Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks
We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented b...
Saved in:
Published in | International journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 138; p. 104598 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1365-1609 1873-4545 1873-4545 |
DOI | 10.1016/j.ijrmms.2020.104598 |
Cover
Loading…
Abstract | We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented by a discrete fracture network. The stress and strain fields of the fractured porous media are solved in the framework of a finite element model, which mimics the damage evolution in rock matrix based on an elasto-brittle failure criterion and simulates the normal/shear displacement of natural discontinuities based on a non-linear constitutive law. The coupled geomechanics and fluid flow processes in the fractured rock are computed honouring essential coupling mechanisms such as pore pressure-induced shear slip of pre-existing fractures, poro-elastic response of rock matrix, and stress-dependent permeability/storativity of both fractures and rocks. We use the numerical model developed to investigate the hydro-mechanical behaviour of two cases of deeply buried fractured rock in response to high-pressure fluid injection, one case with fracture density just below the percolation threshold and the other above the threshold. We observe a strong control of natural fracture network connectivity on the damage emergence, seismicity occurrence and connectivity change in the rock mass subject to hydraulic stimulation. We also highlight the strong poro-elastic effect that tends to drive heterogeneous connectivity evolution of fracture systems during fluid injection. The results of our research and insights obtained have important implications for injection-related geoengineering activities such as the development of enhanced geothermal systems and extraction of hydrocarbon resources. |
---|---|
AbstractList | We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented by a discrete fracture network. The stress and strain fields of the fractured porous media are solved in the framework of a finite element model, which mimics the damage evolution in rock matrix based on an elasto-brittle failure criterion and simulates the normal/shear displacement of natural discontinuities based on a non-linear constitutive law. The coupled geomechanics and fluid flow processes in the fractured rock are computed honouring essential coupling mechanisms such as pore pressure-induced shear slip of pre-existing fractures, poro-elastic response of rock matrix, and stress-dependent permeability/storativity of both fractures and rocks. We use the numerical model developed to investigate the hydro-mechanical behaviour of two cases of deeply buried fractured rock in response to high-pressure fluid injection, one case with fracture density just below the percolation threshold and the other above the threshold. We observe a strong control of natural fracture network connectivity on the damage emergence, seismicity occurrence and connectivity change in the rock mass subject to hydraulic stimulation. We also highlight the strong poro-elastic effect that tends to drive heterogeneous connectivity evolution of fracture systems during fluid injection. The results of our research and insights obtained have important implications for injection-related geoengineering activities such as the development of enhanced geothermal systems and extraction of hydrocarbon resources. We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of preexisting fractures, propagation of new damages, development of seismic activities, and alteration of network connectivity in naturally fractured rocks. The natural fracture system is represented by a discrete fracture network. The stress and strain fields of the fractured porous media are solved in the framework of a finite element model, which mimics the damage evolution in rock matrix based on an elasto-brittle failure criterion and simulates the normal/shear displacement of natural discontinuities based on a non-linear constitutive law. The coupled geomechanics and fluid flow processes in the fractured rock are computed honouring essential coupling mechanisms such as pore pressure-induced shear slip of pre-existing fractures, poro-elastic response of rock matrix, and stress-dependent permeability/storativity of both fractures and rocks. We use the numerical model developed to investigate the hydro-mechanical behaviour of two cases of deeply buried fractured rock in response to high-pressure fluid injection, one case with fracture density just below the percolation threshold and the other above the threshold. We observe a strong control of natural fracture network connectivity on the damage emergence, seismicity occurrence and connectivity change in the rock mass subject to hydraulic stimulation. We also highlight the strong poro-elastic effect that tends to drive heterogeneous connectivity evolution of fracture systems during fluid injection. The results of our research and insights obtained have important implications for injection-related geoengineering activities such as the development of enhanced geothermal systems and extraction of hydrocarbon resources. |
ArticleNumber | 104598 |
Author | Lei, Qinghua Tsang, Chin-Fu Gholizadeh Doonechaly, Nima |
Author_xml | – sequence: 1 givenname: Qinghua orcidid: 0000-0002-3990-4707 surname: Lei fullname: Lei, Qinghua email: qinghua.lei@erdw.ethz.ch organization: Department of Earth Sciences, ETH Zürich, Zürich, Switzerland – sequence: 2 givenname: Nima surname: Gholizadeh Doonechaly fullname: Gholizadeh Doonechaly, Nima organization: Department of Earth Sciences, ETH Zürich, Zürich, Switzerland – sequence: 3 givenname: Chin-Fu surname: Tsang fullname: Tsang, Chin-Fu organization: Department of Earth Sciences, Uppsala University, Uppsala, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439836$$DView record from Swedish Publication Index |
BookMark | eNqFkc1u1DAUhSNUJNrCG7CwxHYytWPHSVggVQXaSkVsgK3l-Gd6Q2IPdjzVvEUfGYdUXbCA1bV8z3dkn3NWnDjvTFG8JXhLMOEXwxaGME1xW-FquWJ1174oTknb0JLVrD7JZ8rrknDcvSrOYhwwxrzizWnx-MVrM47gdsiOCTQCNxg1g3clOJ2U0cgGqeYUDMoDDnLZbZCWk9wZtAv-Yb7foGggTqBgPiKvVArBOJUBp5Hyzi2Gh2Wn7qXLFDjkZLaU43h8ttcoePUzvi5eWjlG8-ZpnhffP3_6dnVT3n29vr26vCslY3guO2sN7qs2_7HvG0kIryyXbVdJRnhDpTGystjWTWtVp_q-YrgmqiNMNpTorDgvNqtvfDD71It9gEmGo_ASxEf4cSl82ImUBKNdS3mWv1vl--B_JRNnMfgUXH6hoLhllDeY0Kxiq0oFH2Mw9tmWYLFUJQaxViWWqsRaVcbe_4XlJP8EPQcJ4__gDytscloHMEFEBUv8GkIOXmgP_zb4Da1SuAE |
CitedBy_id | crossref_primary_10_1007_s00603_023_03257_8 crossref_primary_10_1021_acs_energyfuels_3c04914 crossref_primary_10_1016_j_compgeo_2024_106909 crossref_primary_10_1016_j_ijrmms_2023_105389 crossref_primary_10_1007_s13202_023_01665_8 crossref_primary_10_1063_5_0216111 crossref_primary_10_32604_cmes_2024_051832 crossref_primary_10_3390_su16198482 crossref_primary_10_1080_15567036_2024_2418434 crossref_primary_10_1063_5_0097025 crossref_primary_10_1007_s00603_021_02520_0 crossref_primary_10_1016_j_apenergy_2025_125650 crossref_primary_10_1016_j_gete_2021_100277 crossref_primary_10_3390_pr12081767 crossref_primary_10_1002_ese3_1532 crossref_primary_10_1111_1755_6724_15050 crossref_primary_10_1007_s12205_024_0133_5 crossref_primary_10_1016_j_compgeo_2022_105057 crossref_primary_10_1016_j_compgeo_2021_104120 crossref_primary_10_1016_j_compgeo_2023_105418 crossref_primary_10_1016_j_compgeo_2022_104801 crossref_primary_10_1016_j_compgeo_2023_105972 crossref_primary_10_1016_j_compgeo_2021_104489 crossref_primary_10_1016_j_ijrmms_2024_105939 crossref_primary_10_2118_217442_PA crossref_primary_10_1007_s11242_023_02043_y crossref_primary_10_1155_2021_6235441 crossref_primary_10_1080_10916466_2024_2415518 crossref_primary_10_1016_j_ijrmms_2023_105532 crossref_primary_10_1007_s00603_024_04024_z crossref_primary_10_2118_223121_PA crossref_primary_10_1098_rsta_2023_0420 crossref_primary_10_1016_j_ijrmms_2022_105075 crossref_primary_10_1007_s12205_021_0660_2 crossref_primary_10_1016_j_jclepro_2023_140298 crossref_primary_10_1007_s10409_023_23246_x crossref_primary_10_1016_j_ijrmms_2022_105229 crossref_primary_10_1007_s40948_022_00516_w crossref_primary_10_1093_gji_ggac295 crossref_primary_10_1016_j_compgeo_2021_104357 crossref_primary_10_1021_acsomega_3c07215 crossref_primary_10_1007_s10064_022_02605_2 crossref_primary_10_1016_j_undsp_2024_03_009 crossref_primary_10_1007_s00603_023_03676_7 crossref_primary_10_1016_j_geothermics_2024_103070 crossref_primary_10_1016_j_geothermics_2024_103114 crossref_primary_10_1016_j_compgeo_2022_104707 crossref_primary_10_1142_S0218348X2550001X crossref_primary_10_1007_s40948_021_00259_0 crossref_primary_10_1063_5_0189020 crossref_primary_10_1016_j_tust_2023_105393 crossref_primary_10_1016_j_engfracmech_2023_109274 crossref_primary_10_1016_j_jrmge_2024_08_017 crossref_primary_10_1016_j_applthermaleng_2024_122350 crossref_primary_10_1016_j_compgeo_2024_106520 crossref_primary_10_1016_j_ijhydene_2024_12_011 crossref_primary_10_3390_en18010142 crossref_primary_10_1016_j_compgeo_2023_105470 crossref_primary_10_1007_s00603_022_03098_x crossref_primary_10_1007_s00603_022_03109_x crossref_primary_10_1007_s00603_024_04217_6 crossref_primary_10_1016_j_petsci_2024_05_007 crossref_primary_10_1016_j_enconman_2024_119284 crossref_primary_10_1007_s40948_024_00790_w crossref_primary_10_1016_j_geoen_2024_212664 crossref_primary_10_1016_j_ijrmms_2022_105212 crossref_primary_10_1016_j_ijmecsci_2023_108171 crossref_primary_10_1029_2021GL095199 crossref_primary_10_1038_s41598_023_41745_7 crossref_primary_10_1016_j_compgeo_2024_106698 crossref_primary_10_1016_j_compgeo_2024_106650 crossref_primary_10_3389_feart_2022_853030 crossref_primary_10_2113_2022_3824011 crossref_primary_10_1016_j_compgeo_2023_105823 crossref_primary_10_1016_j_enggeo_2021_106169 crossref_primary_10_1186_s40517_025_00338_5 crossref_primary_10_1007_s40948_024_00760_2 crossref_primary_10_1029_2022JF006885 crossref_primary_10_1029_2024JH000159 |
Cites_doi | 10.1007/s12665-010-0494-6 10.1016/j.jrmge.2014.10.003 10.1002/nag.2135 10.1002/2014JB011736 10.1007/BF02486267 10.1029/JB090iB04p03105 10.1016/j.geothermics.2018.03.003 10.1007/BF00876528 10.1029/JZ068i012p03709 10.1016/j.geothermics.2018.07.002 10.1029/91GL00951 10.1007/s10040-002-0241-5 10.1016/j.enggeo.2017.08.011 10.1190/1.1451597 10.1016/S0264-8172(98)00030-0 10.1016/j.ijrmms.2014.06.001 10.1029/95JB00040 10.1016/S1365-1609(02)00022-9 10.2118/7490-PA 10.1016/j.petrol.2013.04.023 10.1016/j.jrmge.2019.12.014 10.1002/2018GL077548 10.1029/2019GL086135 10.1115/1.4028192 10.1007/s10040-017-1624-y 10.2475/01.2008.02 10.1016/j.gete.2015.03.003 10.1063/1.1387590 10.1029/WR005i006p01273 10.1016/j.ijrmms.2014.07.011 10.1130/0091-7613(1997)025<0923:MCOTSD>2.3.CO;2 10.1038/sdata.2018.269 10.1016/j.compgeo.2016.12.024 10.5194/se-11-627-2020 10.1016/0148-9062(84)92681-0 10.1016/0031-9201(82)90075-9 10.1111/j.1365-246X.2012.05460.x 10.1016/0001-6160(86)90087-8 10.1126/science.aab0476 10.1016/j.compgeo.2018.07.009 10.1002/2017JB014535 10.1016/j.compstruc.2012.06.006 10.1126/science.1225942 10.1016/S0148-9062(98)00005-9 10.1029/WR016i006p01016 10.1038/35091045 10.1016/j.ijrmms.2004.05.005 10.1016/j.petrol.2017.03.011 10.1029/98WR01863 10.1016/j.ijrmms.2015.08.011 10.1002/2015GL067277 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright Elsevier BV Feb 2021 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright Elsevier BV Feb 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7UA 8FD C1K FR3 KR7 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1016/j.ijrmms.2020.104598 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4545 |
ExternalDocumentID | oai_DiVA_org_uu_439836 10_1016_j_ijrmms_2020_104598 S1365160920309643 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSE SST SSZ T5K ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7UA 8FD C1K EFKBS FR3 KR7 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-a440t-9ffe0b28187bb7a1162f6a892a41673aeea2f0f578fc9cbb24051c914a731d673 |
IEDL.DBID | .~1 |
ISSN | 1365-1609 1873-4545 |
IngestDate | Thu Aug 21 06:45:36 EDT 2025 Wed Aug 13 09:20:38 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Tue Jul 01 01:54:06 EDT 2025 Fri Feb 23 02:45:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Induced seismicity Hydraulic stimulation Fracture network Hydro-mechanical coupling |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a440t-9ffe0b28187bb7a1162f6a892a41673aeea2f0f578fc9cbb24051c914a731d673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3990-4707 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1365160920309643 |
PQID | 3084367013 |
PQPubID | 2045458 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_439836 proquest_journals_3084367013 crossref_primary_10_1016_j_ijrmms_2020_104598 crossref_citationtrail_10_1016_j_ijrmms_2020_104598 elsevier_sciencedirect_doi_10_1016_j_ijrmms_2020_104598 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Shapiro, Rothert, Rath, Rindschwentner (bib52) 2002; 67 Rutqvist, Stephansson (bib35) 2003; 11 Economides, Nolte (bib1) 2000 Norbeck, McClure, Horne (bib8) 2018; 74 Pine, Batchelor (bib4) 1984; 21 Sanderson, Zhang (bib14) 2004 Lei, Wang, Min, Rutqvist (bib18) May 2020 Byerlee (bib33) 1978; 116 Zhang, Sanderson (bib13) 1998; 15 Scholz (bib43) 2019 Evans, Genter, Sausse (bib6) 2005; 110 Jaeger, Cook, Zimmerman (bib29) 2007 Rutqvist, Wu, Tsang, Bodvarsson (bib32) 2002; 39 Bobet, Einstein (bib10) 1998; 35 Bažant, Salviato, Chau, Visnawathan, Zubelewicz (bib3) 2014; 81 Zhao, Lisjak, Mahabadi, Liu, Grasselli (bib41) 2014; 6 Bažant, Oh (bib39) 1983; 16 Duboeuf, De Barros, Cappa, Guglielmi, Deschamps, Seguy (bib59) 2017; 122 Fu, Johnson, Carrigan (bib19) 2013; 37 Figueiredo, Tsang, Rutqvist, Niemi (bib25) 2015; 79 Shen, Stephansson, Einstein, Ghahreman (bib12) 1995; 100 Cinco-Ley, Samaniego (bib48) 1981; 33 Lei, Latham, Tsang (bib26) 2017; 85 Snow (bib47) 1969; 5 Kanamori, Brodsky (bib42) 2001; 54 Lei, Gao (bib56) 2018; 45 Lei, Wang, Xiang, Latham (bib16) 2017; 25 Renshaw, Schulson (bib46) 2001; 412 Jirásek, Bauer (bib30) 2012; 110–111 Villiger, Gischig, Doetsch (bib54) 2020; 11 Ellsworth (bib2) 2013; 341 Krietsch, Doetsch, Dutler (bib63) 2018; 5 Krietsch, Villiger, Doetsch (bib7) 2020; 47 Brixel (bib53) 2020 Renshaw (bib49) 1997; 25 Guglielmi, Cappa, Avouac, Henry, Elsworth (bib58) 2015; 348 Ahmed, McKinney (bib64) 2005 Obeysekara, Lei, Salinas (bib23) 2018; 103 Brixel, Klepikova, Lei (bib62) 2020; 125 McClure, Horne (bib20) 2013 Gueguen, David, Gavrilenko (bib51) 1991; 18 Lei, Latham, Xiang, Tsang, Lang, Guo (bib15) 2014; 70 Rutqvist, Figueiredo, Hu, Tsang (bib28) 2018 Rutqvist, Noorishad, Tsang, Stephansson (bib37) 1998; 34 Kamali, Ghassemi (bib22) 2018; 76 Rutqvist, Rinaldi, Cappa, Moridis (bib57) 2013; 107 Lei, Latham, Xiang, Tsang (bib17) 2015; 1 Figueiredo, Tsang, Rutqvist, Niemi (bib24) 2017; 152 Figueiredo, Tsang, Rutqvist, Niemi (bib21) 2017; 228 Horii, Nemat-Nasser (bib9) 1985; 90 Witherspoon, Wang, Iwai, Gale (bib36) 1980; 16 Lei, Latham, Tsang, Xiang, Lang (bib27) 2015; 120 Comsol (bib44) 2019; 5.5 Brace, Bombolakis (bib11) 1963; 68 Zhu, Wei (bib38) 2011; 62 Tang, Liang, Zhang (bib31) 2008; 308 Xu, Tang, Zhao, Li, Heap (bib40) 2012; 189 Lei, Wang (bib55) 2016; 43 Min, Rutqvist, Tsang, Jing (bib34) 2004; 41 Amann, Gischig, Evans (bib60) 2017 Sammis, Ashby (bib45) 1986; 34 Brixel, Klepikova, Jalali (bib61) 2020; 125 McClure, Horne (bib5) 2014; 72 Chelidze (bib50) 1982; 28 Renshaw (10.1016/j.ijrmms.2020.104598_bib46) 2001; 412 Figueiredo (10.1016/j.ijrmms.2020.104598_bib25) 2015; 79 Lei (10.1016/j.ijrmms.2020.104598_bib15) 2014; 70 Lei (10.1016/j.ijrmms.2020.104598_bib56) 2018; 45 Jaeger (10.1016/j.ijrmms.2020.104598_bib29) 2007 Xu (10.1016/j.ijrmms.2020.104598_bib40) 2012; 189 Figueiredo (10.1016/j.ijrmms.2020.104598_bib24) 2017; 152 Norbeck (10.1016/j.ijrmms.2020.104598_bib8) 2018; 74 Lei (10.1016/j.ijrmms.2020.104598_bib26) 2017; 85 Sammis (10.1016/j.ijrmms.2020.104598_bib45) 1986; 34 Fu (10.1016/j.ijrmms.2020.104598_bib19) 2013; 37 Byerlee (10.1016/j.ijrmms.2020.104598_bib33) 1978; 116 Brixel (10.1016/j.ijrmms.2020.104598_bib62) 2020; 125 Krietsch (10.1016/j.ijrmms.2020.104598_bib7) 2020; 47 Kamali (10.1016/j.ijrmms.2020.104598_bib22) 2018; 76 Evans (10.1016/j.ijrmms.2020.104598_bib6) 2005; 110 Min (10.1016/j.ijrmms.2020.104598_bib34) 2004; 41 Tang (10.1016/j.ijrmms.2020.104598_bib31) 2008; 308 Lei (10.1016/j.ijrmms.2020.104598_bib17) 2015; 1 Gueguen (10.1016/j.ijrmms.2020.104598_bib51) 1991; 18 Villiger (10.1016/j.ijrmms.2020.104598_bib54) 2020; 11 Cinco-Ley (10.1016/j.ijrmms.2020.104598_bib48) 1981; 33 Duboeuf (10.1016/j.ijrmms.2020.104598_bib59) 2017; 122 Snow (10.1016/j.ijrmms.2020.104598_bib47) 1969; 5 Kanamori (10.1016/j.ijrmms.2020.104598_bib42) 2001; 54 Zhao (10.1016/j.ijrmms.2020.104598_bib41) 2014; 6 Chelidze (10.1016/j.ijrmms.2020.104598_bib50) 1982; 28 Zhang (10.1016/j.ijrmms.2020.104598_bib13) 1998; 15 Witherspoon (10.1016/j.ijrmms.2020.104598_bib36) 1980; 16 Shapiro (10.1016/j.ijrmms.2020.104598_bib52) 2002; 67 Brace (10.1016/j.ijrmms.2020.104598_bib11) 1963; 68 Lei (10.1016/j.ijrmms.2020.104598_bib18) 2020 Jirásek (10.1016/j.ijrmms.2020.104598_bib30) 2012; 110–111 Zhu (10.1016/j.ijrmms.2020.104598_bib38) 2011; 62 Rutqvist (10.1016/j.ijrmms.2020.104598_bib32) 2002; 39 Amann (10.1016/j.ijrmms.2020.104598_bib60) 2017 Krietsch (10.1016/j.ijrmms.2020.104598_bib63) 2018; 5 Comsol (10.1016/j.ijrmms.2020.104598_bib44) 2019; 5.5 Ellsworth (10.1016/j.ijrmms.2020.104598_bib2) 2013; 341 Shen (10.1016/j.ijrmms.2020.104598_bib12) 1995; 100 Renshaw (10.1016/j.ijrmms.2020.104598_bib49) 1997; 25 Lei (10.1016/j.ijrmms.2020.104598_bib55) 2016; 43 McClure (10.1016/j.ijrmms.2020.104598_bib20) 2013 Rutqvist (10.1016/j.ijrmms.2020.104598_bib28) 2018 Figueiredo (10.1016/j.ijrmms.2020.104598_bib21) 2017; 228 Ahmed (10.1016/j.ijrmms.2020.104598_bib64) 2005 Bažant (10.1016/j.ijrmms.2020.104598_bib3) 2014; 81 Brixel (10.1016/j.ijrmms.2020.104598_bib53) 2020 Sanderson (10.1016/j.ijrmms.2020.104598_bib14) 2004 Rutqvist (10.1016/j.ijrmms.2020.104598_bib37) 1998; 34 McClure (10.1016/j.ijrmms.2020.104598_bib5) 2014; 72 Bobet (10.1016/j.ijrmms.2020.104598_bib10) 1998; 35 Economides (10.1016/j.ijrmms.2020.104598_bib1) 2000 Lei (10.1016/j.ijrmms.2020.104598_bib16) 2017; 25 Obeysekara (10.1016/j.ijrmms.2020.104598_bib23) 2018; 103 Brixel (10.1016/j.ijrmms.2020.104598_bib61) 2020; 125 Horii (10.1016/j.ijrmms.2020.104598_bib9) 1985; 90 Pine (10.1016/j.ijrmms.2020.104598_bib4) 1984; 21 Rutqvist (10.1016/j.ijrmms.2020.104598_bib35) 2003; 11 Rutqvist (10.1016/j.ijrmms.2020.104598_bib57) 2013; 107 Lei (10.1016/j.ijrmms.2020.104598_bib27) 2015; 120 Guglielmi (10.1016/j.ijrmms.2020.104598_bib58) 2015; 348 Bažant (10.1016/j.ijrmms.2020.104598_bib39) 1983; 16 Scholz (10.1016/j.ijrmms.2020.104598_bib43) 2019 |
References_xml | – year: 2007 ident: bib29 article-title: Fundamentals of Rock Mechanics – volume: 15 start-page: 535 year: 1998 end-page: 548 ident: bib13 article-title: Numerical study of critical behaviour of deformation and permeability of fractured rock masses publication-title: Mar Petrol Geol – volume: 54 start-page: 34 year: 2001 end-page: 40 ident: bib42 article-title: The physics of earthquakes publication-title: Phys Today – volume: 34 start-page: 511 year: 1986 end-page: 526 ident: bib45 article-title: The failure of brittle porous solids under compressive stress states publication-title: Acta Metall – start-page: 299 year: 2004 end-page: 314 ident: bib14 article-title: Stress controlled localisation of deformation and fluid flow in fractured rocks publication-title: The Initiation, Propagation, and Arrest of Joints and Other Fractures – volume: 412 start-page: 897 year: 2001 end-page: 900 ident: bib46 article-title: Universal behaviour in compressive failure of brittle materials publication-title: Nature – volume: 81 year: 2014 ident: bib3 article-title: Why fracking works publication-title: J Appl Mech Trans ASME – volume: 72 start-page: 242 year: 2014 end-page: 260 ident: bib5 article-title: An investigation of stimulation mechanisms in Enhanced Geothermal Systems publication-title: Int J Rock Mech Min Sci – volume: 16 start-page: 155 year: 1983 end-page: 177 ident: bib39 article-title: Crack band theory for fracture of concrete publication-title: Mater Construcción – volume: 110–111 start-page: 60 year: 2012 end-page: 78 ident: bib30 article-title: Numerical aspects of the crack band approach publication-title: Comput Struct – volume: 6 start-page: 574 year: 2014 end-page: 581 ident: bib41 article-title: Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method publication-title: J Rock Mech Geotech Eng – volume: 62 start-page: 43 year: 2011 end-page: 54 ident: bib38 article-title: Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model publication-title: Environ Earth Sci – year: 2019 ident: bib43 article-title: The Mechanics of Earthquakes and Faulting – volume: 90 start-page: 3105 year: 1985 ident: bib9 article-title: Compression-induced microcrack growth in brittle solids: axial splitting and shear failure publication-title: J Geophys Res – volume: 76 start-page: 93 year: 2018 end-page: 105 ident: bib22 article-title: Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation publication-title: Geothermics – volume: 28 start-page: 93 year: 1982 end-page: 101 ident: bib50 article-title: Percolation and fracture publication-title: Phys Earth Planet In – year: May 2020 ident: bib18 article-title: Interactive roles of geometrical distribution and geomechanical deformation of fracture networks in fluid flow through fractured geological media publication-title: J Rock Mech Geotech Eng – volume: 70 start-page: 507 year: 2014 end-page: 523 ident: bib15 article-title: Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock publication-title: Int J Rock Mech Min Sci – volume: 107 start-page: 31 year: 2013 end-page: 44 ident: bib57 article-title: Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs publication-title: J Petrol Sci Eng – volume: 152 start-page: 361 year: 2017 end-page: 374 ident: bib24 article-title: Study of hydraulic fracturing processes in shale formations with complex geological settings publication-title: J Petrol Sci Eng – volume: 348 start-page: 1224 year: 2015 end-page: 1226 ident: bib58 article-title: Seismicity triggered by fluid injection-induced aseismic slip publication-title: Science – volume: 47 start-page: 1 year: 2020 end-page: 10 ident: bib7 article-title: Changing flow paths caused by simultaneous shearing and fracturing observed during hydraulic stimulation publication-title: Geophys Res Lett – start-page: 1 year: 2017 end-page: 55 ident: bib60 article-title: The seismo-hydro-mechanical behaviour during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in-situ stimulation experiment publication-title: Solid Earth Discuss – volume: 18 start-page: 931 year: 1991 end-page: 934 ident: bib51 article-title: Percolation networks and fluid transport in the crust publication-title: Geophys Res Lett – volume: 5 start-page: 1273 year: 1969 end-page: 1289 ident: bib47 article-title: Anisotropic permeability of fractured media publication-title: Water Resour Res – volume: 85 start-page: 151 year: 2017 end-page: 176 ident: bib26 article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks publication-title: Comput Geotech – volume: 41 start-page: 1191 year: 2004 end-page: 1210 ident: bib34 article-title: Stress-dependent permeability of fractured rock masses: a numerical study publication-title: Int J Rock Mech Min Sci – year: 2005 ident: bib64 article-title: Advanced Reservoir Engineering – volume: 189 start-page: 1781 year: 2012 end-page: 1796 ident: bib40 article-title: Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks publication-title: Geophys J Int – volume: 33 start-page: 1749 year: 1981 end-page: 1766 ident: bib48 article-title: Transient pressure analysis for fractured wells publication-title: J Petrol Technol – year: 2020 ident: bib53 article-title: Fluid Flow in Sparse Fracture Systems, Prior to and after Fault Slip (PhD Thesis) – volume: 35 start-page: 863 year: 1998 end-page: 888 ident: bib10 article-title: Fracture coalescence in rock-type materials under uniaxial and biaxial compression publication-title: Int J Rock Mech Min Sci – volume: 25 start-page: 923 year: 1997 ident: bib49 article-title: Mechanical controls on the spatial density of opening-mode fracture networks publication-title: Geology – volume: 308 start-page: 49 year: 2008 end-page: 72 ident: bib31 article-title: Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling publication-title: Am J Sci – volume: 11 start-page: 7 year: 2003 end-page: 40 ident: bib35 article-title: The role of hydromechanical coupling in fractured rock engineering publication-title: Hydrogeol J – volume: 45 start-page: 3994 year: 2018 end-page: 4006 ident: bib56 article-title: Correlation between fracture network properties and stress variability in geological media publication-title: Geophys Res Lett – volume: 67 start-page: 212 year: 2002 end-page: 220 ident: bib52 article-title: Characterization of fluid transport properties of reservoirs using induced microseismicity publication-title: Geophysics – volume: 5.5 year: 2019 ident: bib44 publication-title: COMSOL Multiphysics Reference Manual – volume: 5 start-page: 1 year: 2018 end-page: 12 ident: bib63 article-title: Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments publication-title: Sci Data – volume: 21 start-page: 249 year: 1984 end-page: 263 ident: bib4 article-title: Downward migration of shearing in jointed rock during hydraulic injections publication-title: Int J Rock Mech Min Sci Geomech Abstr – volume: 74 start-page: 135 year: 2018 end-page: 149 ident: bib8 article-title: Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation publication-title: Geothermics – year: 2013 ident: bib20 article-title: Discrete Fracture Network Modeling of Hydraulic Stimulation: Coupling Flow and Geomechanics – volume: 1 start-page: 34 year: 2015 end-page: 47 ident: bib17 article-title: Polyaxial stress-induced variable aperture model for persistent 3D fracture networks publication-title: Geomech Energy Environ – volume: 25 start-page: 2251 year: 2017 end-page: 2262 ident: bib16 article-title: Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer publication-title: Hydrogeol J – volume: 228 start-page: 197 year: 2017 end-page: 213 ident: bib21 article-title: The effects of nearby fractures on hydraulically induced fracture propagation and permeability changes publication-title: Eng Geol – volume: 125 start-page: 1 year: 2020 end-page: 21 ident: bib62 article-title: Tracking fluid flow in shallow crustal fault zones: 2. Insights from cross‐hole forced flow experiments in damage zones publication-title: J Geophys Res Solid Earth – volume: 341 start-page: 1225942 year: 2013 ident: bib2 article-title: Injection-induced earthquakes publication-title: Science – volume: 16 start-page: 1016 year: 1980 end-page: 1024 ident: bib36 article-title: Validity of cubic law for fluid flow in a deformable rock fracture publication-title: Water Resour Res – volume: 122 start-page: 8285 year: 2017 end-page: 8304 ident: bib59 article-title: Aseismic motions drive a sparse seismicity during fluid injections into a fractured zone in a carbonate reservoir publication-title: J Geophys Res Solid Earth – volume: 125 start-page: 1 year: 2020 end-page: 18 ident: bib61 article-title: Tracking fluid flow in shallow crustal fault zones: 1. Insights from single‐hole permeability estimates publication-title: J Geophys Res Solid Earth – year: 2000 ident: bib1 article-title: Reservoir Stimulation – volume: 43 start-page: 1551 year: 2016 end-page: 1558 ident: bib55 article-title: Tectonic interpretation of the connectivity of a multiscale fracture system in limestone publication-title: Geophys Res Lett – volume: 39 start-page: 429 year: 2002 end-page: 442 ident: bib32 article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock publication-title: Int J Rock Mech Min Sci – volume: 100 start-page: 5975 year: 1995 end-page: 5990 ident: bib12 article-title: Coalescence of fractures under shear stresses in experiments publication-title: J Geophys Res Solid Earth – volume: 68 start-page: 3709 year: 1963 end-page: 3713 ident: bib11 article-title: A note on brittle crack growth in compression publication-title: J Geophys Res – volume: 37 start-page: 2278 year: 2013 end-page: 2300 ident: bib19 article-title: An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks publication-title: Int J Numer Anal Methods GeoMech – volume: 103 start-page: 229 year: 2018 end-page: 241 ident: bib23 article-title: Modelling stress-dependent single and multi-phase flows in fractured porous media based on an immersed-body method with mesh adaptivity publication-title: Comput Geotech – volume: 120 start-page: 4784 year: 2015 end-page: 4807 ident: bib27 article-title: A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics publication-title: J Geophys Res Solid Earth – start-page: 195 year: 2018 end-page: 217 ident: bib28 article-title: Continuum modeling of hydraulic fracturing in complex fractured rock masses publication-title: Hydraulic Fracture Modeling – volume: 79 start-page: 70 year: 2015 end-page: 85 ident: bib25 article-title: A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects publication-title: Int J Rock Mech Min Sci – volume: 11 start-page: 627 year: 2020 end-page: 655 ident: bib54 article-title: Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock publication-title: Solid Earth – volume: 116 start-page: 615 year: 1978 end-page: 626 ident: bib33 article-title: Friction of rocks publication-title: Pure Appl Geophys – volume: 110 start-page: 1 year: 2005 end-page: 19 ident: bib6 article-title: Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations publication-title: J Geophys Res Solid Earth – volume: 34 start-page: 2551 year: 1998 end-page: 2560 ident: bib37 article-title: Determination of fracture storativity in hard rocks using high-pressure injection testing publication-title: Water Resour Res – year: 2000 ident: 10.1016/j.ijrmms.2020.104598_bib1 – volume: 62 start-page: 43 issue: 1 year: 2011 ident: 10.1016/j.ijrmms.2020.104598_bib38 article-title: Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0494-6 – volume: 6 start-page: 574 issue: 6 year: 2014 ident: 10.1016/j.ijrmms.2020.104598_bib41 article-title: Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.10.003 – volume: 37 start-page: 2278 issue: 14 year: 2013 ident: 10.1016/j.ijrmms.2020.104598_bib19 article-title: An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks publication-title: Int J Numer Anal Methods GeoMech doi: 10.1002/nag.2135 – volume: 120 start-page: 4784 year: 2015 ident: 10.1016/j.ijrmms.2020.104598_bib27 article-title: A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics publication-title: J Geophys Res Solid Earth doi: 10.1002/2014JB011736 – start-page: 195 year: 2018 ident: 10.1016/j.ijrmms.2020.104598_bib28 article-title: Continuum modeling of hydraulic fracturing in complex fractured rock masses – volume: 16 start-page: 155 issue: 3 year: 1983 ident: 10.1016/j.ijrmms.2020.104598_bib39 article-title: Crack band theory for fracture of concrete publication-title: Mater Construcción doi: 10.1007/BF02486267 – volume: 90 start-page: 3105 year: 1985 ident: 10.1016/j.ijrmms.2020.104598_bib9 article-title: Compression-induced microcrack growth in brittle solids: axial splitting and shear failure publication-title: J Geophys Res doi: 10.1029/JB090iB04p03105 – volume: 74 start-page: 135 issue: March year: 2018 ident: 10.1016/j.ijrmms.2020.104598_bib8 article-title: Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation publication-title: Geothermics doi: 10.1016/j.geothermics.2018.03.003 – volume: 116 start-page: 615 issue: 4-5 year: 1978 ident: 10.1016/j.ijrmms.2020.104598_bib33 article-title: Friction of rocks publication-title: Pure Appl Geophys doi: 10.1007/BF00876528 – volume: 125 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.ijrmms.2020.104598_bib61 article-title: Tracking fluid flow in shallow crustal fault zones: 1. Insights from single‐hole permeability estimates publication-title: J Geophys Res Solid Earth – volume: 68 start-page: 3709 issue: 12 year: 1963 ident: 10.1016/j.ijrmms.2020.104598_bib11 article-title: A note on brittle crack growth in compression publication-title: J Geophys Res doi: 10.1029/JZ068i012p03709 – volume: 76 start-page: 93 issue: October 2017 year: 2018 ident: 10.1016/j.ijrmms.2020.104598_bib22 article-title: Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation publication-title: Geothermics doi: 10.1016/j.geothermics.2018.07.002 – volume: 18 start-page: 931 issue: 5 year: 1991 ident: 10.1016/j.ijrmms.2020.104598_bib51 article-title: Percolation networks and fluid transport in the crust publication-title: Geophys Res Lett doi: 10.1029/91GL00951 – volume: 11 start-page: 7 issue: 1 year: 2003 ident: 10.1016/j.ijrmms.2020.104598_bib35 article-title: The role of hydromechanical coupling in fractured rock engineering publication-title: Hydrogeol J doi: 10.1007/s10040-002-0241-5 – volume: 228 start-page: 197 issue: May year: 2017 ident: 10.1016/j.ijrmms.2020.104598_bib21 article-title: The effects of nearby fractures on hydraulically induced fracture propagation and permeability changes publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.08.011 – volume: 67 start-page: 212 issue: 1 year: 2002 ident: 10.1016/j.ijrmms.2020.104598_bib52 article-title: Characterization of fluid transport properties of reservoirs using induced microseismicity publication-title: Geophysics doi: 10.1190/1.1451597 – volume: 15 start-page: 535 year: 1998 ident: 10.1016/j.ijrmms.2020.104598_bib13 article-title: Numerical study of critical behaviour of deformation and permeability of fractured rock masses publication-title: Mar Petrol Geol doi: 10.1016/S0264-8172(98)00030-0 – volume: 70 start-page: 507 year: 2014 ident: 10.1016/j.ijrmms.2020.104598_bib15 article-title: Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.06.001 – volume: 100 start-page: 5975 issue: B4 year: 1995 ident: 10.1016/j.ijrmms.2020.104598_bib12 article-title: Coalescence of fractures under shear stresses in experiments publication-title: J Geophys Res Solid Earth doi: 10.1029/95JB00040 – volume: 39 start-page: 429 issue: 4 year: 2002 ident: 10.1016/j.ijrmms.2020.104598_bib32 article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(02)00022-9 – start-page: 299 year: 2004 ident: 10.1016/j.ijrmms.2020.104598_bib14 article-title: Stress controlled localisation of deformation and fluid flow in fractured rocks – volume: 33 start-page: 1749 year: 1981 ident: 10.1016/j.ijrmms.2020.104598_bib48 article-title: Transient pressure analysis for fractured wells publication-title: J Petrol Technol doi: 10.2118/7490-PA – volume: 107 start-page: 31 year: 2013 ident: 10.1016/j.ijrmms.2020.104598_bib57 article-title: Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2013.04.023 – year: 2020 ident: 10.1016/j.ijrmms.2020.104598_bib18 article-title: Interactive roles of geometrical distribution and geomechanical deformation of fracture networks in fluid flow through fractured geological media publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2019.12.014 – volume: 45 start-page: 3994 issue: 9 year: 2018 ident: 10.1016/j.ijrmms.2020.104598_bib56 article-title: Correlation between fracture network properties and stress variability in geological media publication-title: Geophys Res Lett doi: 10.1002/2018GL077548 – volume: 47 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.ijrmms.2020.104598_bib7 article-title: Changing flow paths caused by simultaneous shearing and fracturing observed during hydraulic stimulation publication-title: Geophys Res Lett doi: 10.1029/2019GL086135 – volume: 81 issue: 10 year: 2014 ident: 10.1016/j.ijrmms.2020.104598_bib3 article-title: Why fracking works publication-title: J Appl Mech Trans ASME doi: 10.1115/1.4028192 – volume: 25 start-page: 2251 issue: 8 year: 2017 ident: 10.1016/j.ijrmms.2020.104598_bib16 article-title: Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer publication-title: Hydrogeol J doi: 10.1007/s10040-017-1624-y – volume: 308 start-page: 49 issue: 1 year: 2008 ident: 10.1016/j.ijrmms.2020.104598_bib31 article-title: Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling publication-title: Am J Sci doi: 10.2475/01.2008.02 – volume: 1 start-page: 34 year: 2015 ident: 10.1016/j.ijrmms.2020.104598_bib17 article-title: Polyaxial stress-induced variable aperture model for persistent 3D fracture networks publication-title: Geomech Energy Environ doi: 10.1016/j.gete.2015.03.003 – volume: 54 start-page: 34 issue: 6 year: 2001 ident: 10.1016/j.ijrmms.2020.104598_bib42 article-title: The physics of earthquakes publication-title: Phys Today doi: 10.1063/1.1387590 – volume: 5 start-page: 1273 issue: 6 year: 1969 ident: 10.1016/j.ijrmms.2020.104598_bib47 article-title: Anisotropic permeability of fractured media publication-title: Water Resour Res doi: 10.1029/WR005i006p01273 – volume: 110 start-page: 1 issue: B4 year: 2005 ident: 10.1016/j.ijrmms.2020.104598_bib6 article-title: Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations publication-title: J Geophys Res Solid Earth – start-page: 1 year: 2017 ident: 10.1016/j.ijrmms.2020.104598_bib60 article-title: The seismo-hydro-mechanical behaviour during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in-situ stimulation experiment publication-title: Solid Earth Discuss – year: 2019 ident: 10.1016/j.ijrmms.2020.104598_bib43 – volume: 72 start-page: 242 year: 2014 ident: 10.1016/j.ijrmms.2020.104598_bib5 article-title: An investigation of stimulation mechanisms in Enhanced Geothermal Systems publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.07.011 – volume: 25 start-page: 923 issue: 10 year: 1997 ident: 10.1016/j.ijrmms.2020.104598_bib49 article-title: Mechanical controls on the spatial density of opening-mode fracture networks publication-title: Geology doi: 10.1130/0091-7613(1997)025<0923:MCOTSD>2.3.CO;2 – volume: 125 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.ijrmms.2020.104598_bib62 article-title: Tracking fluid flow in shallow crustal fault zones: 2. Insights from cross‐hole forced flow experiments in damage zones publication-title: J Geophys Res Solid Earth – volume: 5 start-page: 1 year: 2018 ident: 10.1016/j.ijrmms.2020.104598_bib63 article-title: Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments publication-title: Sci Data doi: 10.1038/sdata.2018.269 – volume: 85 start-page: 151 year: 2017 ident: 10.1016/j.ijrmms.2020.104598_bib26 article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.12.024 – volume: 11 start-page: 627 issue: 2 year: 2020 ident: 10.1016/j.ijrmms.2020.104598_bib54 article-title: Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock publication-title: Solid Earth doi: 10.5194/se-11-627-2020 – volume: 21 start-page: 249 issue: 5 year: 1984 ident: 10.1016/j.ijrmms.2020.104598_bib4 article-title: Downward migration of shearing in jointed rock during hydraulic injections publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(84)92681-0 – year: 2007 ident: 10.1016/j.ijrmms.2020.104598_bib29 – volume: 28 start-page: 93 issue: 2 year: 1982 ident: 10.1016/j.ijrmms.2020.104598_bib50 article-title: Percolation and fracture publication-title: Phys Earth Planet In doi: 10.1016/0031-9201(82)90075-9 – volume: 189 start-page: 1781 issue: 3 year: 2012 ident: 10.1016/j.ijrmms.2020.104598_bib40 article-title: Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2012.05460.x – volume: 34 start-page: 511 issue: 3 year: 1986 ident: 10.1016/j.ijrmms.2020.104598_bib45 article-title: The failure of brittle porous solids under compressive stress states publication-title: Acta Metall doi: 10.1016/0001-6160(86)90087-8 – volume: 348 start-page: 1224 issue: 6240 year: 2015 ident: 10.1016/j.ijrmms.2020.104598_bib58 article-title: Seismicity triggered by fluid injection-induced aseismic slip publication-title: Science doi: 10.1126/science.aab0476 – volume: 103 start-page: 229 issue: June year: 2018 ident: 10.1016/j.ijrmms.2020.104598_bib23 article-title: Modelling stress-dependent single and multi-phase flows in fractured porous media based on an immersed-body method with mesh adaptivity publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.07.009 – year: 2020 ident: 10.1016/j.ijrmms.2020.104598_bib53 – volume: 5.5 year: 2019 ident: 10.1016/j.ijrmms.2020.104598_bib44 – volume: 122 start-page: 8285 issue: 10 year: 2017 ident: 10.1016/j.ijrmms.2020.104598_bib59 article-title: Aseismic motions drive a sparse seismicity during fluid injections into a fractured zone in a carbonate reservoir publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB014535 – year: 2005 ident: 10.1016/j.ijrmms.2020.104598_bib64 – volume: 110–111 start-page: 60 year: 2012 ident: 10.1016/j.ijrmms.2020.104598_bib30 article-title: Numerical aspects of the crack band approach publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.06.006 – volume: 341 start-page: 1225942 issue: 6142 year: 2013 ident: 10.1016/j.ijrmms.2020.104598_bib2 article-title: Injection-induced earthquakes publication-title: Science doi: 10.1126/science.1225942 – volume: 35 start-page: 863 issue: 7 year: 1998 ident: 10.1016/j.ijrmms.2020.104598_bib10 article-title: Fracture coalescence in rock-type materials under uniaxial and biaxial compression publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(98)00005-9 – volume: 16 start-page: 1016 issue: 6 year: 1980 ident: 10.1016/j.ijrmms.2020.104598_bib36 article-title: Validity of cubic law for fluid flow in a deformable rock fracture publication-title: Water Resour Res doi: 10.1029/WR016i006p01016 – volume: 412 start-page: 897 issue: 6850 year: 2001 ident: 10.1016/j.ijrmms.2020.104598_bib46 article-title: Universal behaviour in compressive failure of brittle materials publication-title: Nature doi: 10.1038/35091045 – volume: 41 start-page: 1191 year: 2004 ident: 10.1016/j.ijrmms.2020.104598_bib34 article-title: Stress-dependent permeability of fractured rock masses: a numerical study publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.05.005 – year: 2013 ident: 10.1016/j.ijrmms.2020.104598_bib20 – volume: 152 start-page: 361 issue: July 2016 year: 2017 ident: 10.1016/j.ijrmms.2020.104598_bib24 article-title: Study of hydraulic fracturing processes in shale formations with complex geological settings publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2017.03.011 – volume: 34 start-page: 2551 issue: 10 year: 1998 ident: 10.1016/j.ijrmms.2020.104598_bib37 article-title: Determination of fracture storativity in hard rocks using high-pressure injection testing publication-title: Water Resour Res doi: 10.1029/98WR01863 – volume: 79 start-page: 70 year: 2015 ident: 10.1016/j.ijrmms.2020.104598_bib25 article-title: A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2015.08.011 – volume: 43 start-page: 1551 issue: 4 year: 2016 ident: 10.1016/j.ijrmms.2020.104598_bib55 article-title: Tectonic interpretation of the connectivity of a multiscale fracture system in limestone publication-title: Geophys Res Lett doi: 10.1002/2015GL067277 |
SSID | ssj0006267 |
Score | 2.5984225 |
Snippet | We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of pre-existing fractures, propagation of new damages,... We develop a fully-coupled hydro-mechanical model to simulate fluid injection-induced activation of preexisting fractures, propagation of new damages,... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104598 |
SubjectTerms | Computational fluid dynamics Connectivity Crack propagation Earthquake damage Enhanced geothermal systems Evolution Finite element method Fluid flow Fluid injection Fracture network Fractures Geoengineering Geomechanics Hydraulic stimulation Hydro-mechanical coupling Induced seismicity Injection Mathematical models Mechanical properties Numerical models Percolation Permeability Pore pressure Pore water pressure Porous media Rock masses Rocks Seismic activity Seismicity |
Title | Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks |
URI | https://dx.doi.org/10.1016/j.ijrmms.2020.104598 https://www.proquest.com/docview/3084367013 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439836 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCdGmHok_UbRJwaLeoFimJokYjD7gtkKVNkY2g-Ejl2HJgW0OX_Ib85NyRkusORYCuAikRuiPvI_ndd4R89FwYltcssSzFoxupk4pzmVgjGNOiMNoEguyFmF7mX6-Kqz1yMuTCIK2yX_vjmh5W6_7JuP-b49umGX9HghYTacXxlgACK2aw5yV6-ee7PzQPAOzlkHuFrYf0ucDxamarxQJFu3m47Cwq-a_wtAs_dyVFQxg6f0Ge9_iRTuIQX5I9174iz3ZUBV-Te6xvFqS2qZ93jaVNOwuEqzaBDTiY0lKPuVHdylFMa4iHssfU6gUsLvQaNuabX8d07Zr1ojGA0unSmCDjZKBDa6lBcoyJZSdozByGb9CgEarn89_b11sK4fFm_YZcnp_9OJkmfeGFROd5ukkq711ao05UWdelZkxwL7SsuAb4VmbaOc196mGye1OZugZUUDBTsVyXGbPQ4i3Zb5ete0eoBkdImUWmGIoBWJlJW8hUhCtUl-sRyYb_rUyvSo7FMeZqoJ_NVLSSQiupaKURSba9bqMqxyPty8GU6i_vUhA4Hul5MFhe9bN7rbJU5ih8x7IR-RS9YTsMlOs-bX5O1HJ1rbpOAeCTmXj_3wP4QJ5ypNEEovgB2d-sOncIOGhTHwVHPyJPJl--TS8eAPWPCtk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swED2kztB2KNIv1G2acmi3CBYpiaJGI23gNKmXJkU2giKpRK4tB7Y19F_0J5dHSoYzBAG6CjyJ0B3vjuS7dwCfK8Y1TUsaGRrj0Y1QUcGYiIzmlCqeaaU9QHbKJ1fp9-vseg9O-loYhFV2vj_4dO-tuyej7m-O7up69BMBWpTHBcNbAhdYn8A-slNlA9gfn51PpluH7HL2vC-_QoG-gs7DvOrZarFA3m7m7zuzQjwUoXYz0F1WUR-JTg_gRZdCknGY5UvYs80reL5DLPga_mKLM8-2Tap5WxtSNzOPuWoitwd32jSkwvKodmUJVjaEc9ljYtTC-Rdy4_bmm9tjsrb1elFrl6iTpdaeyUk7gcYQjfgYHTpPkFA87L5BPE2oms__bF9viIuQv9dv4Or02-XJJOp6L0QqTeNNVFSVjUukisrLMleUclZxJQqmXAaXJ8paxaq4cuu90oUuS5cYZFQXNFV5Qo0b8RYGzbKx74AoZwsxNQgWQz4AIxJhMhFzf4tqUzWEpP_fUnfE5NgfYy57BNpMBi1J1JIMWhpCtJW6C8Qcj4zPe1XKewYmXex4RPKw17zsFvhaJrFIkfuOJkP4EqxhOw1k7P5a_xrL5epGtq10OZ9I-Pv_nsAneDq5_HEhL86m5x_gGUNUjceNH8Jgs2rtR5cWbcqjzuz_AQftDYo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+fluid+injection-induced+fracture+activation%2C+damage+growth%2C+seismicity+occurrence+and+connectivity+change+in+naturally+fractured+rocks&rft.jtitle=International+journal+of+rock+mechanics+and+mining+sciences+%28Oxford%2C+England+%3A+1997%29&rft.au=Lei%2C+Qinghua&rft.au=Doonechaly%2C+Nima+Gholizadeh&rft.au=Tsang%2C+Chin-Fu&rft.date=2021-02-01&rft.issn=1873-4545&rft.volume=138&rft_id=info:doi/10.1016%2Fj.ijrmms.2020.104598&rft.externalDocID=oai_DiVA_org_uu_439836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-1609&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-1609&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-1609&client=summon |