20170508172054_egv020-B15) 2009; 94
Ganguly ( key 20170508172054_egv020-B22) 1996; 126
Toplis ( key 20170508172054_egv020-B80) 2005; 149
Nimis ( key 20170508172054_egv020-B66) 2015; 169
Powell ( key 20170508172054_egv020-B70) 2014; 32
Ariskin ( key 20170508172054_egv020-B1) 1993; 19
Woodland ( key 20170508172054_egv020-B88) 2003; 214
Koziol ( key 20170508172054_egv020-B55) 1990; 75
Canil ( key 20170508172054_egv020-B8) 1994; 123
Davis ( key 20170508172054_egv020-B14) 2013; 166
Pownceby ( key 20170508172054_egv020-B71) 1987; 97
Matzen ( key 20170508172054_egv020-B61) 2011; 52
Hirschmann ( key 20170508172054_egv020-B40) 2000; 1
Gaetani ( key 20170508172054_egv020-B21) 1998; 131
Gasparik ( key 20170508172054_egv020-B24) 1984; 87
Green ( key 20170508172054_egv020-B31) 2012; 30
Jenkins ( key 20170508172054_egv020-B47) 1979; 68
Ionov ( key 20170508172054_egv020-B45) 2004; 45
Newton ( key 20170508172054_egv020-B64) 1977; 41
Gaskell ( key 20170508172054_egv020-B23) 2012
Walter ( key 20170508172054_egv020-B83) 1998; 39
Perkins ( key 20170508172054_egv020-B68) 1980; 75
Herzberg ( key 20170508172054_egv020-B93) 1996; 101
Wijbrans ( key 20170508172054_egv020-B84) 2014; 41
Danyushevsky ( key 20170508172054_egv020-B11) 2011; 12
McKenzie ( key 20170508172054_egv020-B62) 1988; 29
Asimow ( key 20170508172054_egv020-B2) 1998; 83
Mattioli ( key 20170508172054_egv020-B60) 1984; 48
Mibe ( key 20170508172054_egv020-B63) 2006; 70
Kantor ( key 20170508172054_egv020-B48) 2012; 97
Hirose ( key 20170508172054_egv020-B39) 1993; 114
Woodland ( key 20170508172054_egv020-B87) 2009; 112S
Holland ( key 20170508172054_egv020-B43) 2011; 29
Robie ( key 20170508172054_egv020-B72) 1978
Robinson ( key 20170508172054_egv020-B73) 1998; 164
Ueki ( key 20170508172054_egv020-B82) 2014; 15
Woodland ( key 20170508172054_egv020-B90) 1999
Miller ( key 20170508172054_egv020-B94) 2015
Falloon ( key 20170508172054_egv020-B18) 2008; 49
Klemme ( key 20170508172054_egv020-B54) 2009; 112
Gasparik ( key 20170508172054_egv020-B25) 1984; 85
Robinson ( key 20170508172054_egv020-B95) 1998; 155
Gudmundsson ( key 20170508172054_egv020-B92) 1995; 119
Jayasuriya ( key 20170508172054_egv020-B46) 2004; 89
Dachs ( key 20170508172054_egv020-B10) 2012; 97
Smith ( key 20170508172054_egv020-B75) 2005; 6
References_xml – volume: 29
  start-page: 275
  year: 1970
  ident: key 20170508172054_egv020-B74
  article-title: Olivine–liquid equilibrium
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00371276
– volume: 39
  start-page: 29
  year: 1998
  ident: key 20170508172054_egv020-B83
  article-title: Melting of garnet peridotite and the origin of komatiite and depleted lithosphere
  publication-title: Journal of Petrology
  doi: 10.1093/petroj/39.1.29
– volume: 77
  start-page: 765
  year: 1992
  ident: key 20170508172054_egv020-B56
  article-title: Solution properties of almandine–pyrope garnet as determined by phase equilibrium experiments
  publication-title: American Mineralogist
– volume: 68
  start-page: 859
  year: 1983
  ident: key 20170508172054_egv020-B76
  article-title: Melting of a dry peridotite at high pressures and basalt magma genesis
  publication-title: American Mineralogist
– volume: 37
  start-page: 609
  year: 1996
  ident: key 20170508172054_egv020-B7
  article-title: Distribution of ferric iron in some upper-mantle assemblages
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/37.3.609
– volume: 74
  start-page: 994
  year: 1989
  ident: key 20170508172054_egv020-B34
  article-title: Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe–Mg mixing properties in garnet
  publication-title: American Mineralogist
– volume: 101
  start-page: 8271
  year: 1996
  ident: key 20170508172054_egv020-B93
  article-title: Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone
  publication-title: Journal of Geophysical Research
  doi: 10.1029/96JB00170
– start-page: 456
  volume-title: US Geological Survey Bulletin
  year: 1978
  ident: key 20170508172054_egv020-B72
  article-title: Thermodynamic properties of minerals and related substances at 298·15 K and 1 bar (105 Pascals) pressure and at higher temperatures
– volume: 19
  start-page: 37
  year: 1973
  ident: key 20170508172054_egv020-B29
  article-title: Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(73)90176-3
– volume: 94
  start-page: 176
  year: 2009
  ident: key 20170508172054_egv020-B15
  article-title: The composition of KLB-1 peridotite
  publication-title: American Mineralogist
  doi: 10.2138/am.2009.2984
– volume: 36
  start-page: 389
  year: 2008
  ident: key 20170508172054_egv020-B20
  article-title: The redox state of Earth’s mantle
  publication-title: Annual Review of Earth and Planetary Sciences
  doi: 10.1146/annurev.earth.36.031207.124322
– volume: 112
  start-page: 986
  year: 2009
  ident: key 20170508172054_egv020-B54
  article-title: Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths
  publication-title: Lithos
  doi: 10.1016/j.lithos.2009.05.007
– volume: 30
  start-page: 561
  year: 2012
  ident: key 20170508172054_egv020-B31
  article-title: Garnet and spinel lherzolite assemblages in MgO–Al2O3–SiO2 and CaO–MgO–Al2O3–SiO2: thermodynamic models and an experimental conflict
  publication-title: Journal of Metamorphic Geology
  doi: 10.1111/j.1525-1314.2012.00981.x
– volume: 41
  start-page: 341
  year: 2014
  ident: key 20170508172054_egv020-B84
  article-title: Thermodynamic and magnetic properties of knorringite garnet (Mg3Cr2Si3O12) based on low-temperature calorimetry and magnetic susceptibility measurements
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/s00269-013-0653-x
– volume: 4
  start-page: 69
  year: 1976
  ident: key 20170508172054_egv020-B17
  article-title: Does CO2 cause partial melting in the low-velocity layer of the mantle?
  publication-title: Geology
  doi: 10.1130/0091-7613(1976)4<69:DCCPMI>2.0.CO;2
– volume: 54
  start-page: 1901
  year: 2013
  ident: key 20170508172054_egv020-B44
  article-title: New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egt035
– volume: 4
  year: 2003
  ident: key 20170508172054_egv020-B49
  article-title: A new parameterization of hydrous mantle melting
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2002GC000433
– volume: 3
  year: 2002
  ident: key 20170508172054_egv020-B59
  article-title: Some phase equilibrium systematics of lherzolite melting: I
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2001GC000204
– volume: 149
  start-page: 22
  year: 2005
  ident: key 20170508172054_egv020-B80
  article-title: The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-004-0629-4
– volume: 99
  start-page: 17729
  year: 1994
  ident: key 20170508172054_egv020-B91
  article-title: Melting experiments on anhydrous peridotite KLB-1 from 5·0 to 22·5 GPa
  publication-title: Journal of Geophysical Research
  doi: 10.1029/94JB01406
– volume: 48
  start-page: 1367
  year: 1984
  ident: key 20170508172054_egv020-B60
  article-title: Experimental determination of the chromium–aluminum mixing parameter in garnet
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(84)90072-3
– volume: 1
  year: 2000
  ident: key 20170508172054_egv020-B37
  article-title: New experimental observations on the anhydrous solidus for peridotite KLB-1
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2000GC000089
– volume: 46
  start-page: 2023
  year: 2005
  ident: key 20170508172054_egv020-B81
  article-title: Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egi046
– volume: 16
  start-page: 577
  year: 1998
  ident: key 20170508172054_egv020-B69
  article-title: Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC
  publication-title: Journal of Metamorphic Geology
  doi: 10.1111/j.1525-1314.1998.00157.x
– volume: 43
  start-page: 1857
  year: 2002
  ident: key 20170508172054_egv020-B35
  article-title: Plume-associated ultramafic magmas of Phanerozoic age
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/43.10.1857
– volume: 102
  start-page: 853
  year: 1997
  ident: key 20170508172054_egv020-B50
  article-title: Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis
  publication-title: Journal of Geophysical Research
  doi: 10.1029/96JB00988
– volume: 290
  start-page: 1093
  year: 1990
  ident: key 20170508172054_egv020-B5
  article-title: Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C–O–H volatile composition of the Earth’s sub-oceanic upper mantle
  publication-title: American Journal of Science
  doi: 10.2475/ajs.290.10.1093
– volume: 48
  start-page: 1373
  year: 1984
  ident: key 20170508172054_egv020-B86
  article-title: Chromium–aluminum mixing in garnet: A thermochemical study
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(84)90073-5
– volume: 112S
  start-page: 1143
  year: 2009
  ident: key 20170508172054_egv020-B87
  article-title: Ferric iron contents of clinopyroxene from cratonic mantle and partitioning behaviour with garnet
  publication-title: Lithos
  doi: 10.1016/j.lithos.2009.04.009
– volume: 100
  start-page: 15501
  year: 1995
  ident: key 20170508172054_egv020-B3
  article-title: Sodium partitioning between clinopyroxene and silicate melts
  publication-title: Journal of Geophysical Research
  doi: 10.1029/95JB00954
– volume: 83
  start-page: 1127
  year: 1998
  ident: key 20170508172054_egv020-B2
  article-title: Algorithmic modifications extending MELTS to calculate subsolidus phase relations
  publication-title: American Mineralogist
  doi: 10.2138/am-1998-9-1022
– volume: 126
  start-page: 137
  year: 1996
  ident: key 20170508172054_egv020-B22
  article-title: Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100050240
– volume: 85
  start-page: 186
  year: 1984
  ident: key 20170508172054_egv020-B25
  article-title: The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00371708
– volume: 95
  start-page: 15779
  year: 1990
  ident: key 20170508172054_egv020-B36
  article-title: Origin of mantle peridotite: Constraints from melting experiments to 16·5 GPa
  publication-title: Journal of Geophysical Research
  doi: 10.1029/JB095iB10p15779
– volume: 8
  year: 2007
  ident: key 20170508172054_egv020-B38
  article-title: Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2006GC001390
– volume: 97
  start-page: 116
  year: 1987
  ident: key 20170508172054_egv020-B71
  article-title: Fe–Mn partitioning between garnet and ilmenite: experimental calibration and applications
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00375219
– volume: 41
  start-page: 369
  year: 1977
  ident: key 20170508172054_egv020-B64
  article-title: Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO–MgO–Al2O3–SiO2
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(77)90264-2
– volume: 89
  start-page: 1597
  year: 2004
  ident: key 20170508172054_egv020-B46
  article-title: A Mossbauer study of the oxidation state of Fe in silicate melts
  publication-title: American Mineralogist
  doi: 10.2138/am-2004-11-1203
– volume: 51
  start-page: 229
  year: 2010
  ident: key 20170508172054_egv020-B4
  article-title: The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egp079
– volume: 29
  start-page: 333
  year: 2011
  ident: key 20170508172054_egv020-B43
  article-title: An improved and extended internally-consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids
  publication-title: Journal of Metamorphic Geology
  doi: 10.1111/j.1525-1314.2010.00923.x
– volume: 91
  start-page: 9367
  year: 1986
  ident: key 20170508172054_egv020-B96
  article-title: Melting of a Dry Peridotite KLB-1 up to 14 GPa: Implications on the Origin of Peridotitic Upper Mantle
  publication-title: Journal of Geophysical Research: Solid Earth
  doi: 10.1029/JB091iB09p09367
– volume: 25
  start-page: 469
  year: 1998
  ident: key 20170508172054_egv020-B78
  article-title: Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/s002690050138
– volume: 44
  start-page: 933
  year: 1980
  ident: key 20170508172054_egv020-B65
  article-title: Thermochemistry of the high structural state plagioclases
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(80)90283-5
– volume: 75
  start-page: 291
  year: 1980
  ident: key 20170508172054_egv020-B68
  article-title: The compositions of coexisting pyroxenes and garnet in the system CaO–MgO–Al2O3–SiO2 at 900–1100°C and high pressures
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF01166769
– volume: 119
  start-page: 197
  year: 1995
  ident: key 20170508172054_egv020-B27
  article-title: Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00307281
– volume: 145
  start-page: 492
  year: 2003
  ident: key 20170508172054_egv020-B42
  article-title: Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-003-0464-z
– volume: 77
  start-page: 639
  year: 2004
  ident: key 20170508172054_egv020-B52
  article-title: The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling
  publication-title: Lithos
  doi: 10.1016/j.lithos.2004.03.017
– volume: 91
  start-page: 404
  year: 2006
  ident: key 20170508172054_egv020-B67
  article-title: An experimental determination of the effect of pressure on the Fe3+/ΣFe ratio of an anhydrous silicate melt to 3·0 GPa
  publication-title: American Mineralogist
  doi: 10.2138/am.2005.1929
– volume: 49
  start-page: 591
  year: 2008
  ident: key 20170508172054_egv020-B18
  article-title: The composition of near-solidus partial melts of fertile peridotite at 1 and 1·5 GPa: implications for the petrogenesis of MORB
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egn009
– volume: 131
  start-page: 323
  year: 1998
  ident: key 20170508172054_egv020-B21
  article-title: The influence of water on melting of mantle peridotite
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100050396
– volume: 305
  start-page: 270
  year: 2011
  ident: key 20170508172054_egv020-B9
  article-title: The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2011.03.014
– volume: 214
  start-page: 295
  year: 2003
  ident: key 20170508172054_egv020-B88
  article-title: Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(03)00379-0
– volume: 97
  start-page: 1771
  year: 2012
  ident: key 20170508172054_egv020-B10
  article-title: Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties
  publication-title: American Mineralogist
  doi: 10.2138/am.2012.4163
– volume: 169
  start-page: 6
  year: 2015
  ident: key 20170508172054_egv020-B66
  article-title: Fe3+ partitioning systematics between orthopyroxene and garnet in mantle peridotite xenoliths and implications for thermobarometry of oxidized and reduced mantle rocks
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-014-1101-8
– start-page: 1111
  year: 2014
  ident: key 20170508172054_egv020-B13
  article-title: Simulating planetary igneous crystallization environments (SPICEs): A suite of igneous crystallization programs
– volume: 1
  year: 2000
  ident: key 20170508172054_egv020-B40
  article-title: Mantle solidus: Experimental constraints and the effects of peridotite composition
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2000GC000070
– volume: 42
  start-page: 673
  year: 2001
  ident: key 20170508172054_egv020-B41
  article-title: Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/42.4.673
– volume: 138
  start-page: 237
  year: 2000
  ident: key 20170508172054_egv020-B53
  article-title: The near-solidus transition from garnet lherzolite to spinel lherzolite
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100050560
– volume: 108
  start-page: 82
  year: 1991
  ident: key 20170508172054_egv020-B57
  article-title: The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00307328
– volume: 96
  start-page: 721
  year: 1988
  ident: key 20170508172054_egv020-B85
  article-title: Activity measurements and excess entropy–volume relationships for pyrope–grossular garnets
  publication-title: Journal of Geology
  doi: 10.1086/629273
– volume: 111
  start-page: 83
  year: 1992
  ident: key 20170508172054_egv020-B6
  article-title: Orthopyroxene stability along the peridotite solidus and the origin of cratonic lithosphere beneath southern Africa
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(92)90171-Q
– volume: 75
  start-page: 319
  year: 1990
  ident: key 20170508172054_egv020-B55
  article-title: Activity–composition relationships of binary Ca–Fe and Ca–Mn garnets determined by reversed, displaced equilibrium experiments
  publication-title: American Mineralogist
– volume: 3
  year: 2002
  ident: key 20170508172054_egv020-B28
  article-title: The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2001GC000217
– volume: 123
  start-page: 205
  year: 1994
  ident: key 20170508172054_egv020-B8
  article-title: Ferric iron in peridotites and mantle oxidation states
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(94)90268-2
– volume: 308
  start-page: 380
  year: 2011
  ident: key 20170508172054_egv020-B16
  article-title: The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2011.06.008
– volume: 29
  start-page: 625
  year: 1988
  ident: key 20170508172054_egv020-B62
  article-title: The volume and composition of melt generated by extension of the lithosphere
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/29.3.625
– volume: 52
  start-page: 1243
  year: 2011
  ident: key 20170508172054_egv020-B61
  article-title: Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egq089
– year: 2015
  ident: key 20170508172054_egv020-B94
  article-title: Multiple-reaction oxygen barometry for mantle peridotite: an internally-consistent thermodynamic model for reactions and garnet solid-solutions, with applications to the oxidation state of lithospheric mantle
  publication-title: Contributions to Mineralogy & Petrology
– year: 1999
  ident: key 20170508172054_egv020-B90
  article-title: Ferric iron contents of garnet and clinopyroxene and estimated oxygen fugacities of peridotite xenoliths from the Eastern Finland Kimberlite Province
– volume: 12
  start-page: Q07021
  year: 2011
  ident: key 20170508172054_egv020-B11
  article-title: Petrolog3: integrated software for modeling crystallization processes
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2011GC003516
– volume: 114
  start-page: 477
  year: 1993
  ident: key 20170508172054_egv020-B39
  article-title: Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(93)90077-M
– volume: 166
  start-page: 887
  year: 2013
  ident: key 20170508172054_egv020-B33
  article-title: Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-013-0899-9
– volume: 119
  start-page: 56
  year: 1995
  ident: key 20170508172054_egv020-B92
  article-title: Experimental Tests of Garnet Peridotite Oxygen Barometry
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00310717
– volume: 68
  start-page: 407
  year: 1979
  ident: key 20170508172054_egv020-B47
  article-title: Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1000°C in the system CaO–MgO–Al2O3–SiO2, and at 900°C with natural garnet and olivine
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF01164525
– volume: 30
  start-page: 579
  year: 2012
  ident: key 20170508172054_egv020-B32
  article-title: A thermodynamic model for silicate melt in CaO–MgO–Al2O3–SiO2 to 50 kbar and 1800°C
  publication-title: Journal of Metamorphic Geology
  doi: 10.1111/j.1525-1314.2012.00982.x
– volume: 70
  start-page: 757
  year: 2006
  ident: key 20170508172054_egv020-B63
  article-title: Mg–Fe partitioning between olivine and ultramafic melts at high pressures
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2005.09.022
– volume: 32
  start-page: 245
  year: 2014
  ident: key 20170508172054_egv020-B70
  article-title: On parameterizing thermodynamic descriptions of minerals for petrological calculations
  publication-title: Journal of Metamorphic Geology
  doi: 10.1111/jmg.12070
– volume: 155
  start-page: 97
  year: 1998
  ident: key 20170508172054_egv020-B95
  article-title: The Beginning of Melting of Fertile and Depleted Peridotite at 1.5 GPa
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(97)00162-3
– volume: 87
  start-page: 87
  year: 1984
  ident: key 20170508172054_egv020-B24
  article-title: Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00371405
– volume-title: Introduction to the Thermodynamics of Materials
  year: 2012
  ident: key 20170508172054_egv020-B23
  doi: 10.4324/9780203428498
– volume: 298
  start-page: 1
  year: 2010
  ident: key 20170508172054_egv020-B12
  article-title: The deep carbon cycle and melting in Earth’s interior
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2010.06.039
– volume: 166
  start-page: 1029
  year: 2013
  ident: key 20170508172054_egv020-B14
  article-title: The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-013-0907-0
– volume: 97
  start-page: 6885
  year: 1992
  ident: key 20170508172054_egv020-B51
  article-title: Primary magmas of mid-ocean ridge basalts 1. Experiments and methods
  publication-title: Journal of Geophysical Research
  doi: 10.1029/91JB02840
– volume: 97
  start-page: 1764
  year: 2012
  ident: key 20170508172054_egv020-B48
  article-title: High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction
  publication-title: American Mineralogist
  doi: 10.2138/am.2012.4103
– volume: 164
  start-page: 277
  year: 1998
  ident: key 20170508172054_egv020-B73
  article-title: The depth of the spinel to garnet transition at the peridotite solidus
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(98)00213-1
– volume: 141
  start-page: 1
  year: 2005
  ident: key 20170508172054_egv020-B19
  article-title: A cool model for the Iceland hotspot
  publication-title: Journal of Volcanology and Geothermal Research
  doi: 10.1016/j.jvolgeores.2004.10.007
– volume: 78
  start-page: 1002
  year: 1993
  ident: key 20170508172054_egv020-B89
  article-title: Synthesis and stability of Fe2+3Fe3+2Si3O12 garnet and phase relations with Fe3Al2Si3O12–Fe2+3Fe3+2Si3O12 solutions
  publication-title: American Mineralogist
– volume: 6
  year: 2005
  ident: key 20170508172054_egv020-B75
  article-title: Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2004GC000816
– volume: 15
  start-page: 5015
  year: 2014
  ident: key 20170508172054_egv020-B82
  article-title: Thermodynamic calculations of the polybaric melting phase relations of spinel lherzolite
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1002/2014GC005546
– volume: 117
  start-page: B06206
  year: 2012
  ident: key 20170508172054_egv020-B79
  article-title: A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2011JB009044
– volume: 45
  start-page: 343
  year: 2004
  ident: key 20170508172054_egv020-B45
  article-title: Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet facies upper mantle
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egg090
– volume: 342
  start-page: 105
  year: 1993
  ident: key 20170508172054_egv020-B77
  article-title: Melting study of a peridotite KLB-1 to 6·5 GPa, and the origin of basaltic magmas
  publication-title: Philosophical Transactions of the Royal Society of London, Series A
  doi: 10.1098/rsta.1993.0008
– volume: 19
  start-page: 1155
  year: 1993
  ident: key 20170508172054_egv020-B1
  article-title: COMAGMAT—A FORTRAN program to model magma differentiation processes
  publication-title: Computers and Geosciences
  doi: 10.1016/0098-3004(93)90020-6
– volume: 51
  start-page: 1755
  year: 1987
  ident: key 20170508172054_egv020-B26
  article-title: Enthalpy of mixing of synthetic almandine–grossular and almandine–pyrope garnets from high-temperature solution calorimetry
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(87)90353-X
– volume: 76
  start-page: 785
  year: 1991
  ident: key 20170508172054_egv020-B58
  article-title: Comparative liquidus equilibria of hypersthene-normative basalts at low pressure
  publication-title: American Mineralogist
SSID ssj0014150
Score 2.550891
Snippet A new thermodynamic model is presented for calculating phase relations in peridotite, from 0.001 to 60kbar and from 800 degree C to liquidus temperatures, in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 869
SubjectTerms Liquids
Mantle
Mathematical models
Melting
Melts
Peridotite
Solidus
Thermodynamic models
Title A Simple Thermodynamic Model for Melting of Peridotite in the System NCFMASOCr
URI https://www.proquest.com/docview/1800434558
https://www.proquest.com/docview/1808382553
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2Avpbuxrt3QYC_DOJEt3_KYhXalkGyQFvpmJOtoFDJnZGmh_fU9kmw5Xi-sezHG2MeX8_ncdQ4hn5WMkcsjFUaQiRA1lAoFqolQp5kQBgJSmnjHdJYdnSbHZ-lZ157Ari5Zy0F1fee6kv_hKh5DvppVso_grCeKB3Af-Ytb5DBu_4nH42B-brr7mrqJ1a-lctPl7XwzuywxmMKiLWv-gQ-kTOEdtKWNrll5MJscTsfz75PVPXYqmtWrXuzdFsTULqR-sABR443mA48PAywXrUYcBMeD4OtgM7QQpV0hX6_Uv0mcgJOQScZCo_Y3RajrDd5AJd2Qh4Wbw9KqVjf27pbUdh2t_OsYXv68ZDHrdFSbl_9LdfmCQpdK56WnUToKT8mzGP2H2Eps7xdF-PjMt5HH92vy10hh6CkMHYW-vdJX19YGOdkh2w1T6Ngh4SV5AvUr8vybHc589ZrMxtThgfbwQC0eKOKBNnigS007PNDzmiIeqMMD9Xh4Q04PD04mR2EzLyMUScLWoULTHQ1OmcmiGkUamEJbN9F5gmZdjnauZkUucs0qQJ8beJorLSQvKs00oGRn_C3Zqpc1vCNUj2IGsYo05-hCKymAKyaqpEpND02AXTJsv0pZNc3kzUyTRXkfJ3bJF3_Fb9dI5YFzP7UfukRpZ1JYooblxZ8yKkzqOknT4sFzCl6gq8zfP-Kee-RF9wvsk6316gI-oL25lh8tdm4AeTKFYw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Thermodynamic+Model+for+Melting+of+Peridotite+in+the+System+NCFMASOCr&rft.jtitle=Journal+of+petrology&rft.au=Jennings%2C+Eleanor+S.&rft.au=Holland%2C+Tim+J.+B.&rft.date=2015-05-01&rft.issn=0022-3530&rft.eissn=1460-2415&rft.volume=56&rft.issue=5&rft.spage=869&rft.epage=892&rft_id=info:doi/10.1093%2Fpetrology%2Fegv020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_petrology_egv020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3530&client=summon