Inhibition of NADPH Oxidase-ROS Signal using Hyaluronic Acid Nanoparticles for Overcoming Radioresistance in Cancer Therapy
Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and...
Saved in:
Published in | ACS nano Vol. 16; no. 11; pp. 18708 - 18728 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.2c07440 |
Cover
Loading…
Abstract | Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways. |
---|---|
AbstractList | Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways. Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways.Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways. |
Author | Zhu, Lei Liu, Tongrui Styblo, Toncred M Zhang, Lumeng Zhao, Yi Chen, Minglong Li, Xiaoxian Yang, Lily Qian, Wei Ping Barwick, Benjamin G. Jiang, Binghua |
AuthorAffiliation | Department of Surgery and Winship Cancer Institute Department of Nuclear Medicine, China-Japan Union Hospital Department of Pathology and Laboratory Medicine Department of Hematology and Medical Oncology Emory University School of Medicine Department of Pathology, Anatomy and Cell Biology |
AuthorAffiliation_xml | – name: Department of Hematology and Medical Oncology – name: Department of Pathology and Laboratory Medicine – name: Department of Nuclear Medicine, China-Japan Union Hospital – name: Department of Surgery and Winship Cancer Institute – name: Department of Pathology, Anatomy and Cell Biology – name: Emory University School of Medicine |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-1820-4795 surname: Zhu fullname: Zhu, Lei organization: Department of Surgery and Winship Cancer Institute – sequence: 2 givenname: Yi surname: Zhao fullname: Zhao, Yi organization: Department of Surgery and Winship Cancer Institute – sequence: 3 givenname: Tongrui surname: Liu fullname: Liu, Tongrui organization: Department of Surgery and Winship Cancer Institute – sequence: 4 givenname: Minglong surname: Chen fullname: Chen, Minglong organization: Department of Nuclear Medicine, China-Japan Union Hospital – sequence: 5 givenname: Wei Ping surname: Qian fullname: Qian, Wei Ping organization: Department of Surgery and Winship Cancer Institute – sequence: 6 givenname: Binghua surname: Jiang fullname: Jiang, Binghua organization: Department of Pathology, Anatomy and Cell Biology – sequence: 7 givenname: Benjamin G. surname: Barwick fullname: Barwick, Benjamin G. organization: Emory University School of Medicine – sequence: 8 givenname: Lumeng surname: Zhang fullname: Zhang, Lumeng organization: Department of Nuclear Medicine, China-Japan Union Hospital – sequence: 9 givenname: Toncred M surname: Styblo fullname: Styblo, Toncred M organization: Department of Surgery and Winship Cancer Institute – sequence: 10 givenname: Xiaoxian surname: Li fullname: Li, Xiaoxian organization: Emory University School of Medicine – sequence: 11 givenname: Lily orcidid: 0000-0003-2959-0094 surname: Yang fullname: Yang, Lily email: lyang02@emory.edu organization: Department of Surgery and Winship Cancer Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36256454$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLAzEQxoMovs_eJEdBVpNNs49jqY8KYqVV8LbMZica2SY12RWL_7y7tHoQ9DQD8_tmmO_bI5vWWSTkiLMzzmJ-DipYsO4sViwdDNgG2eW5SCKWJU-bP73kO2QvhFfGZJqlyTbZEUksk4Ec7JLPG_tiStMYZ6nT9G54cT-mkw9TQcBoOpnRmXm2UNM2GPtMx0uoW--sUXSoTEXvutsL8I1RNQaqnaeTd_TKzXt4CpVxHoMJDViF1Fg66htPH17Qw2J5QLY01AEP13WfPF5dPozG0e3k-mY0vI2ge6mJSmCQlznPdRwzVmWY65QJxqWETIg8TbiQaVXGGcQyRdRMC0CBWiSVzpRCsU9OVnsX3r21GJpiboLCugaLrg1FnPZu5DlLOvR4jbblHKti4c0c_LL4NqwDzleA8i4Ej_oH4azoIynWkRTrSDqF_KVQpoHe8MaDqf_Rna503aB4da3vYgh_0l9Zx6Ga |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2022_12_010 crossref_primary_10_1016_j_intimp_2024_113815 crossref_primary_10_1016_j_jpha_2025_101225 crossref_primary_10_1002_ange_202419409 crossref_primary_10_1021_acsami_3c02361 crossref_primary_10_1021_acsmaterialslett_3c01158 crossref_primary_10_1016_j_cej_2024_158944 crossref_primary_10_3390_antiox14010104 crossref_primary_10_1039_D3TB02341A crossref_primary_10_18502_aanbt_v5i4_17962 crossref_primary_10_1016_j_jconrel_2023_07_034 crossref_primary_10_1021_acsami_3c15686 crossref_primary_10_1016_j_heliyon_2024_e41246 crossref_primary_10_1002_anie_202419409 crossref_primary_10_1039_D3BM00095H crossref_primary_10_1002_advs_202403520 crossref_primary_10_1016_j_matchemphys_2024_129863 crossref_primary_10_1021_acsnano_4c08463 crossref_primary_10_1038_s41573_024_00979_4 crossref_primary_10_1016_j_bioorg_2025_108289 crossref_primary_10_1002_wnan_1876 crossref_primary_10_1021_acs_molpharmaceut_3c01117 crossref_primary_10_2147_IJN_S393862 crossref_primary_10_1016_j_ijbiomac_2024_139211 crossref_primary_10_1007_s11010_024_04958_6 crossref_primary_10_1021_acsnano_4c07558 crossref_primary_10_1002_smtd_202301131 crossref_primary_10_3390_antiox12040824 crossref_primary_10_1080_13510002_2024_2433396 crossref_primary_10_2147_IJN_S460047 crossref_primary_10_1016_j_ijbiomac_2024_129434 crossref_primary_10_1002_advs_202308632 |
Cites_doi | 10.1038/nrd2803 10.1073/pnas.1808945115 10.1002/9780470513774.ch2 10.1016/S0618-8278(19)30002-7 10.1016/j.freeradbiomed.2012.04.033 10.1042/CS20140542 10.1021/jm100773e 10.1038/nrc2419 10.1016/j.tiv.2013.01.016 10.2174/0929867324666170711114336 10.1016/j.redox.2019.101272 10.1093/jnci/djx121 10.1038/nrc3399 10.1038/nrc3958 10.1002/ijc.26379 10.1038/s41467-020-16199-4 10.1021/nn506130t 10.1016/j.cellsig.2012.01.008 10.1126/science.281.5383.1677 10.1016/j.bbrc.2015.10.161 10.3892/or_00000918 10.1039/C5NR05869D 10.1038/onc.2011.181 10.1111/bph.13532 10.1038/s41571-021-00588-9 10.1016/j.canlet.2013.01.024 10.1038/s41392-020-00367-5 10.1038/sj.bjc.6605847 10.3389/fimmu.2015.00231 10.1080/14728222.2020.1736559 10.2174/1874467211666181010154709 10.1073/pnas.1814212115 10.1158/0008-5472.CAN-15-2951 10.1158/1078-0432.CCR-12-1424 10.1093/jnci/85.3.200 10.1186/s12935-017-0382-1 10.1155/2019/3264858 10.1038/sj.onc.1206949 10.1039/b900456d 10.1038/s41467-017-01106-1 10.3389/fimmu.2015.00261 10.1021/cr800504x 10.1111/febs.14777 10.3390/cancers12020297 10.1016/j.canlet.2014.02.006 10.1158/0008-5472.CAN-16-0808 10.1016/j.canlet.2011.12.025 10.1038/s41571-018-0114-z 10.1038/s41568-019-0183-z 10.1038/s41571-021-00579-w 10.1016/0005-2736(92)90136-A 10.1158/0008-5472.CAN-17-1525 10.1021/acsnano.8b01508 10.4161/cbt.10.3.12207 10.1016/S1470-2045(19)30326-2 10.1038/s41467-018-06655-7 10.4161/cbt.4.12.2233 10.1038/nrc3891 10.1016/j.cub.2014.03.034 10.1016/j.immuni.2014.06.010 10.1016/S1470-2045(14)71156-8 10.1016/j.canlet.2015.07.008 10.1038/nature10760 10.7150/thno.37543 10.1158/0008-5472.CAN-06-2013 10.1158/1078-0432.CCR-13-3229 10.1200/JCO.2014.55.0699 10.1158/1078-0432.1154.11.3 10.1111/j.1742-4658.2011.08071.x 10.1053/srao.2003.50002 10.2353/ajpath.2006.060206 10.1080/09553009014550341 10.1002/cncr.21324 10.1172/JCI130435 10.1038/nrclinonc.2015.120 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.2c07440 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 18728 |
ExternalDocumentID | 36256454 10_1021_acsnano_2c07440 a334356057 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB020601 – fundername: NCI NIH HHS grantid: U01 CA198913 – fundername: NCI NIH HHS grantid: R43 CA246827 – fundername: NCI NIH HHS grantid: R01 CA257861 – fundername: NCI NIH HHS grantid: R01 CA154129 |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a440t-ba0a9b919f2200d8e9f7030155a8339761357db28a257eef0f3ae3ef36df8cce3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 22:57:12 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Tue Jul 01 03:37:30 EDT 2025 Thu Nov 24 04:02:03 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | hyaluronic acid nanoparticle (HANP) targeted cancer therapy NADPH oxidases reactive oxygen species radiotherapy resistance GKT831 Redox imbalance |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a440t-ba0a9b919f2200d8e9f7030155a8339761357db28a257eef0f3ae3ef36df8cce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1820-4795 0000-0003-2959-0094 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9764083 |
PMID | 36256454 |
PQID | 2725649906 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2725649906 pubmed_primary_36256454 crossref_primary_10_1021_acsnano_2c07440 crossref_citationtrail_10_1021_acsnano_2c07440 acs_journals_10_1021_acsnano_2c07440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-22 |
PublicationDateYYYYMMDD | 2022-11-22 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 Harrington K. J. (ref18/cit18) 2000; 6 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 Negrini M. (ref44/cit44) 1994; 54 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Moehlen M. (ref71/cit71) 2021; 17 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1038/nrd2803 – volume: 17 start-page: 598 year: 2021 ident: ref71/cit71 publication-title: Gastroenterol Hepatol (N Y) – ident: ref24/cit24 doi: 10.1073/pnas.1808945115 – ident: ref69/cit69 doi: 10.1002/9780470513774.ch2 – ident: ref37/cit37 doi: 10.1016/S0618-8278(19)30002-7 – ident: ref66/cit66 doi: 10.1016/j.freeradbiomed.2012.04.033 – ident: ref27/cit27 doi: 10.1042/CS20140542 – ident: ref36/cit36 doi: 10.1021/jm100773e – ident: ref47/cit47 doi: 10.1038/nrc2419 – ident: ref43/cit43 doi: 10.1016/j.tiv.2013.01.016 – ident: ref67/cit67 doi: 10.2174/0929867324666170711114336 – ident: ref79/cit79 doi: 10.1016/j.redox.2019.101272 – ident: ref35/cit35 doi: 10.1093/jnci/djx121 – ident: ref2/cit2 doi: 10.1038/nrc3399 – volume: 54 start-page: 1818 year: 1994 ident: ref44/cit44 publication-title: Cancer Res. – ident: ref78/cit78 doi: 10.1038/nrc3958 – ident: ref61/cit61 doi: 10.1002/ijc.26379 – ident: ref62/cit62 doi: 10.1038/s41467-020-16199-4 – ident: ref42/cit42 doi: 10.1021/nn506130t – ident: ref65/cit65 doi: 10.1016/j.cellsig.2012.01.008 – ident: ref76/cit76 doi: 10.1126/science.281.5383.1677 – ident: ref34/cit34 doi: 10.1016/j.bbrc.2015.10.161 – ident: ref60/cit60 doi: 10.3892/or_00000918 – ident: ref23/cit23 doi: 10.1039/C5NR05869D – ident: ref59/cit59 doi: 10.1038/onc.2011.181 – ident: ref32/cit32 doi: 10.1111/bph.13532 – ident: ref63/cit63 doi: 10.1038/s41571-021-00588-9 – ident: ref50/cit50 doi: 10.1016/j.canlet.2013.01.024 – ident: ref57/cit57 doi: 10.1038/s41392-020-00367-5 – ident: ref31/cit31 doi: 10.1038/sj.bjc.6605847 – ident: ref68/cit68 doi: 10.3389/fimmu.2015.00231 – ident: ref58/cit58 doi: 10.1080/14728222.2020.1736559 – ident: ref28/cit28 doi: 10.2174/1874467211666181010154709 – ident: ref11/cit11 doi: 10.1073/pnas.1814212115 – ident: ref19/cit19 doi: 10.1158/0008-5472.CAN-15-2951 – ident: ref21/cit21 doi: 10.1158/1078-0432.CCR-12-1424 – ident: ref45/cit45 doi: 10.1093/jnci/85.3.200 – ident: ref55/cit55 doi: 10.1186/s12935-017-0382-1 – ident: ref74/cit74 doi: 10.1155/2019/3264858 – ident: ref77/cit77 doi: 10.1038/sj.onc.1206949 – ident: ref40/cit40 doi: 10.1039/b900456d – ident: ref54/cit54 doi: 10.1186/s12935-017-0382-1 – ident: ref33/cit33 doi: 10.1038/s41467-017-01106-1 – ident: ref38/cit38 doi: 10.3389/fimmu.2015.00261 – ident: ref10/cit10 doi: 10.1021/cr800504x – ident: ref39/cit39 doi: 10.1111/febs.14777 – ident: ref64/cit64 doi: 10.3390/cancers12020297 – ident: ref13/cit13 doi: 10.1016/j.canlet.2014.02.006 – ident: ref51/cit51 doi: 10.1158/0008-5472.CAN-16-0808 – ident: ref48/cit48 doi: 10.1016/j.canlet.2011.12.025 – ident: ref4/cit4 doi: 10.1038/s41571-018-0114-z – ident: ref73/cit73 doi: 10.1038/s41568-019-0183-z – ident: ref7/cit7 doi: 10.1038/s41571-021-00579-w – ident: ref70/cit70 doi: 10.1016/0005-2736(92)90136-A – ident: ref53/cit53 doi: 10.1158/0008-5472.CAN-17-1525 – ident: ref16/cit16 doi: 10.1021/acsnano.8b01508 – ident: ref30/cit30 doi: 10.4161/cbt.10.3.12207 – ident: ref14/cit14 doi: 10.1016/S1470-2045(19)30326-2 – ident: ref20/cit20 doi: 10.1038/s41467-018-06655-7 – ident: ref29/cit29 doi: 10.4161/cbt.4.12.2233 – ident: ref5/cit5 doi: 10.1038/nrc3891 – ident: ref25/cit25 doi: 10.1016/j.cub.2014.03.034 – ident: ref49/cit49 doi: 10.1016/j.immuni.2014.06.010 – ident: ref75/cit75 doi: 10.1016/S1470-2045(14)71156-8 – ident: ref26/cit26 doi: 10.1016/j.canlet.2015.07.008 – ident: ref3/cit3 doi: 10.1038/nature10760 – ident: ref15/cit15 doi: 10.7150/thno.37543 – ident: ref56/cit56 doi: 10.1158/0008-5472.CAN-06-2013 – ident: ref9/cit9 doi: 10.1158/1078-0432.CCR-13-3229 – ident: ref12/cit12 doi: 10.1200/JCO.2014.55.0699 – ident: ref46/cit46 doi: 10.1158/1078-0432.1154.11.3 – ident: ref41/cit41 doi: 10.1111/j.1742-4658.2011.08071.x – ident: ref6/cit6 doi: 10.1053/srao.2003.50002 – ident: ref72/cit72 doi: 10.2353/ajpath.2006.060206 – ident: ref17/cit17 doi: 10.1080/09553009014550341 – volume: 6 start-page: 4939 year: 2000 ident: ref18/cit18 publication-title: Clin. Cancer Res. – ident: ref8/cit8 doi: 10.1002/cncr.21324 – ident: ref52/cit52 doi: 10.1172/JCI130435 – ident: ref1/cit1 doi: 10.1038/nrclinonc.2015.120 |
SSID | ssj0057876 |
Score | 2.5622084 |
Snippet | Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18708 |
SubjectTerms | Animals Breast Neoplasms - drug therapy Breast Neoplasms - radiotherapy Female Humans Hyaluronic Acid - therapeutic use Mice Mice, Nude NADPH Oxidases - genetics NADPH Oxidases - metabolism Nanoparticles Radiation Tolerance Reactive Oxygen Species - metabolism |
Title | Inhibition of NADPH Oxidase-ROS Signal using Hyaluronic Acid Nanoparticles for Overcoming Radioresistance in Cancer Therapy |
URI | http://dx.doi.org/10.1021/acsnano.2c07440 https://www.ncbi.nlm.nih.gov/pubmed/36256454 https://www.proquest.com/docview/2725649906 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5ReqEH6ANKaIu2EodeHLK7fh6jtCgglVQEJG7W7AusIhvhRAL65ztjO-kDRe3Nh93Vev3NzDea8beMHSRCe5WCCGKlVBBGAEGmDWatNkwlgHPQVHS_nsbji_DkMrr8JRb9dwVfikMwdQll1ZdmQGJ2z9hzGaMJEwsaTRdOl3AXtwVkTJCRRSxVfJ4sQGHI1H-GoRXcsokxR1ttd1bdSBNSa8n3_nym--bxqXDjv7f_km12TJMPW2i8YmuufM1e_KY_-Ib9OC6vC900bfHK89Ph529jPrkvLIa24Gwy5dPiitag5vgrPn6Am3kjpcuHprAcHTNm3F1jHUfyyydoF4hgGnwGtqgwlSd6irjiRclH9HDHz1sdg212cfTlfDQOutsYAsB9zwINA8h0JjIv0bJs6jJP3gL5CKSKWI1QUWK1TAG9gHN-4BU45byKrU-NcWqHrZdV6XYZT420EGVZmHgbCm0yuijUqUQjaEAmUY8d4LHlnTXVeVMolyLvzjLvzrLH-otvmJtO0Zwu1rhZPeHTcsJtK-axeujHBShyNDiqokDpqnmdywRZIuaJg7jH3rZoWS6GbIDUecK9_3uBd2xD0t8UQgRSvmfrs7u5-4AcZ6b3G3T_BNV596Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOlFdhKQ8j9cAl29jO87haqFJod6G7lXqLxo-0EVWCml2Jx59nnGSXl1aCWxTFI9v5xv5GM_4MsB9zVcgEuRdJKb0gRPRSpSlqNUEiEK3FNqN7Momys-DdeXi-Bf7qLAx1oiFLTZvE_6kuwA_oXYVVPRTad5p2N-AmURHhMD0az1Zrr4Nf1OWRKU4mMrEW8_nLgNuNdPP7brSBYrZbzeEOfFx3sq0w-TRcLtRQf_tDv_F_RnEP7va8k406oNyHLVs9gDu_qBE-hO9H1WWp2hIuVhdsMnrzIWPTL6Whjc47nc7YrLxwNlyp_AXLvuLVshXWZSNdGkbLNMXffZkdIyrMpuQlhGf38SmasqbA3pFVQhkrKzZ2D9ds3qkaPIKzw7fzceb1dzN4SP1eeAp9TFXK00KQn5nEpoVbO4idYCIdx-EyjI0SCdKaYG3hFxKttIWMTJFobeUubFd1ZZ8AS7QwGKZpEBcm4Eqn7tpQK2NFEEIRhwPYp2nLe99q8jZtLnjez2Xez-UAhqtfmete39xds3G1ucHrdYPPnbTH5k9frbCRk_u5nApWtl42uYiJM1LU6EcDeNyBZm2MuIHT6gme_tsAXsKtbH5ynB8fTd7vwW3hzllw7gnxDLYX10v7nNjPQr1oAf8D2MkAFA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxsxEBZtCqV9aHrXTdqqkIe-rOOV9nw0To3Tww5xDHlbRle6NOyGrA09_nxmdmXTA0P7tiyrQdJ-M_qGkT4xdpCGyskMwiCRUgZRDBDkSmPWaqJMAFgLbUX38zSZLKIP5_G5PxRGZ2GwEw1aatoiPnn1lXFeYSA8xPcVVHVf6AHp2t1md6hoR7gejubr-EsQTLpaMubKSCg2gj5_GaAVSTe_r0hbaGa73Ix32WLT0XaXydf-aqn6-scfGo7_O5KH7IHnn3zYAeYRu2Wrx-z-L6qET9jP4-pLqdqtXLx2fDo8Opnw2bfS4IIXnM7mfF5ekA3aMn_BJ9_hctUK7PKhLg3HcI15uN9ux5ES8xl6C-KaPj4FU9aY4BNpRbTxsuIjerjmZ526wVO2GL8_G00Cf0dDANjvZaBgALnKw9wJ9DeT2dxRDEGWApkkrhPKODVKZICxwVo3cBKstE4mxmVaW_mM7VR1ZV8wnmlhIM7zKHUmCpXO6fpQK1OFUAKRxj12gNNWeB9rirZ8LsLCz2Xh57LH-uvfWWivc07XbVxub_Bu0-Cqk_jY_unbNT4KdEOqrUBl61VTiBS5I2aPg6THnnfA2RhDjkCaPdHLfxvAG3b35GhcfDqeftxj9wQdtwjDQIh9trO8XtlXSIKW6nWL-RsglQKX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+NADPH+Oxidase-ROS+Signal+using+Hyaluronic+Acid+Nanoparticles+for+Overcoming+Radioresistance+in+Cancer+Therapy&rft.jtitle=ACS+nano&rft.au=Zhu%2C+Lei&rft.au=Zhao%2C+Yi&rft.au=Liu%2C+Tongrui&rft.au=Chen%2C+Minglong&rft.date=2022-11-22&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=11&rft.spage=18708&rft.epage=18728&rft_id=info:doi/10.1021%2Facsnano.2c07440&rft.externalDocID=a334356057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |