Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks

We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented b...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 138; p. 104598
Main Authors Lei, Qinghua, Gholizadeh Doonechaly, Nima, Tsang, Chin-Fu
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1365-1609
1873-4545
1873-4545
DOI10.1016/j.ijrmms.2020.104598

Cover

Loading…
Abstract We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented by a discrete fracture network. The stress and strain fields of the fractured porous media are solved in the framework of a finite element model, which mimics the damage evolution in rock matrix based on an elasto-brittle failure criterion and simulates the normal/shear displacement of natural discontinuities based on a non-linear constitutive law. The coupled geomechanics and fluid flow processes in the fractured rock are computed honouring essential coupling mechanisms such as pore pressure-induced shear slip of pre-existing fractures, poro-elastic response of rock matrix, and stress-dependent permeability/storativity of both fractures and rocks. We use the numerical model developed to investigate the hydro-mechanical behaviour of two cases of deeply buried fractured rock in response to high-pressure fluid injection, one case with fracture density just below the percolation threshold and the other above the threshold. We observe a strong control of natural fracture network connectivity on the damage emergence, seismicity occurrence and connectivity change in the rock mass subject to hydraulic stimulation. We also highlight the strong poro-elastic effect that tends to drive heterogeneous connectivity evolution of fracture systems during fluid injection. The results of our research and insights obtained have important implications for injection-related geoengineering activities such as the development of enhanced geothermal systems and extraction of hydrocarbon resources.
AbstractList We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented by a discrete fracture network. The stress and strain fields of the fractured porous media are solved in the framework of a finite element model, which mimics the damage evolution in rock matrix based on an elasto-brittle failure criterion and simulates the normal/shear displacement of natural discontinuities based on a non-linear constitutive law. The coupled geomechanics and fluid flow processes in the fractured rock are computed honouring essential coupling mechanisms such as pore pressure-induced shear slip of pre-existing fractures, poro-elastic response of rock matrix, and stress-dependent permeability/storativity of both fractures and rocks. We use the numerical model developed to investigate the hydro-mechanical behaviour of two cases of deeply buried fractured rock in response to high-pressure fluid injection, one case with fracture density just below the percolation threshold and the other above the threshold. We observe a strong control of natural fracture network connectivity on the damage emergence, seismicity occurrence and connectivity change in the rock mass subject to hydraulic stimulation. We also highlight the strong poro-elastic effect that tends to drive heterogeneous connectivity evolution of fracture systems during fluid injection. The results of our research and insights obtained have important implications for injection-related geoengineering activities such as the development of enhanced geothermal systems and extraction of hydrocarbon resources.
We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of preexisting fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented by a discrete fracture network. The stress and strain fields of the fractured porous media are solved in the framework of a finite element model, which mimics the damage evolution in rock matrix based on an elasto-brittle failure criterion and simulates the normal/shear displacement of natural discontinuities based on a non-linear constitutive law. The coupled geomechanics and fluid flow processes in the fractured rock are computed honouring essential coupling mechanisms such as pore pressure-induced shear slip of pre-existing fractures, poro-elastic response of rock matrix, and stress-dependent permeability/storativity of both fractures and rocks. We use the numerical model developed to investigate the hydro-mechanical behaviour of two cases of deeply buried fractured rock in response to high-pressure fluid injection, one case with fracture density just below the percolation threshold and the other above the threshold. We observe a strong control of natural fracture network connectivity on the damage emergence, seismicity occurrence and connectivity change in the rock mass subject to hydraulic stimulation. We also highlight the strong poro-elastic effect that tends to drive heterogeneous connectivity evolution of fracture systems during fluid injection. The results of our research and insights obtained have important implications for injection-related geoengineering activities such as the development of enhanced geothermal systems and extraction of hydrocarbon resources.
ArticleNumber 104598
Author Lei, Qinghua
Tsang, Chin-Fu
Gholizadeh Doonechaly, Nima
Author_xml – sequence: 1
  givenname: Qinghua
  orcidid: 0000-0002-3990-4707
  surname: Lei
  fullname: Lei, Qinghua
  email: qinghua.lei@erdw.ethz.ch
  organization: Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Nima
  surname: Gholizadeh Doonechaly
  fullname: Gholizadeh Doonechaly, Nima
  organization: Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
– sequence: 3
  givenname: Chin-Fu
  surname: Tsang
  fullname: Tsang, Chin-Fu
  organization: Department of Earth Sciences, Uppsala University, Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439836$$DView record from Swedish Publication Index
BookMark eNqFkc1u1DAUhSNUJNrCG7CwxHYytWPHSVggVQXaSkVsgK3l-Gd6Q2IPdjzVvEUfGYdUXbCA1bV8z3dkn3NWnDjvTFG8JXhLMOEXwxaGME1xW-FquWJ1174oTknb0JLVrD7JZ8rrknDcvSrOYhwwxrzizWnx-MVrM47gdsiOCTQCNxg1g3clOJ2U0cgGqeYUDMoDDnLZbZCWk9wZtAv-Yb7foGggTqBgPiKvVArBOJUBp5Hyzi2Gh2Wn7qXLFDjkZLaU43h8ttcoePUzvi5eWjlG8-ZpnhffP3_6dnVT3n29vr26vCslY3guO2sN7qs2_7HvG0kIryyXbVdJRnhDpTGystjWTWtVp_q-YrgmqiNMNpTorDgvNqtvfDD71It9gEmGo_ASxEf4cSl82ImUBKNdS3mWv1vl--B_JRNnMfgUXH6hoLhllDeY0Kxiq0oFH2Mw9tmWYLFUJQaxViWWqsRaVcbe_4XlJP8EPQcJ4__gDytscloHMEFEBUv8GkIOXmgP_zb4Da1SuAE
CitedBy_id crossref_primary_10_1007_s00603_023_03257_8
crossref_primary_10_1021_acs_energyfuels_3c04914
crossref_primary_10_1016_j_compgeo_2024_106909
crossref_primary_10_1016_j_ijrmms_2023_105389
crossref_primary_10_1007_s13202_023_01665_8
crossref_primary_10_1063_5_0216111
crossref_primary_10_32604_cmes_2024_051832
crossref_primary_10_3390_su16198482
crossref_primary_10_1080_15567036_2024_2418434
crossref_primary_10_1063_5_0097025
crossref_primary_10_1007_s00603_021_02520_0
crossref_primary_10_1016_j_apenergy_2025_125650
crossref_primary_10_1016_j_gete_2021_100277
crossref_primary_10_3390_pr12081767
crossref_primary_10_1002_ese3_1532
crossref_primary_10_1111_1755_6724_15050
crossref_primary_10_1007_s12205_024_0133_5
crossref_primary_10_1016_j_compgeo_2022_105057
crossref_primary_10_1016_j_compgeo_2021_104120
crossref_primary_10_1016_j_compgeo_2023_105418
crossref_primary_10_1016_j_compgeo_2022_104801
crossref_primary_10_1016_j_compgeo_2023_105972
crossref_primary_10_1016_j_compgeo_2021_104489
crossref_primary_10_1016_j_ijrmms_2024_105939
crossref_primary_10_2118_217442_PA
crossref_primary_10_1007_s11242_023_02043_y
crossref_primary_10_1155_2021_6235441
crossref_primary_10_1080_10916466_2024_2415518
crossref_primary_10_1016_j_ijrmms_2023_105532
crossref_primary_10_1007_s00603_024_04024_z
crossref_primary_10_2118_223121_PA
crossref_primary_10_1098_rsta_2023_0420
crossref_primary_10_1016_j_ijrmms_2022_105075
crossref_primary_10_1007_s12205_021_0660_2
crossref_primary_10_1016_j_jclepro_2023_140298
crossref_primary_10_1007_s10409_023_23246_x
crossref_primary_10_1016_j_ijrmms_2022_105229
crossref_primary_10_1007_s40948_022_00516_w
crossref_primary_10_1093_gji_ggac295
crossref_primary_10_1016_j_compgeo_2021_104357
crossref_primary_10_1021_acsomega_3c07215
crossref_primary_10_1007_s10064_022_02605_2
crossref_primary_10_1016_j_undsp_2024_03_009
crossref_primary_10_1007_s00603_023_03676_7
crossref_primary_10_1016_j_geothermics_2024_103070
crossref_primary_10_1016_j_geothermics_2024_103114
crossref_primary_10_1016_j_compgeo_2022_104707
crossref_primary_10_1142_S0218348X2550001X
crossref_primary_10_1007_s40948_021_00259_0
crossref_primary_10_1063_5_0189020
crossref_primary_10_1016_j_tust_2023_105393
crossref_primary_10_1016_j_engfracmech_2023_109274
crossref_primary_10_1016_j_jrmge_2024_08_017
crossref_primary_10_1016_j_applthermaleng_2024_122350
crossref_primary_10_1016_j_compgeo_2024_106520
crossref_primary_10_1016_j_ijhydene_2024_12_011
crossref_primary_10_3390_en18010142
crossref_primary_10_1016_j_compgeo_2023_105470
crossref_primary_10_1007_s00603_022_03098_x
crossref_primary_10_1007_s00603_022_03109_x
crossref_primary_10_1007_s00603_024_04217_6
crossref_primary_10_1016_j_petsci_2024_05_007
crossref_primary_10_1016_j_enconman_2024_119284
crossref_primary_10_1007_s40948_024_00790_w
crossref_primary_10_1016_j_geoen_2024_212664
crossref_primary_10_1016_j_ijrmms_2022_105212
crossref_primary_10_1016_j_ijmecsci_2023_108171
crossref_primary_10_1029_2021GL095199
crossref_primary_10_1038_s41598_023_41745_7
crossref_primary_10_1016_j_compgeo_2024_106698
crossref_primary_10_1016_j_compgeo_2024_106650
crossref_primary_10_3389_feart_2022_853030
crossref_primary_10_2113_2022_3824011
crossref_primary_10_1016_j_compgeo_2023_105823
crossref_primary_10_1016_j_enggeo_2021_106169
crossref_primary_10_1186_s40517_025_00338_5
crossref_primary_10_1007_s40948_024_00760_2
crossref_primary_10_1029_2022JF006885
crossref_primary_10_1029_2024JH000159
Cites_doi 10.1007/s12665-010-0494-6
10.1016/j.jrmge.2014.10.003
10.1002/nag.2135
10.1002/2014JB011736
10.1007/BF02486267
10.1029/JB090iB04p03105
10.1016/j.geothermics.2018.03.003
10.1007/BF00876528
10.1029/JZ068i012p03709
10.1016/j.geothermics.2018.07.002
10.1029/91GL00951
10.1007/s10040-002-0241-5
10.1016/j.enggeo.2017.08.011
10.1190/1.1451597
10.1016/S0264-8172(98)00030-0
10.1016/j.ijrmms.2014.06.001
10.1029/95JB00040
10.1016/S1365-1609(02)00022-9
10.2118/7490-PA
10.1016/j.petrol.2013.04.023
10.1016/j.jrmge.2019.12.014
10.1002/2018GL077548
10.1029/2019GL086135
10.1115/1.4028192
10.1007/s10040-017-1624-y
10.2475/01.2008.02
10.1016/j.gete.2015.03.003
10.1063/1.1387590
10.1029/WR005i006p01273
10.1016/j.ijrmms.2014.07.011
10.1130/0091-7613(1997)025<0923:MCOTSD>2.3.CO;2
10.1038/sdata.2018.269
10.1016/j.compgeo.2016.12.024
10.5194/se-11-627-2020
10.1016/0148-9062(84)92681-0
10.1016/0031-9201(82)90075-9
10.1111/j.1365-246X.2012.05460.x
10.1016/0001-6160(86)90087-8
10.1126/science.aab0476
10.1016/j.compgeo.2018.07.009
10.1002/2017JB014535
10.1016/j.compstruc.2012.06.006
10.1126/science.1225942
10.1016/S0148-9062(98)00005-9
10.1029/WR016i006p01016
10.1038/35091045
10.1016/j.ijrmms.2004.05.005
10.1016/j.petrol.2017.03.011
10.1029/98WR01863
10.1016/j.ijrmms.2015.08.011
10.1002/2015GL067277
ContentType Journal Article
Copyright 2020 The Authors
Copyright Elsevier BV Feb 2021
Copyright_xml – notice: 2020 The Authors
– notice: Copyright Elsevier BV Feb 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7UA
8FD
C1K
FR3
KR7
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.ijrmms.2020.104598
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4545
ExternalDocumentID oai_DiVA_org_uu_439836
10_1016_j_ijrmms_2020_104598
S1365160920309643
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7UA
8FD
C1K
EFKBS
FR3
KR7
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-a440t-9ffe0b28187bb7a1162f6a892a41673aeea2f0f578fc9cbb24051c914a731d673
IEDL.DBID .~1
ISSN 1365-1609
1873-4545
IngestDate Thu Aug 21 06:45:36 EDT 2025
Wed Aug 13 09:20:38 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Tue Jul 01 01:54:06 EDT 2025
Fri Feb 23 02:45:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Induced seismicity
Hydraulic stimulation
Fracture network
Hydro-mechanical coupling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a440t-9ffe0b28187bb7a1162f6a892a41673aeea2f0f578fc9cbb24051c914a731d673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3990-4707
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1365160920309643
PQID 3084367013
PQPubID 2045458
ParticipantIDs swepub_primary_oai_DiVA_org_uu_439836
proquest_journals_3084367013
crossref_primary_10_1016_j_ijrmms_2020_104598
crossref_citationtrail_10_1016_j_ijrmms_2020_104598
elsevier_sciencedirect_doi_10_1016_j_ijrmms_2020_104598
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle International journal of rock mechanics and mining sciences (Oxford, England : 1997)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Shapiro, Rothert, Rath, Rindschwentner (bib52) 2002; 67
Rutqvist, Stephansson (bib35) 2003; 11
Economides, Nolte (bib1) 2000
Norbeck, McClure, Horne (bib8) 2018; 74
Pine, Batchelor (bib4) 1984; 21
Sanderson, Zhang (bib14) 2004
Lei, Wang, Min, Rutqvist (bib18) May 2020
Byerlee (bib33) 1978; 116
Zhang, Sanderson (bib13) 1998; 15
Scholz (bib43) 2019
Evans, Genter, Sausse (bib6) 2005; 110
Jaeger, Cook, Zimmerman (bib29) 2007
Rutqvist, Wu, Tsang, Bodvarsson (bib32) 2002; 39
Bobet, Einstein (bib10) 1998; 35
Bažant, Salviato, Chau, Visnawathan, Zubelewicz (bib3) 2014; 81
Zhao, Lisjak, Mahabadi, Liu, Grasselli (bib41) 2014; 6
Bažant, Oh (bib39) 1983; 16
Duboeuf, De Barros, Cappa, Guglielmi, Deschamps, Seguy (bib59) 2017; 122
Fu, Johnson, Carrigan (bib19) 2013; 37
Figueiredo, Tsang, Rutqvist, Niemi (bib25) 2015; 79
Shen, Stephansson, Einstein, Ghahreman (bib12) 1995; 100
Cinco-Ley, Samaniego (bib48) 1981; 33
Lei, Latham, Tsang (bib26) 2017; 85
Snow (bib47) 1969; 5
Kanamori, Brodsky (bib42) 2001; 54
Lei, Gao (bib56) 2018; 45
Lei, Wang, Xiang, Latham (bib16) 2017; 25
Renshaw, Schulson (bib46) 2001; 412
Jirásek, Bauer (bib30) 2012; 110–111
Villiger, Gischig, Doetsch (bib54) 2020; 11
Ellsworth (bib2) 2013; 341
Krietsch, Doetsch, Dutler (bib63) 2018; 5
Krietsch, Villiger, Doetsch (bib7) 2020; 47
Brixel (bib53) 2020
Renshaw (bib49) 1997; 25
Guglielmi, Cappa, Avouac, Henry, Elsworth (bib58) 2015; 348
Ahmed, McKinney (bib64) 2005
Obeysekara, Lei, Salinas (bib23) 2018; 103
Brixel, Klepikova, Lei (bib62) 2020; 125
McClure, Horne (bib20) 2013
Gueguen, David, Gavrilenko (bib51) 1991; 18
Lei, Latham, Xiang, Tsang, Lang, Guo (bib15) 2014; 70
Rutqvist, Figueiredo, Hu, Tsang (bib28) 2018
Rutqvist, Noorishad, Tsang, Stephansson (bib37) 1998; 34
Kamali, Ghassemi (bib22) 2018; 76
Rutqvist, Rinaldi, Cappa, Moridis (bib57) 2013; 107
Lei, Latham, Xiang, Tsang (bib17) 2015; 1
Figueiredo, Tsang, Rutqvist, Niemi (bib24) 2017; 152
Figueiredo, Tsang, Rutqvist, Niemi (bib21) 2017; 228
Horii, Nemat-Nasser (bib9) 1985; 90
Witherspoon, Wang, Iwai, Gale (bib36) 1980; 16
Lei, Latham, Tsang, Xiang, Lang (bib27) 2015; 120
Comsol (bib44) 2019; 5.5
Brace, Bombolakis (bib11) 1963; 68
Zhu, Wei (bib38) 2011; 62
Tang, Liang, Zhang (bib31) 2008; 308
Xu, Tang, Zhao, Li, Heap (bib40) 2012; 189
Lei, Wang (bib55) 2016; 43
Min, Rutqvist, Tsang, Jing (bib34) 2004; 41
Amann, Gischig, Evans (bib60) 2017
Sammis, Ashby (bib45) 1986; 34
Brixel, Klepikova, Jalali (bib61) 2020; 125
McClure, Horne (bib5) 2014; 72
Chelidze (bib50) 1982; 28
Renshaw (10.1016/j.ijrmms.2020.104598_bib46) 2001; 412
Figueiredo (10.1016/j.ijrmms.2020.104598_bib25) 2015; 79
Lei (10.1016/j.ijrmms.2020.104598_bib15) 2014; 70
Lei (10.1016/j.ijrmms.2020.104598_bib56) 2018; 45
Jaeger (10.1016/j.ijrmms.2020.104598_bib29) 2007
Xu (10.1016/j.ijrmms.2020.104598_bib40) 2012; 189
Figueiredo (10.1016/j.ijrmms.2020.104598_bib24) 2017; 152
Norbeck (10.1016/j.ijrmms.2020.104598_bib8) 2018; 74
Lei (10.1016/j.ijrmms.2020.104598_bib26) 2017; 85
Sammis (10.1016/j.ijrmms.2020.104598_bib45) 1986; 34
Fu (10.1016/j.ijrmms.2020.104598_bib19) 2013; 37
Byerlee (10.1016/j.ijrmms.2020.104598_bib33) 1978; 116
Brixel (10.1016/j.ijrmms.2020.104598_bib62) 2020; 125
Krietsch (10.1016/j.ijrmms.2020.104598_bib7) 2020; 47
Kamali (10.1016/j.ijrmms.2020.104598_bib22) 2018; 76
Evans (10.1016/j.ijrmms.2020.104598_bib6) 2005; 110
Min (10.1016/j.ijrmms.2020.104598_bib34) 2004; 41
Tang (10.1016/j.ijrmms.2020.104598_bib31) 2008; 308
Lei (10.1016/j.ijrmms.2020.104598_bib17) 2015; 1
Gueguen (10.1016/j.ijrmms.2020.104598_bib51) 1991; 18
Villiger (10.1016/j.ijrmms.2020.104598_bib54) 2020; 11
Cinco-Ley (10.1016/j.ijrmms.2020.104598_bib48) 1981; 33
Duboeuf (10.1016/j.ijrmms.2020.104598_bib59) 2017; 122
Snow (10.1016/j.ijrmms.2020.104598_bib47) 1969; 5
Kanamori (10.1016/j.ijrmms.2020.104598_bib42) 2001; 54
Zhao (10.1016/j.ijrmms.2020.104598_bib41) 2014; 6
Chelidze (10.1016/j.ijrmms.2020.104598_bib50) 1982; 28
Zhang (10.1016/j.ijrmms.2020.104598_bib13) 1998; 15
Witherspoon (10.1016/j.ijrmms.2020.104598_bib36) 1980; 16
Shapiro (10.1016/j.ijrmms.2020.104598_bib52) 2002; 67
Brace (10.1016/j.ijrmms.2020.104598_bib11) 1963; 68
Lei (10.1016/j.ijrmms.2020.104598_bib18) 2020
Jirásek (10.1016/j.ijrmms.2020.104598_bib30) 2012; 110–111
Zhu (10.1016/j.ijrmms.2020.104598_bib38) 2011; 62
Rutqvist (10.1016/j.ijrmms.2020.104598_bib32) 2002; 39
Amann (10.1016/j.ijrmms.2020.104598_bib60) 2017
Krietsch (10.1016/j.ijrmms.2020.104598_bib63) 2018; 5
Comsol (10.1016/j.ijrmms.2020.104598_bib44) 2019; 5.5
Ellsworth (10.1016/j.ijrmms.2020.104598_bib2) 2013; 341
Shen (10.1016/j.ijrmms.2020.104598_bib12) 1995; 100
Renshaw (10.1016/j.ijrmms.2020.104598_bib49) 1997; 25
Lei (10.1016/j.ijrmms.2020.104598_bib55) 2016; 43
McClure (10.1016/j.ijrmms.2020.104598_bib20) 2013
Rutqvist (10.1016/j.ijrmms.2020.104598_bib28) 2018
Figueiredo (10.1016/j.ijrmms.2020.104598_bib21) 2017; 228
Ahmed (10.1016/j.ijrmms.2020.104598_bib64) 2005
Bažant (10.1016/j.ijrmms.2020.104598_bib3) 2014; 81
Brixel (10.1016/j.ijrmms.2020.104598_bib53) 2020
Sanderson (10.1016/j.ijrmms.2020.104598_bib14) 2004
Rutqvist (10.1016/j.ijrmms.2020.104598_bib37) 1998; 34
McClure (10.1016/j.ijrmms.2020.104598_bib5) 2014; 72
Bobet (10.1016/j.ijrmms.2020.104598_bib10) 1998; 35
Economides (10.1016/j.ijrmms.2020.104598_bib1) 2000
Lei (10.1016/j.ijrmms.2020.104598_bib16) 2017; 25
Obeysekara (10.1016/j.ijrmms.2020.104598_bib23) 2018; 103
Brixel (10.1016/j.ijrmms.2020.104598_bib61) 2020; 125
Horii (10.1016/j.ijrmms.2020.104598_bib9) 1985; 90
Pine (10.1016/j.ijrmms.2020.104598_bib4) 1984; 21
Rutqvist (10.1016/j.ijrmms.2020.104598_bib35) 2003; 11
Rutqvist (10.1016/j.ijrmms.2020.104598_bib57) 2013; 107
Lei (10.1016/j.ijrmms.2020.104598_bib27) 2015; 120
Guglielmi (10.1016/j.ijrmms.2020.104598_bib58) 2015; 348
Bažant (10.1016/j.ijrmms.2020.104598_bib39) 1983; 16
Scholz (10.1016/j.ijrmms.2020.104598_bib43) 2019
References_xml – year: 2007
  ident: bib29
  article-title: Fundamentals of Rock Mechanics
– volume: 15
  start-page: 535
  year: 1998
  end-page: 548
  ident: bib13
  article-title: Numerical study of critical behaviour of deformation and permeability of fractured rock masses
  publication-title: Mar Petrol Geol
– volume: 54
  start-page: 34
  year: 2001
  end-page: 40
  ident: bib42
  article-title: The physics of earthquakes
  publication-title: Phys Today
– volume: 34
  start-page: 511
  year: 1986
  end-page: 526
  ident: bib45
  article-title: The failure of brittle porous solids under compressive stress states
  publication-title: Acta Metall
– start-page: 299
  year: 2004
  end-page: 314
  ident: bib14
  article-title: Stress controlled localisation of deformation and fluid flow in fractured rocks
  publication-title: The Initiation, Propagation, and Arrest of Joints and Other Fractures
– volume: 412
  start-page: 897
  year: 2001
  end-page: 900
  ident: bib46
  article-title: Universal behaviour in compressive failure of brittle materials
  publication-title: Nature
– volume: 81
  year: 2014
  ident: bib3
  article-title: Why fracking works
  publication-title: J Appl Mech Trans ASME
– volume: 72
  start-page: 242
  year: 2014
  end-page: 260
  ident: bib5
  article-title: An investigation of stimulation mechanisms in Enhanced Geothermal Systems
  publication-title: Int J Rock Mech Min Sci
– volume: 16
  start-page: 155
  year: 1983
  end-page: 177
  ident: bib39
  article-title: Crack band theory for fracture of concrete
  publication-title: Mater Construcción
– volume: 110–111
  start-page: 60
  year: 2012
  end-page: 78
  ident: bib30
  article-title: Numerical aspects of the crack band approach
  publication-title: Comput Struct
– volume: 6
  start-page: 574
  year: 2014
  end-page: 581
  ident: bib41
  article-title: Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method
  publication-title: J Rock Mech Geotech Eng
– volume: 62
  start-page: 43
  year: 2011
  end-page: 54
  ident: bib38
  article-title: Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model
  publication-title: Environ Earth Sci
– year: 2019
  ident: bib43
  article-title: The Mechanics of Earthquakes and Faulting
– volume: 90
  start-page: 3105
  year: 1985
  ident: bib9
  article-title: Compression-induced microcrack growth in brittle solids: axial splitting and shear failure
  publication-title: J Geophys Res
– volume: 76
  start-page: 93
  year: 2018
  end-page: 105
  ident: bib22
  article-title: Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation
  publication-title: Geothermics
– volume: 28
  start-page: 93
  year: 1982
  end-page: 101
  ident: bib50
  article-title: Percolation and fracture
  publication-title: Phys Earth Planet In
– year: May 2020
  ident: bib18
  article-title: Interactive roles of geometrical distribution and geomechanical deformation of fracture networks in fluid flow through fractured geological media
  publication-title: J Rock Mech Geotech Eng
– volume: 70
  start-page: 507
  year: 2014
  end-page: 523
  ident: bib15
  article-title: Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock
  publication-title: Int J Rock Mech Min Sci
– volume: 107
  start-page: 31
  year: 2013
  end-page: 44
  ident: bib57
  article-title: Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs
  publication-title: J Petrol Sci Eng
– volume: 152
  start-page: 361
  year: 2017
  end-page: 374
  ident: bib24
  article-title: Study of hydraulic fracturing processes in shale formations with complex geological settings
  publication-title: J Petrol Sci Eng
– volume: 348
  start-page: 1224
  year: 2015
  end-page: 1226
  ident: bib58
  article-title: Seismicity triggered by fluid injection-induced aseismic slip
  publication-title: Science
– volume: 47
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib7
  article-title: Changing flow paths caused by simultaneous shearing and fracturing observed during hydraulic stimulation
  publication-title: Geophys Res Lett
– start-page: 1
  year: 2017
  end-page: 55
  ident: bib60
  article-title: The seismo-hydro-mechanical behaviour during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in-situ stimulation experiment
  publication-title: Solid Earth Discuss
– volume: 18
  start-page: 931
  year: 1991
  end-page: 934
  ident: bib51
  article-title: Percolation networks and fluid transport in the crust
  publication-title: Geophys Res Lett
– volume: 5
  start-page: 1273
  year: 1969
  end-page: 1289
  ident: bib47
  article-title: Anisotropic permeability of fractured media
  publication-title: Water Resour Res
– volume: 85
  start-page: 151
  year: 2017
  end-page: 176
  ident: bib26
  article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
  publication-title: Comput Geotech
– volume: 41
  start-page: 1191
  year: 2004
  end-page: 1210
  ident: bib34
  article-title: Stress-dependent permeability of fractured rock masses: a numerical study
  publication-title: Int J Rock Mech Min Sci
– year: 2005
  ident: bib64
  article-title: Advanced Reservoir Engineering
– volume: 189
  start-page: 1781
  year: 2012
  end-page: 1796
  ident: bib40
  article-title: Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks
  publication-title: Geophys J Int
– volume: 33
  start-page: 1749
  year: 1981
  end-page: 1766
  ident: bib48
  article-title: Transient pressure analysis for fractured wells
  publication-title: J Petrol Technol
– year: 2020
  ident: bib53
  article-title: Fluid Flow in Sparse Fracture Systems, Prior to and after Fault Slip (PhD Thesis)
– volume: 35
  start-page: 863
  year: 1998
  end-page: 888
  ident: bib10
  article-title: Fracture coalescence in rock-type materials under uniaxial and biaxial compression
  publication-title: Int J Rock Mech Min Sci
– volume: 25
  start-page: 923
  year: 1997
  ident: bib49
  article-title: Mechanical controls on the spatial density of opening-mode fracture networks
  publication-title: Geology
– volume: 308
  start-page: 49
  year: 2008
  end-page: 72
  ident: bib31
  article-title: Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling
  publication-title: Am J Sci
– volume: 11
  start-page: 7
  year: 2003
  end-page: 40
  ident: bib35
  article-title: The role of hydromechanical coupling in fractured rock engineering
  publication-title: Hydrogeol J
– volume: 45
  start-page: 3994
  year: 2018
  end-page: 4006
  ident: bib56
  article-title: Correlation between fracture network properties and stress variability in geological media
  publication-title: Geophys Res Lett
– volume: 67
  start-page: 212
  year: 2002
  end-page: 220
  ident: bib52
  article-title: Characterization of fluid transport properties of reservoirs using induced microseismicity
  publication-title: Geophysics
– volume: 5.5
  year: 2019
  ident: bib44
  publication-title: COMSOL Multiphysics Reference Manual
– volume: 5
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib63
  article-title: Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments
  publication-title: Sci Data
– volume: 21
  start-page: 249
  year: 1984
  end-page: 263
  ident: bib4
  article-title: Downward migration of shearing in jointed rock during hydraulic injections
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
– volume: 74
  start-page: 135
  year: 2018
  end-page: 149
  ident: bib8
  article-title: Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation
  publication-title: Geothermics
– year: 2013
  ident: bib20
  article-title: Discrete Fracture Network Modeling of Hydraulic Stimulation: Coupling Flow and Geomechanics
– volume: 1
  start-page: 34
  year: 2015
  end-page: 47
  ident: bib17
  article-title: Polyaxial stress-induced variable aperture model for persistent 3D fracture networks
  publication-title: Geomech Energy Environ
– volume: 25
  start-page: 2251
  year: 2017
  end-page: 2262
  ident: bib16
  article-title: Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer
  publication-title: Hydrogeol J
– volume: 228
  start-page: 197
  year: 2017
  end-page: 213
  ident: bib21
  article-title: The effects of nearby fractures on hydraulically induced fracture propagation and permeability changes
  publication-title: Eng Geol
– volume: 125
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib62
  article-title: Tracking fluid flow in shallow crustal fault zones: 2. Insights from cross‐hole forced flow experiments in damage zones
  publication-title: J Geophys Res Solid Earth
– volume: 341
  start-page: 1225942
  year: 2013
  ident: bib2
  article-title: Injection-induced earthquakes
  publication-title: Science
– volume: 16
  start-page: 1016
  year: 1980
  end-page: 1024
  ident: bib36
  article-title: Validity of cubic law for fluid flow in a deformable rock fracture
  publication-title: Water Resour Res
– volume: 122
  start-page: 8285
  year: 2017
  end-page: 8304
  ident: bib59
  article-title: Aseismic motions drive a sparse seismicity during fluid injections into a fractured zone in a carbonate reservoir
  publication-title: J Geophys Res Solid Earth
– volume: 125
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib61
  article-title: Tracking fluid flow in shallow crustal fault zones: 1. Insights from single‐hole permeability estimates
  publication-title: J Geophys Res Solid Earth
– year: 2000
  ident: bib1
  article-title: Reservoir Stimulation
– volume: 43
  start-page: 1551
  year: 2016
  end-page: 1558
  ident: bib55
  article-title: Tectonic interpretation of the connectivity of a multiscale fracture system in limestone
  publication-title: Geophys Res Lett
– volume: 39
  start-page: 429
  year: 2002
  end-page: 442
  ident: bib32
  article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock
  publication-title: Int J Rock Mech Min Sci
– volume: 100
  start-page: 5975
  year: 1995
  end-page: 5990
  ident: bib12
  article-title: Coalescence of fractures under shear stresses in experiments
  publication-title: J Geophys Res Solid Earth
– volume: 68
  start-page: 3709
  year: 1963
  end-page: 3713
  ident: bib11
  article-title: A note on brittle crack growth in compression
  publication-title: J Geophys Res
– volume: 37
  start-page: 2278
  year: 2013
  end-page: 2300
  ident: bib19
  article-title: An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks
  publication-title: Int J Numer Anal Methods GeoMech
– volume: 103
  start-page: 229
  year: 2018
  end-page: 241
  ident: bib23
  article-title: Modelling stress-dependent single and multi-phase flows in fractured porous media based on an immersed-body method with mesh adaptivity
  publication-title: Comput Geotech
– volume: 120
  start-page: 4784
  year: 2015
  end-page: 4807
  ident: bib27
  article-title: A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics
  publication-title: J Geophys Res Solid Earth
– start-page: 195
  year: 2018
  end-page: 217
  ident: bib28
  article-title: Continuum modeling of hydraulic fracturing in complex fractured rock masses
  publication-title: Hydraulic Fracture Modeling
– volume: 79
  start-page: 70
  year: 2015
  end-page: 85
  ident: bib25
  article-title: A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects
  publication-title: Int J Rock Mech Min Sci
– volume: 11
  start-page: 627
  year: 2020
  end-page: 655
  ident: bib54
  article-title: Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock
  publication-title: Solid Earth
– volume: 116
  start-page: 615
  year: 1978
  end-page: 626
  ident: bib33
  article-title: Friction of rocks
  publication-title: Pure Appl Geophys
– volume: 110
  start-page: 1
  year: 2005
  end-page: 19
  ident: bib6
  article-title: Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations
  publication-title: J Geophys Res Solid Earth
– volume: 34
  start-page: 2551
  year: 1998
  end-page: 2560
  ident: bib37
  article-title: Determination of fracture storativity in hard rocks using high-pressure injection testing
  publication-title: Water Resour Res
– year: 2000
  ident: 10.1016/j.ijrmms.2020.104598_bib1
– volume: 62
  start-page: 43
  issue: 1
  year: 2011
  ident: 10.1016/j.ijrmms.2020.104598_bib38
  article-title: Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-010-0494-6
– volume: 6
  start-page: 574
  issue: 6
  year: 2014
  ident: 10.1016/j.ijrmms.2020.104598_bib41
  article-title: Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.10.003
– volume: 37
  start-page: 2278
  issue: 14
  year: 2013
  ident: 10.1016/j.ijrmms.2020.104598_bib19
  article-title: An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks
  publication-title: Int J Numer Anal Methods GeoMech
  doi: 10.1002/nag.2135
– volume: 120
  start-page: 4784
  year: 2015
  ident: 10.1016/j.ijrmms.2020.104598_bib27
  article-title: A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2014JB011736
– start-page: 195
  year: 2018
  ident: 10.1016/j.ijrmms.2020.104598_bib28
  article-title: Continuum modeling of hydraulic fracturing in complex fractured rock masses
– volume: 16
  start-page: 155
  issue: 3
  year: 1983
  ident: 10.1016/j.ijrmms.2020.104598_bib39
  article-title: Crack band theory for fracture of concrete
  publication-title: Mater Construcción
  doi: 10.1007/BF02486267
– volume: 90
  start-page: 3105
  year: 1985
  ident: 10.1016/j.ijrmms.2020.104598_bib9
  article-title: Compression-induced microcrack growth in brittle solids: axial splitting and shear failure
  publication-title: J Geophys Res
  doi: 10.1029/JB090iB04p03105
– volume: 74
  start-page: 135
  issue: March
  year: 2018
  ident: 10.1016/j.ijrmms.2020.104598_bib8
  article-title: Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.03.003
– volume: 116
  start-page: 615
  issue: 4-5
  year: 1978
  ident: 10.1016/j.ijrmms.2020.104598_bib33
  article-title: Friction of rocks
  publication-title: Pure Appl Geophys
  doi: 10.1007/BF00876528
– volume: 125
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.ijrmms.2020.104598_bib61
  article-title: Tracking fluid flow in shallow crustal fault zones: 1. Insights from single‐hole permeability estimates
  publication-title: J Geophys Res Solid Earth
– volume: 68
  start-page: 3709
  issue: 12
  year: 1963
  ident: 10.1016/j.ijrmms.2020.104598_bib11
  article-title: A note on brittle crack growth in compression
  publication-title: J Geophys Res
  doi: 10.1029/JZ068i012p03709
– volume: 76
  start-page: 93
  issue: October 2017
  year: 2018
  ident: 10.1016/j.ijrmms.2020.104598_bib22
  article-title: Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.07.002
– volume: 18
  start-page: 931
  issue: 5
  year: 1991
  ident: 10.1016/j.ijrmms.2020.104598_bib51
  article-title: Percolation networks and fluid transport in the crust
  publication-title: Geophys Res Lett
  doi: 10.1029/91GL00951
– volume: 11
  start-page: 7
  issue: 1
  year: 2003
  ident: 10.1016/j.ijrmms.2020.104598_bib35
  article-title: The role of hydromechanical coupling in fractured rock engineering
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-002-0241-5
– volume: 228
  start-page: 197
  issue: May
  year: 2017
  ident: 10.1016/j.ijrmms.2020.104598_bib21
  article-title: The effects of nearby fractures on hydraulically induced fracture propagation and permeability changes
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.08.011
– volume: 67
  start-page: 212
  issue: 1
  year: 2002
  ident: 10.1016/j.ijrmms.2020.104598_bib52
  article-title: Characterization of fluid transport properties of reservoirs using induced microseismicity
  publication-title: Geophysics
  doi: 10.1190/1.1451597
– volume: 15
  start-page: 535
  year: 1998
  ident: 10.1016/j.ijrmms.2020.104598_bib13
  article-title: Numerical study of critical behaviour of deformation and permeability of fractured rock masses
  publication-title: Mar Petrol Geol
  doi: 10.1016/S0264-8172(98)00030-0
– volume: 70
  start-page: 507
  year: 2014
  ident: 10.1016/j.ijrmms.2020.104598_bib15
  article-title: Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.06.001
– volume: 100
  start-page: 5975
  issue: B4
  year: 1995
  ident: 10.1016/j.ijrmms.2020.104598_bib12
  article-title: Coalescence of fractures under shear stresses in experiments
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/95JB00040
– volume: 39
  start-page: 429
  issue: 4
  year: 2002
  ident: 10.1016/j.ijrmms.2020.104598_bib32
  article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(02)00022-9
– start-page: 299
  year: 2004
  ident: 10.1016/j.ijrmms.2020.104598_bib14
  article-title: Stress controlled localisation of deformation and fluid flow in fractured rocks
– volume: 33
  start-page: 1749
  year: 1981
  ident: 10.1016/j.ijrmms.2020.104598_bib48
  article-title: Transient pressure analysis for fractured wells
  publication-title: J Petrol Technol
  doi: 10.2118/7490-PA
– volume: 107
  start-page: 31
  year: 2013
  ident: 10.1016/j.ijrmms.2020.104598_bib57
  article-title: Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2013.04.023
– year: 2020
  ident: 10.1016/j.ijrmms.2020.104598_bib18
  article-title: Interactive roles of geometrical distribution and geomechanical deformation of fracture networks in fluid flow through fractured geological media
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2019.12.014
– volume: 45
  start-page: 3994
  issue: 9
  year: 2018
  ident: 10.1016/j.ijrmms.2020.104598_bib56
  article-title: Correlation between fracture network properties and stress variability in geological media
  publication-title: Geophys Res Lett
  doi: 10.1002/2018GL077548
– volume: 47
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.ijrmms.2020.104598_bib7
  article-title: Changing flow paths caused by simultaneous shearing and fracturing observed during hydraulic stimulation
  publication-title: Geophys Res Lett
  doi: 10.1029/2019GL086135
– volume: 81
  issue: 10
  year: 2014
  ident: 10.1016/j.ijrmms.2020.104598_bib3
  article-title: Why fracking works
  publication-title: J Appl Mech Trans ASME
  doi: 10.1115/1.4028192
– volume: 25
  start-page: 2251
  issue: 8
  year: 2017
  ident: 10.1016/j.ijrmms.2020.104598_bib16
  article-title: Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-017-1624-y
– volume: 308
  start-page: 49
  issue: 1
  year: 2008
  ident: 10.1016/j.ijrmms.2020.104598_bib31
  article-title: Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling
  publication-title: Am J Sci
  doi: 10.2475/01.2008.02
– volume: 1
  start-page: 34
  year: 2015
  ident: 10.1016/j.ijrmms.2020.104598_bib17
  article-title: Polyaxial stress-induced variable aperture model for persistent 3D fracture networks
  publication-title: Geomech Energy Environ
  doi: 10.1016/j.gete.2015.03.003
– volume: 54
  start-page: 34
  issue: 6
  year: 2001
  ident: 10.1016/j.ijrmms.2020.104598_bib42
  article-title: The physics of earthquakes
  publication-title: Phys Today
  doi: 10.1063/1.1387590
– volume: 5
  start-page: 1273
  issue: 6
  year: 1969
  ident: 10.1016/j.ijrmms.2020.104598_bib47
  article-title: Anisotropic permeability of fractured media
  publication-title: Water Resour Res
  doi: 10.1029/WR005i006p01273
– volume: 110
  start-page: 1
  issue: B4
  year: 2005
  ident: 10.1016/j.ijrmms.2020.104598_bib6
  article-title: Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations
  publication-title: J Geophys Res Solid Earth
– start-page: 1
  year: 2017
  ident: 10.1016/j.ijrmms.2020.104598_bib60
  article-title: The seismo-hydro-mechanical behaviour during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in-situ stimulation experiment
  publication-title: Solid Earth Discuss
– year: 2019
  ident: 10.1016/j.ijrmms.2020.104598_bib43
– volume: 72
  start-page: 242
  year: 2014
  ident: 10.1016/j.ijrmms.2020.104598_bib5
  article-title: An investigation of stimulation mechanisms in Enhanced Geothermal Systems
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.07.011
– volume: 25
  start-page: 923
  issue: 10
  year: 1997
  ident: 10.1016/j.ijrmms.2020.104598_bib49
  article-title: Mechanical controls on the spatial density of opening-mode fracture networks
  publication-title: Geology
  doi: 10.1130/0091-7613(1997)025<0923:MCOTSD>2.3.CO;2
– volume: 125
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.ijrmms.2020.104598_bib62
  article-title: Tracking fluid flow in shallow crustal fault zones: 2. Insights from cross‐hole forced flow experiments in damage zones
  publication-title: J Geophys Res Solid Earth
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijrmms.2020.104598_bib63
  article-title: Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.269
– volume: 85
  start-page: 151
  year: 2017
  ident: 10.1016/j.ijrmms.2020.104598_bib26
  article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.12.024
– volume: 11
  start-page: 627
  issue: 2
  year: 2020
  ident: 10.1016/j.ijrmms.2020.104598_bib54
  article-title: Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock
  publication-title: Solid Earth
  doi: 10.5194/se-11-627-2020
– volume: 21
  start-page: 249
  issue: 5
  year: 1984
  ident: 10.1016/j.ijrmms.2020.104598_bib4
  article-title: Downward migration of shearing in jointed rock during hydraulic injections
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(84)92681-0
– year: 2007
  ident: 10.1016/j.ijrmms.2020.104598_bib29
– volume: 28
  start-page: 93
  issue: 2
  year: 1982
  ident: 10.1016/j.ijrmms.2020.104598_bib50
  article-title: Percolation and fracture
  publication-title: Phys Earth Planet In
  doi: 10.1016/0031-9201(82)90075-9
– volume: 189
  start-page: 1781
  issue: 3
  year: 2012
  ident: 10.1016/j.ijrmms.2020.104598_bib40
  article-title: Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2012.05460.x
– volume: 34
  start-page: 511
  issue: 3
  year: 1986
  ident: 10.1016/j.ijrmms.2020.104598_bib45
  article-title: The failure of brittle porous solids under compressive stress states
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(86)90087-8
– volume: 348
  start-page: 1224
  issue: 6240
  year: 2015
  ident: 10.1016/j.ijrmms.2020.104598_bib58
  article-title: Seismicity triggered by fluid injection-induced aseismic slip
  publication-title: Science
  doi: 10.1126/science.aab0476
– volume: 103
  start-page: 229
  issue: June
  year: 2018
  ident: 10.1016/j.ijrmms.2020.104598_bib23
  article-title: Modelling stress-dependent single and multi-phase flows in fractured porous media based on an immersed-body method with mesh adaptivity
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.07.009
– year: 2020
  ident: 10.1016/j.ijrmms.2020.104598_bib53
– volume: 5.5
  year: 2019
  ident: 10.1016/j.ijrmms.2020.104598_bib44
– volume: 122
  start-page: 8285
  issue: 10
  year: 2017
  ident: 10.1016/j.ijrmms.2020.104598_bib59
  article-title: Aseismic motions drive a sparse seismicity during fluid injections into a fractured zone in a carbonate reservoir
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB014535
– year: 2005
  ident: 10.1016/j.ijrmms.2020.104598_bib64
– volume: 110–111
  start-page: 60
  year: 2012
  ident: 10.1016/j.ijrmms.2020.104598_bib30
  article-title: Numerical aspects of the crack band approach
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.06.006
– volume: 341
  start-page: 1225942
  issue: 6142
  year: 2013
  ident: 10.1016/j.ijrmms.2020.104598_bib2
  article-title: Injection-induced earthquakes
  publication-title: Science
  doi: 10.1126/science.1225942
– volume: 35
  start-page: 863
  issue: 7
  year: 1998
  ident: 10.1016/j.ijrmms.2020.104598_bib10
  article-title: Fracture coalescence in rock-type materials under uniaxial and biaxial compression
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S0148-9062(98)00005-9
– volume: 16
  start-page: 1016
  issue: 6
  year: 1980
  ident: 10.1016/j.ijrmms.2020.104598_bib36
  article-title: Validity of cubic law for fluid flow in a deformable rock fracture
  publication-title: Water Resour Res
  doi: 10.1029/WR016i006p01016
– volume: 412
  start-page: 897
  issue: 6850
  year: 2001
  ident: 10.1016/j.ijrmms.2020.104598_bib46
  article-title: Universal behaviour in compressive failure of brittle materials
  publication-title: Nature
  doi: 10.1038/35091045
– volume: 41
  start-page: 1191
  year: 2004
  ident: 10.1016/j.ijrmms.2020.104598_bib34
  article-title: Stress-dependent permeability of fractured rock masses: a numerical study
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2004.05.005
– year: 2013
  ident: 10.1016/j.ijrmms.2020.104598_bib20
– volume: 152
  start-page: 361
  issue: July 2016
  year: 2017
  ident: 10.1016/j.ijrmms.2020.104598_bib24
  article-title: Study of hydraulic fracturing processes in shale formations with complex geological settings
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2017.03.011
– volume: 34
  start-page: 2551
  issue: 10
  year: 1998
  ident: 10.1016/j.ijrmms.2020.104598_bib37
  article-title: Determination of fracture storativity in hard rocks using high-pressure injection testing
  publication-title: Water Resour Res
  doi: 10.1029/98WR01863
– volume: 79
  start-page: 70
  year: 2015
  ident: 10.1016/j.ijrmms.2020.104598_bib25
  article-title: A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2015.08.011
– volume: 43
  start-page: 1551
  issue: 4
  year: 2016
  ident: 10.1016/j.ijrmms.2020.104598_bib55
  article-title: Tectonic interpretation of the connectivity of a multiscale fracture system in limestone
  publication-title: Geophys Res Lett
  doi: 10.1002/2015GL067277
SSID ssj0006267
Score 2.5984225
Snippet We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages,...
We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of preexisting fractures, propagation of new damages,...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104598
SubjectTerms Computational fluid dynamics
Connectivity
Crack propagation
Earthquake damage
Enhanced geothermal systems
Evolution
Finite element method
Fluid flow
Fluid injection
Fracture network
Fractures
Geoengineering
Geomechanics
Hydraulic stimulation
Hydro-mechanical coupling
Induced seismicity
Injection
Mathematical models
Mechanical properties
Numerical models
Percolation
Permeability
Pore pressure
Pore water pressure
Porous media
Rock masses
Rocks
Seismic activity
Seismicity
Title Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks
URI https://dx.doi.org/10.1016/j.ijrmms.2020.104598
https://www.proquest.com/docview/3084367013
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439836
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCdGmHok_UbRJwaLeoFimJokYjD7gtkKVNkY2g-Ejl2HJgW0OX_Ib85NyRkusORYCuAikRuiPvI_ndd4R89FwYltcssSzFoxupk4pzmVgjGNOiMNoEguyFmF7mX6-Kqz1yMuTCIK2yX_vjmh5W6_7JuP-b49umGX9HghYTacXxlgACK2aw5yV6-ee7PzQPAOzlkHuFrYf0ucDxamarxQJFu3m47Cwq-a_wtAs_dyVFQxg6f0Ge9_iRTuIQX5I9174iz3ZUBV-Te6xvFqS2qZ93jaVNOwuEqzaBDTiY0lKPuVHdylFMa4iHssfU6gUsLvQaNuabX8d07Zr1ojGA0unSmCDjZKBDa6lBcoyJZSdozByGb9CgEarn89_b11sK4fFm_YZcnp_9OJkmfeGFROd5ukkq711ao05UWdelZkxwL7SsuAb4VmbaOc196mGye1OZugZUUDBTsVyXGbPQ4i3Zb5ete0eoBkdImUWmGIoBWJlJW8hUhCtUl-sRyYb_rUyvSo7FMeZqoJ_NVLSSQiupaKURSba9bqMqxyPty8GU6i_vUhA4Hul5MFhe9bN7rbJU5ih8x7IR-RS9YTsMlOs-bX5O1HJ1rbpOAeCTmXj_3wP4QJ5ypNEEovgB2d-sOncIOGhTHwVHPyJPJl--TS8eAPWPCtk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swED2kztB2KNIv1G2acmi3CBYpiaJGI23gNKmXJkU2giKpRK4tB7Y19F_0J5dHSoYzBAG6CjyJ0B3vjuS7dwCfK8Y1TUsaGRrj0Y1QUcGYiIzmlCqeaaU9QHbKJ1fp9-vseg9O-loYhFV2vj_4dO-tuyej7m-O7up69BMBWpTHBcNbAhdYn8A-slNlA9gfn51PpluH7HL2vC-_QoG-gs7DvOrZarFA3m7m7zuzQjwUoXYz0F1WUR-JTg_gRZdCknGY5UvYs80reL5DLPga_mKLM8-2Tap5WxtSNzOPuWoitwd32jSkwvKodmUJVjaEc9ljYtTC-Rdy4_bmm9tjsrb1elFrl6iTpdaeyUk7gcYQjfgYHTpPkFA87L5BPE2oms__bF9viIuQv9dv4Or02-XJJOp6L0QqTeNNVFSVjUukisrLMleUclZxJQqmXAaXJ8paxaq4cuu90oUuS5cYZFQXNFV5Qo0b8RYGzbKx74AoZwsxNQgWQz4AIxJhMhFzf4tqUzWEpP_fUnfE5NgfYy57BNpMBi1J1JIMWhpCtJW6C8Qcj4zPe1XKewYmXex4RPKw17zsFvhaJrFIkfuOJkP4EqxhOw1k7P5a_xrL5epGtq10OZ9I-Pv_nsAneDq5_HEhL86m5x_gGUNUjceNH8Jgs2rtR5cWbcqjzuz_AQftDYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+fluid+injection-induced+fracture+activation%2C+damage+growth%2C+seismicity+occurrence+and+connectivity+change+in+naturally+fractured+rocks&rft.jtitle=International+journal+of+rock+mechanics+and+mining+sciences+%28Oxford%2C+England+%3A+1997%29&rft.au=Lei%2C+Qinghua&rft.au=Doonechaly%2C+Nima+Gholizadeh&rft.au=Tsang%2C+Chin-Fu&rft.date=2021-02-01&rft.issn=1873-4545&rft.volume=138&rft_id=info:doi/10.1016%2Fj.ijrmms.2020.104598&rft.externalDocID=oai_DiVA_org_uu_439836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-1609&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-1609&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-1609&client=summon