Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC–MS/MS
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenet...
Saved in:
Published in | Journal of proteome research Vol. 23; no. 12; pp. 5405 - 5420 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC–MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC–MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts. |
---|---|
AbstractList | The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts. The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts. The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts. |
Author | Lopes, Mariana Garcia, Benjamin A. Lund, Peder J. |
AuthorAffiliation | Department of Biochemistry and Molecular Biophysics, School of Medicine Penn Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine Washington University in St. Louis University of Pennsylvania |
AuthorAffiliation_xml | – sequence: 0 name: Department of Biochemistry and Molecular Biophysics, School of Medicine – sequence: 0 name: University of Pennsylvania – sequence: 0 name: Penn Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine – sequence: 0 name: Washington University in St. Louis – name: 2 Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110 – name: 1 Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 givenname: Mariana orcidid: 0000-0002-1810-9798 surname: Lopes fullname: Lopes, Mariana organization: University of Pennsylvania – sequence: 2 givenname: Peder J. orcidid: 0000-0002-2146-8724 surname: Lund fullname: Lund, Peder J. email: pxl446@case.edu organization: University of Pennsylvania – sequence: 3 givenname: Benjamin A. orcidid: 0000-0002-2306-1207 surname: Garcia fullname: Garcia, Benjamin A. email: bagarcia@wustl.edu organization: Washington University in St. Louis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39556659$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstuFDEQtFAQecAngHzkspu2PZ4ZiwMKK2BRdhVBiDhaHo8ncTJrb2wPaDkg_oE_5Esw-4iASzjZVldVl7vrEO057wxCTwmMCVByrHQcXy-DT8YvzLjQAJyIB-iAcMZHTEC1t7vXgu2jwxivAQivgD1C-0xwXpZcHKBvZ8tkF_arabFyLf7gmyEm_MmHm673X3DnA34_KJdst7LuEqcrgycqW7Fa9XhqY8qu8EVjbwebrFPJeofnKtxEPKUnp4SIoVkLT-mrU0Ihv5oVnk1-fv8xPz-enz9GDzvVR_Nkex6hizevP06mo9nZ23eTk9lIFQWkkW4paN61qlU1V5rXVVlT1RZlqQTUooSOQUEEcEVEB0RzXnBalaKqamJ4bdgRernRXQ7NwrTauBRUL5fBLlRYSa-s_Lvi7JW89J9l_gGjhBdZ4flWIfjbwcQkFzZq0_fKGT9EyTKI5lnz6j-gDCiUoiQZ-uxPX3eGdgvKgBcbgA4-xmA6qW1ajznbtL0kIH_HQeY4yLs4yG0cMpv_w941uI9HNrx12Q_B5eXcw_kFImbPoA |
CitedBy_id | crossref_primary_10_1016_j_tig_2025_01_003 |
Cites_doi | 10.1002/pmic.201400483 10.1128/MCB.22.17.6070-6078.2002 10.1016/j.molcel.2017.01.009 10.1038/nature08966 10.1016/S1097-2765(02)00826-2 10.1016/j.molcel.2005.01.007 10.1038/47412 10.1128/MCB.00241-07 10.1016/j.molcel.2011.02.015 10.1128/MCB.25.2.637-651.2005 10.1101/gad.1110503 10.1038/s41588-021-00856-5 10.1016/j.molcel.2007.11.002 10.1021/pr900777e 10.1038/nmeth.1446 10.1038/embor.2009.108 10.1093/bfgp/ell022 10.1038/nbt.1654 10.1038/s41420-021-00406-2 10.1016/j.molcel.2007.01.035 10.1186/s13072-017-0172-y 10.1126/science.1221711 10.1083/jcb.200906005 10.1021/acs.analchem.5b00072 10.1101/gr.261016.120 10.1038/nature04733 10.7554/elife.37892 10.1038/nchembio.501 10.1016/j.cell.2013.03.008 10.1126/science.aac5681 10.1074/jbc.m112.361824 10.1038/ncomms13661 10.1038/nrm4067 10.1038/nprot.2010.192 10.1074/mcp.M600007-MCP200 10.1186/s13072-015-0006-8 10.1016/j.molcel.2013.01.034 10.1038/nature06906 10.1016/j.cell.2012.12.033 10.1126/science.1076997 10.1016/j.tibs.2020.11.005 10.1021/pr800468j 10.1016/j.cell.2009.02.027 10.1016/j.molcel.2012.01.002 10.1038/s41586-019-1038-1 10.1016/j.cell.2014.05.004 10.1126/science.1194472 10.1016/S0003-2697(03)00032-0 10.1021/acs.jproteome.8b00133 10.1016/j.molcel.2011.02.002 10.1126/science.abc3393 10.1016/j.molcel.2018.03.005 10.1016/j.ymeth.2020.01.013 10.1021/cr500373h 10.1016/j.celrep.2013.07.014 10.3791/54112 10.1038/s41467-019-10136-w 10.3389/fgene.2016.00122 10.1016/S1097-2765(02)00802-X 10.1074/jbc.M115.661553 10.1021/bi00429a006 10.1101/gad.1144003 10.1016/j.molcel.2019.11.021 10.1016/j.molcel.2011.01.024 10.1038/nrc3459 10.1101/gad.269603 10.1002/bies.201900192 10.1016/j.molcel.2016.03.030 10.1016/j.cell.2006.04.029 10.1006/bbrc.1994.2188 10.1158/0008-5472.CAN-11-2209 10.1016/j.celrep.2014.04.012 10.1093/nar/gkab1038 10.1016/j.ymeth.2019.12.001 10.1007/978-1-4939-9232-4_5 10.1016/j.molcel.2007.12.011 10.1007/978-1-4939-2999-3_24 10.1128/MCB.25.14.6123-6139.2005 10.1016/bs.ctdb.2019.11.002 10.1007/s00216-015-8725-z 10.1016/j.molcel.2014.04.013 10.1016/j.tig.2020.12.005 10.1016/j.molcel.2008.04.025 10.1016/S0076-6879(03)76015-7 10.1016/j.molcel.2004.05.009 10.1016/j.cell.2011.12.029 10.1038/nprot.2007.106 10.1016/bs.mie.2016.09.029 10.1038/ncb1712 10.1016/j.jmb.2024.168442 10.1038/nature02985 10.1038/nsmb.2833 10.1074/mcp.M114.046011 10.1101/gad.271841.115 10.1186/gb-2012-13-10-r85 10.1016/j.molcel.2019.10.013 10.1038/s41418-020-00709-4 10.1074/mcp.O114.046573 10.1158/2159-8290.CD-19-1220 10.1074/jbc.M112.375204 10.1016/j.molcel.2007.12.015 10.4161/cc.20919 10.1038/s41576-022-00468-7 10.1128/mcb.10.9.4905 10.1016/j.cell.2019.02.002 10.1038/nrg3607 10.1016/bs.mie.2015.12.007 10.1021/acs.analchem.5b03009 10.1074/mcp.tir118.001209 10.1038/nrg.2016.59 10.1128/mcb.00488-18 10.1021/pr9003739 10.1016/j.molcel.2012.09.019 10.1016/j.celrep.2019.01.058 10.1016/s0021-9258(19)40926-5 10.1074/jbc.C300494200 10.1002/pmic.201700309 10.1016/j.celrep.2014.07.025 10.1128/MCB.05231-11 10.1016/j.molcel.2011.05.015 10.1016/j.molcel.2011.08.025 10.1126/science.287.5452.501 10.1074/mcp.M500285-MCP200 10.1038/s41467-017-01384-9 10.1126/science.aat8950 10.1186/s13072-017-0139-z 10.1093/bioinformatics/btp033 10.1038/ng.912 10.1016/j.cell.2007.01.015 10.1002/mas.21406 10.1126/science.1232245 10.1074/jbc.M110.126813 10.1016/j.molcel.2008.02.014 10.1016/S0076-6879(05)02007-0 10.1016/1044-0305(95)00569-2 10.1007/s13361-019-02303-6 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.jproteome.4c00519 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1535-3907 |
EndPage | 5420 |
ExternalDocumentID | PMC11932154 39556659 10_1021_acs_jproteome_4c00519 a968642905 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL177113 – fundername: NICHD NIH HHS grantid: R01 HD106051 – fundername: NCI NIH HHS grantid: P01 CA196539 – fundername: NCI NIH HHS grantid: T32 CA009140 – fundername: NIAID NIH HHS grantid: R01 AI118891 |
GroupedDBID | --- 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a440t-cd20c5fdada85ac587682ad466a908960f3041905a19f01c554527697781e58e3 |
IEDL.DBID | ACS |
ISSN | 1535-3893 1535-3907 |
IngestDate | Thu Aug 21 18:40:02 EDT 2025 Fri Jul 11 16:32:33 EDT 2025 Thu Jul 10 18:58:25 EDT 2025 Mon Jul 21 05:48:21 EDT 2025 Tue Jul 01 01:32:20 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Mon Dec 09 03:10:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | histones post-translational modifications ubiquitination epigenetics LC−MS/MS |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a440t-cd20c5fdada85ac587682ad466a908960f3041905a19f01c554527697781e58e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PJL participated in project conception, performed experiments, analyzed data, and wrote the manuscript. ML performed experiments and assisted with drafting and revising the manuscript. BAG participated in project conception, provided oversight, assisted with manuscript revisions, and acquired funding. Present Address: Dept. of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 CONTRIBUTIONS |
ORCID | 0000-0002-2306-1207 0000-0002-1810-9798 0000-0002-2146-8724 |
PMID | 39556659 |
PQID | 3130206961 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11932154 proquest_miscellaneous_3154238957 proquest_miscellaneous_3130206961 pubmed_primary_39556659 crossref_citationtrail_10_1021_acs_jproteome_4c00519 crossref_primary_10_1021_acs_jproteome_4c00519 acs_journals_10_1021_acs_jproteome_4c00519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-06 |
PublicationDateYYYYMMDD | 2024-12-06 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of proteome research |
PublicationTitleAlternate | J. Proteome Res |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – sequence: 0 name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 38915586 - bioRxiv. 2024 Jun 13:2024.06.11.596744. doi: 10.1101/2024.06.11.596744. |
References_xml | – ident: ref91/cit91 doi: 10.1002/pmic.201400483 – ident: ref20/cit20 doi: 10.1128/MCB.22.17.6070-6078.2002 – ident: ref25/cit25 doi: 10.1016/j.molcel.2017.01.009 – ident: ref39/cit39 doi: 10.1038/nature08966 – ident: ref51/cit51 doi: 10.1016/S1097-2765(02)00826-2 – ident: ref61/cit61 doi: 10.1016/j.molcel.2005.01.007 – ident: ref3/cit3 doi: 10.1038/47412 – ident: ref16/cit16 doi: 10.1128/MCB.00241-07 – ident: ref83/cit83 doi: 10.1016/j.molcel.2011.02.015 – ident: ref66/cit66 doi: 10.1128/MCB.25.2.637-651.2005 – ident: ref33/cit33 doi: 10.1101/gad.1110503 – ident: ref113/cit113 doi: 10.1038/s41588-021-00856-5 – ident: ref18/cit18 doi: 10.1016/j.molcel.2007.11.002 – ident: ref89/cit89 doi: 10.1021/pr900777e – ident: ref117/cit117 doi: 10.1038/nmeth.1446 – ident: ref119/cit119 doi: 10.1038/embor.2009.108 – ident: ref54/cit54 doi: 10.1093/bfgp/ell022 – ident: ref108/cit108 doi: 10.1038/nbt.1654 – ident: ref41/cit41 doi: 10.1038/s41420-021-00406-2 – ident: ref81/cit81 doi: 10.1016/j.molcel.2007.01.035 – ident: ref129/cit129 doi: 10.1186/s13072-017-0172-y – ident: ref40/cit40 doi: 10.1126/science.1221711 – ident: ref79/cit79 doi: 10.1083/jcb.200906005 – ident: ref123/cit123 doi: 10.1021/acs.analchem.5b00072 – ident: ref112/cit112 doi: 10.1101/gr.261016.120 – ident: ref36/cit36 doi: 10.1038/nature04733 – ident: ref100/cit100 doi: 10.7554/elife.37892 – ident: ref78/cit78 doi: 10.1038/nchembio.501 – ident: ref10/cit10 doi: 10.1016/j.cell.2013.03.008 – ident: ref58/cit58 doi: 10.1126/science.aac5681 – ident: ref72/cit72 doi: 10.1074/jbc.m112.361824 – ident: ref31/cit31 doi: 10.1038/ncomms13661 – ident: ref23/cit23 doi: 10.1038/nrm4067 – ident: ref118/cit118 doi: 10.1038/nprot.2010.192 – ident: ref103/cit103 doi: 10.1074/mcp.M600007-MCP200 – ident: ref111/cit111 doi: 10.1186/s13072-015-0006-8 – ident: ref71/cit71 doi: 10.1016/j.molcel.2013.01.034 – ident: ref73/cit73 doi: 10.1038/nature06906 – ident: ref5/cit5 doi: 10.1016/j.cell.2012.12.033 – ident: ref37/cit37 doi: 10.1126/science.1076997 – ident: ref12/cit12 doi: 10.1016/j.tibs.2020.11.005 – ident: ref105/cit105 doi: 10.1021/pr800468j – ident: ref69/cit69 doi: 10.1016/j.cell.2009.02.027 – ident: ref22/cit22 doi: 10.1016/j.molcel.2012.01.002 – ident: ref11/cit11 doi: 10.1038/s41586-019-1038-1 – ident: ref28/cit28 doi: 10.1016/j.cell.2014.05.004 – ident: ref47/cit47 doi: 10.1126/science.1194472 – ident: ref99/cit99 doi: 10.1016/S0003-2697(03)00032-0 – ident: ref116/cit116 doi: 10.1021/acs.jproteome.8b00133 – ident: ref85/cit85 doi: 10.1016/j.molcel.2011.02.002 – ident: ref26/cit26 doi: 10.1126/science.abc3393 – ident: ref38/cit38 doi: 10.1016/j.molcel.2018.03.005 – ident: ref125/cit125 doi: 10.1016/j.ymeth.2020.01.013 – ident: ref1/cit1 doi: 10.1021/cr500373h – ident: ref77/cit77 doi: 10.1016/j.celrep.2013.07.014 – ident: ref93/cit93 doi: 10.3791/54112 – ident: ref102/cit102 doi: 10.1038/s41467-019-10136-w – ident: ref121/cit121 doi: 10.3389/fgene.2016.00122 – ident: ref52/cit52 doi: 10.1016/S1097-2765(02)00802-X – ident: ref42/cit42 doi: 10.1074/jbc.M115.661553 – ident: ref49/cit49 doi: 10.1021/bi00429a006 – ident: ref57/cit57 doi: 10.1101/gad.1144003 – ident: ref30/cit30 doi: 10.1016/j.molcel.2019.11.021 – ident: ref53/cit53 doi: 10.1016/j.molcel.2011.01.024 – ident: ref44/cit44 doi: 10.1038/nrc3459 – ident: ref34/cit34 doi: 10.1101/gad.269603 – ident: ref24/cit24 doi: 10.1002/bies.201900192 – ident: ref63/cit63 doi: 10.1016/j.molcel.2016.03.030 – ident: ref65/cit65 doi: 10.1016/j.cell.2006.04.029 – ident: ref48/cit48 doi: 10.1006/bbrc.1994.2188 – ident: ref87/cit87 doi: 10.1158/0008-5472.CAN-11-2209 – ident: ref27/cit27 doi: 10.1016/j.celrep.2014.04.012 – ident: ref114/cit114 doi: 10.1093/nar/gkab1038 – ident: ref98/cit98 doi: 10.1016/j.ymeth.2019.12.001 – ident: ref95/cit95 doi: 10.1007/978-1-4939-9232-4_5 – ident: ref60/cit60 doi: 10.1016/j.molcel.2007.12.011 – ident: ref133/cit133 doi: 10.1007/978-1-4939-2999-3_24 – ident: ref62/cit62 doi: 10.1128/MCB.25.14.6123-6139.2005 – ident: ref8/cit8 doi: 10.1016/bs.ctdb.2019.11.002 – ident: ref130/cit130 doi: 10.1007/s00216-015-8725-z – ident: ref68/cit68 doi: 10.1016/j.molcel.2014.04.013 – ident: ref120/cit120 doi: 10.1016/j.tig.2020.12.005 – ident: ref80/cit80 doi: 10.1016/j.molcel.2008.04.025 – ident: ref131/cit131 doi: 10.1016/S0076-6879(03)76015-7 – ident: ref35/cit35 doi: 10.1016/j.molcel.2004.05.009 – ident: ref32/cit32 doi: 10.1016/j.cell.2011.12.029 – ident: ref88/cit88 doi: 10.1038/nprot.2007.106 – ident: ref97/cit97 doi: 10.1016/bs.mie.2016.09.029 – ident: ref64/cit64 doi: 10.1038/ncb1712 – ident: ref76/cit76 doi: 10.1016/j.jmb.2024.168442 – ident: ref21/cit21 doi: 10.1038/nature02985 – ident: ref29/cit29 doi: 10.1038/nsmb.2833 – ident: ref115/cit115 doi: 10.1074/mcp.M114.046011 – ident: ref14/cit14 doi: 10.1101/gad.271841.115 – ident: ref104/cit104 doi: 10.1186/gb-2012-13-10-r85 – ident: ref70/cit70 doi: 10.1016/j.molcel.2019.10.013 – ident: ref43/cit43 doi: 10.1038/s41418-020-00709-4 – ident: ref90/cit90 doi: 10.1074/mcp.O114.046573 – ident: ref45/cit45 doi: 10.1158/2159-8290.CD-19-1220 – ident: ref96/cit96 doi: 10.1074/jbc.M112.375204 – ident: ref55/cit55 doi: 10.1016/j.molcel.2007.12.015 – ident: ref101/cit101 doi: 10.4161/cc.20919 – ident: ref4/cit4 doi: 10.1038/s41576-022-00468-7 – ident: ref19/cit19 doi: 10.1128/mcb.10.9.4905 – ident: ref74/cit74 doi: 10.1016/j.cell.2019.02.002 – ident: ref6/cit6 doi: 10.1038/nrg3607 – ident: ref94/cit94 doi: 10.1016/bs.mie.2015.12.007 – ident: ref92/cit92 doi: 10.1021/acs.analchem.5b03009 – ident: ref136/cit136 doi: 10.1074/mcp.tir118.001209 – ident: ref2/cit2 doi: 10.1038/nrg.2016.59 – ident: ref84/cit84 doi: 10.1128/mcb.00488-18 – ident: ref109/cit109 doi: 10.1021/pr9003739 – ident: ref86/cit86 doi: 10.1016/j.molcel.2012.09.019 – ident: ref75/cit75 doi: 10.1016/j.celrep.2019.01.058 – ident: ref17/cit17 doi: 10.1016/s0021-9258(19)40926-5 – ident: ref56/cit56 doi: 10.1074/jbc.C300494200 – ident: ref132/cit132 doi: 10.1002/pmic.201700309 – ident: ref15/cit15 doi: 10.1016/j.celrep.2014.07.025 – ident: ref59/cit59 doi: 10.1128/MCB.05231-11 – ident: ref13/cit13 doi: 10.1016/j.molcel.2011.05.015 – ident: ref107/cit107 doi: 10.1016/j.molcel.2011.08.025 – ident: ref50/cit50 doi: 10.1126/science.287.5452.501 – ident: ref106/cit106 doi: 10.1074/mcp.M500285-MCP200 – ident: ref134/cit134 doi: 10.1038/s41467-017-01384-9 – ident: ref7/cit7 doi: 10.1126/science.aat8950 – ident: ref122/cit122 doi: 10.1186/s13072-017-0139-z – ident: ref135/cit135 doi: 10.1093/bioinformatics/btp033 – ident: ref46/cit46 doi: 10.1038/ng.912 – ident: ref67/cit67 doi: 10.1016/j.cell.2007.01.015 – ident: ref127/cit127 doi: 10.1002/mas.21406 – ident: ref9/cit9 doi: 10.1126/science.1232245 – ident: ref110/cit110 doi: 10.1074/jbc.M110.126813 – ident: ref82/cit82 doi: 10.1016/j.molcel.2008.02.014 – ident: ref126/cit126 doi: 10.1016/S0076-6879(05)02007-0 – ident: ref128/cit128 doi: 10.1016/1044-0305(95)00569-2 – ident: ref124/cit124 doi: 10.1007/s13361-019-02303-6 – reference: 38915586 - bioRxiv. 2024 Jun 13:2024.06.11.596744. doi: 10.1101/2024.06.11.596744. |
SSID | ssj0015703 |
Score | 2.4602187 |
Snippet | The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5405 |
SubjectTerms | Anhydrides Chromatography, Liquid - methods derivatization digestion DNA epigenetics genome Histone Code histones Histones - metabolism Humans Liquid Chromatography-Mass Spectrometry mass spectrometry Propionates Protein Processing, Post-Translational proteome Proteomics - methods synthetic peptides Tandem Mass Spectrometry - methods ubiquitin Ubiquitination Workflow |
Title | Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC–MS/MS |
URI | http://dx.doi.org/10.1021/acs.jproteome.4c00519 https://www.ncbi.nlm.nih.gov/pubmed/39556659 https://www.proquest.com/docview/3130206961 https://www.proquest.com/docview/3154238957 https://pubmed.ncbi.nlm.nih.gov/PMC11932154 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOcCF92MpICNxQkrWdmwnPi4R1YqyvJaVeosc2xHpIwGSCLUHxH_gH_JLsJ1kxVKVwjGJH8l4bH_xzHwDwNOEEqIpo4EudB5QE5NAICGDSAkUyTguYumCkxev-XxFX-6z_S0wPceCT_BUqiY88KQF9bEJqfKg4xK4THgSu7-tWbpcmw0cnVRPkMoCtxOPITvnNeO2JNVsbklncOaf7pK_7T-718HbMYqndzs5DLs2D9XpWVLHf_20G-DagEXhrFeem2DLVLfAlXRMAXcbfHtjF5Tj8tRoKCsN39d517TQna8XR_VXaPEufNdJ527kgqWgxZIwlVXtQy2hJyCpDFzl5eeubMv-2BG64KAGzslsD2PR5b7hOXm-hwmyV_kJfJX-_P5jsZwulnfAavfFh3QeDAkbAkkpagOlCVKs0FLLhEnF7EqbEKkp59KZFzkqIkQtAmESiwJhxVyC85hbCJpgwxIT3QXb9iXNfQC5kcwonBuGcqoFlSo2TBWYKc0cLJqAZ1Z62TDhmszb0gnO_M1RpNkg0gmg4wBnaqA-dxk4ji6qFq6rfeq5Py6q8GTUnsyOlDO9yMrUXZNFzj6MuOD4b2WYxbaJYPEE3Os1bt1tJJjF3cz2kGzo4rqAYwnffFKVHz1bOHYQ3Tb94H8ktgOuEovevN8Ofwi22y-deWTRV5s_9jPuF3clLwE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWZQN78fwNBJskDKNHTuPBYshUE2ZmSKYjtRdcGxHndImQBJV7QLxD_wDv8J_8CVce5LAFEHFohLLOH7F149zc-89RuhRyChVjDNHZSp1mA6oE7mRcDwZuZ4IgiwQJjh5suUPZ-zlDt9ZQV_bWBjoRAk1ldaI_5NdgKybtD3LXVAc6D6TFns0zpQjfXQIqlr5dPM5yPUxpRsvtuOh09wm4AjG3MqRirqSZ0ooEXIhOWwDIRWK-b4wti_fzUCzh-ORCxJlLpHc3L4d-ICPQqJ5qD2o9xw6DwCIGiVvEE87a4VhsVrwsnLHAIA2UuhP3TYnoSyXT8Lf4O1JL81fjr2NS-hbN2DW2-Vdv67Svjw-wSX5_4_oZXSxQd54sFgqV9CKzq-itbi98O4a-vQKts-D-bFWWOQKvynSuqywsSZk-8UhBnSPX9fCOFeZ0DAMyBnHIi9sYCm2dCu5xrN0_qGeV_PFT1ZsQqFKPKSDESFRndqKh_TZiFAXntIjPI6_f_4yma5PptfR7Ew-_wZahU7qWwj7WnAtSaq5mzIVMSEDzWVGuFTcgMAeegLSSprtpUys5wAliU1sRZg0Iuwh1s6rRDZE7-a-kf3TivW7Yu8XTCenFXjYTtoEJGUMTSLXRV0mnrGGu37kk7_l4YDkw4gHPXRzMdG7Zr2Ig5bBoYVwaQl0GQwn-vKbfL5rudGJUUig6tv_MmIP0NpwezJOxptbozvoAgXcaj2W_LtotfpY63uAO6v0vl30GL096zXxA55ijpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKkYAN78fwNBJskDKNHTuPBYthymjKdMpjGKm71LEdEWiTQhJV7QLxD_wFv8Jf8CVce5KIKYKKRRcsk9iO4-trn5t77zFCj0JGqWKcOSpVicN0QJ3IjYTjycj1RBCkgTDJydMtfzxnL7b59gr61ubCQCdKaKm0Tnyj1fsqbRgGyJq5_97yFxR7us-kxR9NQOVEHx6AuVY-3VgH2T6mdPT87XDsNCcKOIIxt3Kkoq7kqRJKhFxIDktBSIVivi-M_8t3U7DuYYvkgkSpSyQ3J3AHPmCkkGgeag_aPYPOGlehMfQGw1nnsTBMVgtuVu4YENBmC_2p22Y3lOXybvgbxD0eqfnL1je6hL53g2YjXj706yrpy6NjfJL_x6heRhcbBI4HC5W5glZ0fhWdH7YH311Dn1_CMrqXHWmFRa7wmyKpywobr0K6WxxgQPn4dS1MkJVJEcOAoPFQ5IVNMMWWdiXXeJ5kH-usyhY_W7FJiSrxmA4mhER1Yhse02cTQl24Sg7x5vDHl6_T2dp0dh3NT-Xzb6BV6KS-hbCvBdeSJJq7CVMREzLQXKaES8UNGOyhJyCtuFlmythGEFAS25utCONGhD3E2rkVy4bw3Zw7sntStX5XbX_BeHJShYftxI1BUsbhJHJd1GXsGa-460c--VsZDog-jHjQQzcXk717rRdxsDY4vCFcUoOugOFGX36SZ-8sRzoxhgk0fftfRuwBOvdqfRRvbmxN7qALFOCrDVzy76LV6lOt7wH8rJL7Vu8x2jltlfgJhTaRFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+and+Robust+Workflow+for+Quantifying+the+Canonical+Histone+Ubiquitination+Marks+H2AK119ub+and+H2BK120ub+by+LC%E2%80%93MS%2FMS&rft.jtitle=Journal+of+proteome+research&rft.au=Lopes%2C+Mariana&rft.au=Lund%2C+Peder+J.&rft.au=Garcia%2C+Benjamin+A.&rft.date=2024-12-06&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=23&rft.issue=12&rft.spage=5405&rft.epage=5420&rft_id=info:doi/10.1021%2Facs.jproteome.4c00519&rft.externalDocID=a968642905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |