Inhibition of NADPH Oxidase-ROS Signal using Hyaluronic Acid Nanoparticles for Overcoming Radioresistance in Cancer Therapy

Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 11; pp. 18708 - 18728
Main Authors Zhu, Lei, Zhao, Yi, Liu, Tongrui, Chen, Minglong, Qian, Wei Ping, Jiang, Binghua, Barwick, Benjamin G., Zhang, Lumeng, Styblo, Toncred M, Li, Xiaoxian, Yang, Lily
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.11.2022
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.2c07440

Cover

Loading…
Abstract Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways.
AbstractList Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways.
Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways.Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways.
Author Zhu, Lei
Liu, Tongrui
Styblo, Toncred M
Zhang, Lumeng
Zhao, Yi
Chen, Minglong
Li, Xiaoxian
Yang, Lily
Qian, Wei Ping
Barwick, Benjamin G.
Jiang, Binghua
AuthorAffiliation Department of Surgery and Winship Cancer Institute
Department of Nuclear Medicine, China-Japan Union Hospital
Department of Pathology and Laboratory Medicine
Department of Hematology and Medical Oncology
Emory University School of Medicine
Department of Pathology, Anatomy and Cell Biology
AuthorAffiliation_xml – name: Department of Hematology and Medical Oncology
– name: Department of Pathology and Laboratory Medicine
– name: Department of Nuclear Medicine, China-Japan Union Hospital
– name: Department of Surgery and Winship Cancer Institute
– name: Department of Pathology, Anatomy and Cell Biology
– name: Emory University School of Medicine
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-1820-4795
  surname: Zhu
  fullname: Zhu, Lei
  organization: Department of Surgery and Winship Cancer Institute
– sequence: 2
  givenname: Yi
  surname: Zhao
  fullname: Zhao, Yi
  organization: Department of Surgery and Winship Cancer Institute
– sequence: 3
  givenname: Tongrui
  surname: Liu
  fullname: Liu, Tongrui
  organization: Department of Surgery and Winship Cancer Institute
– sequence: 4
  givenname: Minglong
  surname: Chen
  fullname: Chen, Minglong
  organization: Department of Nuclear Medicine, China-Japan Union Hospital
– sequence: 5
  givenname: Wei Ping
  surname: Qian
  fullname: Qian, Wei Ping
  organization: Department of Surgery and Winship Cancer Institute
– sequence: 6
  givenname: Binghua
  surname: Jiang
  fullname: Jiang, Binghua
  organization: Department of Pathology, Anatomy and Cell Biology
– sequence: 7
  givenname: Benjamin G.
  surname: Barwick
  fullname: Barwick, Benjamin G.
  organization: Emory University School of Medicine
– sequence: 8
  givenname: Lumeng
  surname: Zhang
  fullname: Zhang, Lumeng
  organization: Department of Nuclear Medicine, China-Japan Union Hospital
– sequence: 9
  givenname: Toncred M
  surname: Styblo
  fullname: Styblo, Toncred M
  organization: Department of Surgery and Winship Cancer Institute
– sequence: 10
  givenname: Xiaoxian
  surname: Li
  fullname: Li, Xiaoxian
  organization: Emory University School of Medicine
– sequence: 11
  givenname: Lily
  orcidid: 0000-0003-2959-0094
  surname: Yang
  fullname: Yang, Lily
  email: lyang02@emory.edu
  organization: Department of Surgery and Winship Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36256454$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLAzEQxoMovs_eJEdBVpNNs49jqY8KYqVV8LbMZica2SY12RWL_7y7tHoQ9DQD8_tmmO_bI5vWWSTkiLMzzmJ-DipYsO4sViwdDNgG2eW5SCKWJU-bP73kO2QvhFfGZJqlyTbZEUksk4Ec7JLPG_tiStMYZ6nT9G54cT-mkw9TQcBoOpnRmXm2UNM2GPtMx0uoW--sUXSoTEXvutsL8I1RNQaqnaeTd_TKzXt4CpVxHoMJDViF1Fg66htPH17Qw2J5QLY01AEP13WfPF5dPozG0e3k-mY0vI2ge6mJSmCQlznPdRwzVmWY65QJxqWETIg8TbiQaVXGGcQyRdRMC0CBWiSVzpRCsU9OVnsX3r21GJpiboLCugaLrg1FnPZu5DlLOvR4jbblHKti4c0c_LL4NqwDzleA8i4Ej_oH4azoIynWkRTrSDqF_KVQpoHe8MaDqf_Rna503aB4da3vYgh_0l9Zx6Ga
CitedBy_id crossref_primary_10_1016_j_bioactmat_2022_12_010
crossref_primary_10_1016_j_intimp_2024_113815
crossref_primary_10_1016_j_jpha_2025_101225
crossref_primary_10_1002_ange_202419409
crossref_primary_10_1021_acsami_3c02361
crossref_primary_10_1021_acsmaterialslett_3c01158
crossref_primary_10_1016_j_cej_2024_158944
crossref_primary_10_3390_antiox14010104
crossref_primary_10_1039_D3TB02341A
crossref_primary_10_18502_aanbt_v5i4_17962
crossref_primary_10_1016_j_jconrel_2023_07_034
crossref_primary_10_1021_acsami_3c15686
crossref_primary_10_1016_j_heliyon_2024_e41246
crossref_primary_10_1002_anie_202419409
crossref_primary_10_1039_D3BM00095H
crossref_primary_10_1002_advs_202403520
crossref_primary_10_1016_j_matchemphys_2024_129863
crossref_primary_10_1021_acsnano_4c08463
crossref_primary_10_1038_s41573_024_00979_4
crossref_primary_10_1016_j_bioorg_2025_108289
crossref_primary_10_1002_wnan_1876
crossref_primary_10_1021_acs_molpharmaceut_3c01117
crossref_primary_10_2147_IJN_S393862
crossref_primary_10_1016_j_ijbiomac_2024_139211
crossref_primary_10_1007_s11010_024_04958_6
crossref_primary_10_1021_acsnano_4c07558
crossref_primary_10_1002_smtd_202301131
crossref_primary_10_3390_antiox12040824
crossref_primary_10_1080_13510002_2024_2433396
crossref_primary_10_2147_IJN_S460047
crossref_primary_10_1016_j_ijbiomac_2024_129434
crossref_primary_10_1002_advs_202308632
Cites_doi 10.1038/nrd2803
10.1073/pnas.1808945115
10.1002/9780470513774.ch2
10.1016/S0618-8278(19)30002-7
10.1016/j.freeradbiomed.2012.04.033
10.1042/CS20140542
10.1021/jm100773e
10.1038/nrc2419
10.1016/j.tiv.2013.01.016
10.2174/0929867324666170711114336
10.1016/j.redox.2019.101272
10.1093/jnci/djx121
10.1038/nrc3399
10.1038/nrc3958
10.1002/ijc.26379
10.1038/s41467-020-16199-4
10.1021/nn506130t
10.1016/j.cellsig.2012.01.008
10.1126/science.281.5383.1677
10.1016/j.bbrc.2015.10.161
10.3892/or_00000918
10.1039/C5NR05869D
10.1038/onc.2011.181
10.1111/bph.13532
10.1038/s41571-021-00588-9
10.1016/j.canlet.2013.01.024
10.1038/s41392-020-00367-5
10.1038/sj.bjc.6605847
10.3389/fimmu.2015.00231
10.1080/14728222.2020.1736559
10.2174/1874467211666181010154709
10.1073/pnas.1814212115
10.1158/0008-5472.CAN-15-2951
10.1158/1078-0432.CCR-12-1424
10.1093/jnci/85.3.200
10.1186/s12935-017-0382-1
10.1155/2019/3264858
10.1038/sj.onc.1206949
10.1039/b900456d
10.1038/s41467-017-01106-1
10.3389/fimmu.2015.00261
10.1021/cr800504x
10.1111/febs.14777
10.3390/cancers12020297
10.1016/j.canlet.2014.02.006
10.1158/0008-5472.CAN-16-0808
10.1016/j.canlet.2011.12.025
10.1038/s41571-018-0114-z
10.1038/s41568-019-0183-z
10.1038/s41571-021-00579-w
10.1016/0005-2736(92)90136-A
10.1158/0008-5472.CAN-17-1525
10.1021/acsnano.8b01508
10.4161/cbt.10.3.12207
10.1016/S1470-2045(19)30326-2
10.1038/s41467-018-06655-7
10.4161/cbt.4.12.2233
10.1038/nrc3891
10.1016/j.cub.2014.03.034
10.1016/j.immuni.2014.06.010
10.1016/S1470-2045(14)71156-8
10.1016/j.canlet.2015.07.008
10.1038/nature10760
10.7150/thno.37543
10.1158/0008-5472.CAN-06-2013
10.1158/1078-0432.CCR-13-3229
10.1200/JCO.2014.55.0699
10.1158/1078-0432.1154.11.3
10.1111/j.1742-4658.2011.08071.x
10.1053/srao.2003.50002
10.2353/ajpath.2006.060206
10.1080/09553009014550341
10.1002/cncr.21324
10.1172/JCI130435
10.1038/nrclinonc.2015.120
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.2c07440
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 18728
ExternalDocumentID 36256454
10_1021_acsnano_2c07440
a334356057
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB020601
– fundername: NCI NIH HHS
  grantid: U01 CA198913
– fundername: NCI NIH HHS
  grantid: R43 CA246827
– fundername: NCI NIH HHS
  grantid: R01 CA257861
– fundername: NCI NIH HHS
  grantid: R01 CA154129
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a440t-ba0a9b919f2200d8e9f7030155a8339761357db28a257eef0f3ae3ef36df8cce3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 22:57:12 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Tue Jul 01 03:37:30 EDT 2025
Thu Nov 24 04:02:03 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords hyaluronic acid nanoparticle (HANP)
targeted cancer therapy
NADPH oxidases
reactive oxygen species
radiotherapy resistance
GKT831
Redox imbalance
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a440t-ba0a9b919f2200d8e9f7030155a8339761357db28a257eef0f3ae3ef36df8cce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1820-4795
0000-0003-2959-0094
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9764083
PMID 36256454
PQID 2725649906
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_2725649906
pubmed_primary_36256454
crossref_primary_10_1021_acsnano_2c07440
crossref_citationtrail_10_1021_acsnano_2c07440
acs_journals_10_1021_acsnano_2c07440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
Harrington K. J. (ref18/cit18) 2000; 6
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
Negrini M. (ref44/cit44) 1994; 54
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Moehlen M. (ref71/cit71) 2021; 17
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref70/cit70
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1038/nrd2803
– volume: 17
  start-page: 598
  year: 2021
  ident: ref71/cit71
  publication-title: Gastroenterol Hepatol (N Y)
– ident: ref24/cit24
  doi: 10.1073/pnas.1808945115
– ident: ref69/cit69
  doi: 10.1002/9780470513774.ch2
– ident: ref37/cit37
  doi: 10.1016/S0618-8278(19)30002-7
– ident: ref66/cit66
  doi: 10.1016/j.freeradbiomed.2012.04.033
– ident: ref27/cit27
  doi: 10.1042/CS20140542
– ident: ref36/cit36
  doi: 10.1021/jm100773e
– ident: ref47/cit47
  doi: 10.1038/nrc2419
– ident: ref43/cit43
  doi: 10.1016/j.tiv.2013.01.016
– ident: ref67/cit67
  doi: 10.2174/0929867324666170711114336
– ident: ref79/cit79
  doi: 10.1016/j.redox.2019.101272
– ident: ref35/cit35
  doi: 10.1093/jnci/djx121
– ident: ref2/cit2
  doi: 10.1038/nrc3399
– volume: 54
  start-page: 1818
  year: 1994
  ident: ref44/cit44
  publication-title: Cancer Res.
– ident: ref78/cit78
  doi: 10.1038/nrc3958
– ident: ref61/cit61
  doi: 10.1002/ijc.26379
– ident: ref62/cit62
  doi: 10.1038/s41467-020-16199-4
– ident: ref42/cit42
  doi: 10.1021/nn506130t
– ident: ref65/cit65
  doi: 10.1016/j.cellsig.2012.01.008
– ident: ref76/cit76
  doi: 10.1126/science.281.5383.1677
– ident: ref34/cit34
  doi: 10.1016/j.bbrc.2015.10.161
– ident: ref60/cit60
  doi: 10.3892/or_00000918
– ident: ref23/cit23
  doi: 10.1039/C5NR05869D
– ident: ref59/cit59
  doi: 10.1038/onc.2011.181
– ident: ref32/cit32
  doi: 10.1111/bph.13532
– ident: ref63/cit63
  doi: 10.1038/s41571-021-00588-9
– ident: ref50/cit50
  doi: 10.1016/j.canlet.2013.01.024
– ident: ref57/cit57
  doi: 10.1038/s41392-020-00367-5
– ident: ref31/cit31
  doi: 10.1038/sj.bjc.6605847
– ident: ref68/cit68
  doi: 10.3389/fimmu.2015.00231
– ident: ref58/cit58
  doi: 10.1080/14728222.2020.1736559
– ident: ref28/cit28
  doi: 10.2174/1874467211666181010154709
– ident: ref11/cit11
  doi: 10.1073/pnas.1814212115
– ident: ref19/cit19
  doi: 10.1158/0008-5472.CAN-15-2951
– ident: ref21/cit21
  doi: 10.1158/1078-0432.CCR-12-1424
– ident: ref45/cit45
  doi: 10.1093/jnci/85.3.200
– ident: ref55/cit55
  doi: 10.1186/s12935-017-0382-1
– ident: ref74/cit74
  doi: 10.1155/2019/3264858
– ident: ref77/cit77
  doi: 10.1038/sj.onc.1206949
– ident: ref40/cit40
  doi: 10.1039/b900456d
– ident: ref54/cit54
  doi: 10.1186/s12935-017-0382-1
– ident: ref33/cit33
  doi: 10.1038/s41467-017-01106-1
– ident: ref38/cit38
  doi: 10.3389/fimmu.2015.00261
– ident: ref10/cit10
  doi: 10.1021/cr800504x
– ident: ref39/cit39
  doi: 10.1111/febs.14777
– ident: ref64/cit64
  doi: 10.3390/cancers12020297
– ident: ref13/cit13
  doi: 10.1016/j.canlet.2014.02.006
– ident: ref51/cit51
  doi: 10.1158/0008-5472.CAN-16-0808
– ident: ref48/cit48
  doi: 10.1016/j.canlet.2011.12.025
– ident: ref4/cit4
  doi: 10.1038/s41571-018-0114-z
– ident: ref73/cit73
  doi: 10.1038/s41568-019-0183-z
– ident: ref7/cit7
  doi: 10.1038/s41571-021-00579-w
– ident: ref70/cit70
  doi: 10.1016/0005-2736(92)90136-A
– ident: ref53/cit53
  doi: 10.1158/0008-5472.CAN-17-1525
– ident: ref16/cit16
  doi: 10.1021/acsnano.8b01508
– ident: ref30/cit30
  doi: 10.4161/cbt.10.3.12207
– ident: ref14/cit14
  doi: 10.1016/S1470-2045(19)30326-2
– ident: ref20/cit20
  doi: 10.1038/s41467-018-06655-7
– ident: ref29/cit29
  doi: 10.4161/cbt.4.12.2233
– ident: ref5/cit5
  doi: 10.1038/nrc3891
– ident: ref25/cit25
  doi: 10.1016/j.cub.2014.03.034
– ident: ref49/cit49
  doi: 10.1016/j.immuni.2014.06.010
– ident: ref75/cit75
  doi: 10.1016/S1470-2045(14)71156-8
– ident: ref26/cit26
  doi: 10.1016/j.canlet.2015.07.008
– ident: ref3/cit3
  doi: 10.1038/nature10760
– ident: ref15/cit15
  doi: 10.7150/thno.37543
– ident: ref56/cit56
  doi: 10.1158/0008-5472.CAN-06-2013
– ident: ref9/cit9
  doi: 10.1158/1078-0432.CCR-13-3229
– ident: ref12/cit12
  doi: 10.1200/JCO.2014.55.0699
– ident: ref46/cit46
  doi: 10.1158/1078-0432.1154.11.3
– ident: ref41/cit41
  doi: 10.1111/j.1742-4658.2011.08071.x
– ident: ref6/cit6
  doi: 10.1053/srao.2003.50002
– ident: ref72/cit72
  doi: 10.2353/ajpath.2006.060206
– ident: ref17/cit17
  doi: 10.1080/09553009014550341
– volume: 6
  start-page: 4939
  year: 2000
  ident: ref18/cit18
  publication-title: Clin. Cancer Res.
– ident: ref8/cit8
  doi: 10.1002/cncr.21324
– ident: ref52/cit52
  doi: 10.1172/JCI130435
– ident: ref1/cit1
  doi: 10.1038/nrclinonc.2015.120
SSID ssj0057876
Score 2.5622084
Snippet Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18708
SubjectTerms Animals
Breast Neoplasms - drug therapy
Breast Neoplasms - radiotherapy
Female
Humans
Hyaluronic Acid - therapeutic use
Mice
Mice, Nude
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
Nanoparticles
Radiation Tolerance
Reactive Oxygen Species - metabolism
Title Inhibition of NADPH Oxidase-ROS Signal using Hyaluronic Acid Nanoparticles for Overcoming Radioresistance in Cancer Therapy
URI http://dx.doi.org/10.1021/acsnano.2c07440
https://www.ncbi.nlm.nih.gov/pubmed/36256454
https://www.proquest.com/docview/2725649906
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5ReqEH6ANKaIu2EodeHLK7fh6jtCgglVQEJG7W7AusIhvhRAL65ztjO-kDRe3Nh93Vev3NzDea8beMHSRCe5WCCGKlVBBGAEGmDWatNkwlgHPQVHS_nsbji_DkMrr8JRb9dwVfikMwdQll1ZdmQGJ2z9hzGaMJEwsaTRdOl3AXtwVkTJCRRSxVfJ4sQGHI1H-GoRXcsokxR1ttd1bdSBNSa8n3_nym--bxqXDjv7f_km12TJMPW2i8YmuufM1e_KY_-Ib9OC6vC900bfHK89Ph529jPrkvLIa24Gwy5dPiitag5vgrPn6Am3kjpcuHprAcHTNm3F1jHUfyyydoF4hgGnwGtqgwlSd6irjiRclH9HDHz1sdg212cfTlfDQOutsYAsB9zwINA8h0JjIv0bJs6jJP3gL5CKSKWI1QUWK1TAG9gHN-4BU45byKrU-NcWqHrZdV6XYZT420EGVZmHgbCm0yuijUqUQjaEAmUY8d4LHlnTXVeVMolyLvzjLvzrLH-otvmJtO0Zwu1rhZPeHTcsJtK-axeujHBShyNDiqokDpqnmdywRZIuaJg7jH3rZoWS6GbIDUecK9_3uBd2xD0t8UQgRSvmfrs7u5-4AcZ6b3G3T_BNV596Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOlFdhKQ8j9cAl29jO87haqFJod6G7lXqLxo-0EVWCml2Jx59nnGSXl1aCWxTFI9v5xv5GM_4MsB9zVcgEuRdJKb0gRPRSpSlqNUEiEK3FNqN7Momys-DdeXi-Bf7qLAx1oiFLTZvE_6kuwA_oXYVVPRTad5p2N-AmURHhMD0az1Zrr4Nf1OWRKU4mMrEW8_nLgNuNdPP7brSBYrZbzeEOfFx3sq0w-TRcLtRQf_tDv_F_RnEP7va8k406oNyHLVs9gDu_qBE-hO9H1WWp2hIuVhdsMnrzIWPTL6Whjc47nc7YrLxwNlyp_AXLvuLVshXWZSNdGkbLNMXffZkdIyrMpuQlhGf38SmasqbA3pFVQhkrKzZ2D9ds3qkaPIKzw7fzceb1dzN4SP1eeAp9TFXK00KQn5nEpoVbO4idYCIdx-EyjI0SCdKaYG3hFxKttIWMTJFobeUubFd1ZZ8AS7QwGKZpEBcm4Eqn7tpQK2NFEEIRhwPYp2nLe99q8jZtLnjez2Xez-UAhqtfmete39xds3G1ucHrdYPPnbTH5k9frbCRk_u5nApWtl42uYiJM1LU6EcDeNyBZm2MuIHT6gme_tsAXsKtbH5ynB8fTd7vwW3hzllw7gnxDLYX10v7nNjPQr1oAf8D2MkAFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxsxEBZtCqV9aHrXTdqqkIe-rOOV9nw0To3Tww5xDHlbRle6NOyGrA09_nxmdmXTA0P7tiyrQdJ-M_qGkT4xdpCGyskMwiCRUgZRDBDkSmPWaqJMAFgLbUX38zSZLKIP5_G5PxRGZ2GwEw1aatoiPnn1lXFeYSA8xPcVVHVf6AHp2t1md6hoR7gejubr-EsQTLpaMubKSCg2gj5_GaAVSTe_r0hbaGa73Ix32WLT0XaXydf-aqn6-scfGo7_O5KH7IHnn3zYAeYRu2Wrx-z-L6qET9jP4-pLqdqtXLx2fDo8Opnw2bfS4IIXnM7mfF5ekA3aMn_BJ9_hctUK7PKhLg3HcI15uN9ux5ES8xl6C-KaPj4FU9aY4BNpRbTxsuIjerjmZ526wVO2GL8_G00Cf0dDANjvZaBgALnKw9wJ9DeT2dxRDEGWApkkrhPKODVKZICxwVo3cBKstE4mxmVaW_mM7VR1ZV8wnmlhIM7zKHUmCpXO6fpQK1OFUAKRxj12gNNWeB9rirZ8LsLCz2Xh57LH-uvfWWivc07XbVxub_Bu0-Cqk_jY_unbNT4KdEOqrUBl61VTiBS5I2aPg6THnnfA2RhDjkCaPdHLfxvAG3b35GhcfDqeftxj9wQdtwjDQIh9trO8XtlXSIKW6nWL-RsglQKX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+NADPH+Oxidase-ROS+Signal+using+Hyaluronic+Acid+Nanoparticles+for+Overcoming+Radioresistance+in+Cancer+Therapy&rft.jtitle=ACS+nano&rft.au=Zhu%2C+Lei&rft.au=Zhao%2C+Yi&rft.au=Liu%2C+Tongrui&rft.au=Chen%2C+Minglong&rft.date=2022-11-22&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=11&rft.spage=18708&rft.epage=18728&rft_id=info:doi/10.1021%2Facsnano.2c07440&rft.externalDocID=a334356057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon