Integrated multicomponent solute geothermometry

•Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition amenable to numerical optimization.•Correct for near surface processes that mask deep chemical signatures.•Improves assessment of reservoir temper...

Full description

Saved in:
Bibliographic Details
Published inGeothermics Vol. 51; pp. 113 - 123
Main Authors Spycher, N., Peiffer, L., Sonnenthal, E.L., Saldi, G., Reed, M.H., Kennedy, B.M.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition amenable to numerical optimization.•Correct for near surface processes that mask deep chemical signatures.•Improves assessment of reservoir temperatures compared to interpretations using classical geothermometers. The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid–rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.
AbstractList The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid-rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.
•Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition amenable to numerical optimization.•Correct for near surface processes that mask deep chemical signatures.•Improves assessment of reservoir temperatures compared to interpretations using classical geothermometers. The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid–rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.
Author Sonnenthal, E.L.
Spycher, N.
Reed, M.H.
Kennedy, B.M.
Peiffer, L.
Saldi, G.
Author_xml – sequence: 1
  givenname: N.
  surname: Spycher
  fullname: Spycher, N.
  email: nspycher@lbl.gov
  organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
– sequence: 2
  givenname: L.
  orcidid: 0000-0002-2036-8449
  surname: Peiffer
  fullname: Peiffer, L.
  organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
– sequence: 3
  givenname: E.L.
  surname: Sonnenthal
  fullname: Sonnenthal, E.L.
  organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
– sequence: 4
  givenname: G.
  surname: Saldi
  fullname: Saldi, G.
  organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
– sequence: 5
  givenname: M.H.
  surname: Reed
  fullname: Reed, M.H.
  organization: Department of Geological Sciences, University of Oregon, Eugene, OR 97403, United States
– sequence: 6
  givenname: B.M.
  surname: Kennedy
  fullname: Kennedy, B.M.
  organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28481418$$DView record in Pascal Francis
BookMark eNqNkMtKAzEUQIMoWB__UBeCm6k3mTwmK5HiCwQ3ug5pckdTZiY1SQX_3ilVETe6SSA591w4B2R3iAMSckJhRoHK8-XsGWN5wdQHl2cMaD2-z4CyHTKhjdJVLZTcJROolaikALFPDnJeAoASCibk_G4o-JxsQT_t110JLvarccVQpjl264LTL3_ssaT3I7LX2i7j8ed9SJ6urx7nt9X9w83d_PK-spxDqYRsWb1o6MIpKwGdb7nmfjGegkPNXdvW3ioqHXMNgNOsRU2RWq-F9qh9fUjOtt5Viq9rzMX0ITvsOjtgXGdDpVJaa8bo36iQCoRkjI_o6Sdqs7Ndm-zgQjarFHqb3g1reEM5bUZObzmXYs4J22-Egtl0N0vzo7vZdN98jd3H2Ytfsy4UW0IcSrKh-5dhvjXgGPgtYDLZBRwc-pDQFeNj-IflAwNSqbE
CODEN GTMCAT
CitedBy_id crossref_primary_10_1186_s40517_018_0117_0
crossref_primary_10_3390_w15030422
crossref_primary_10_26599_JGSE_2017_9280017
crossref_primary_10_3390_w17060788
crossref_primary_10_1088_1755_1315_1383_1_012007
crossref_primary_10_1007_s12665_023_11241_2
crossref_primary_10_1016_j_proeps_2016_12_023
crossref_primary_10_1016_j_scitotenv_2017_09_269
crossref_primary_10_5194_gtes_4_11_2016
crossref_primary_10_1007_s00767_019_00429_8
crossref_primary_10_1016_j_geothermics_2023_102793
crossref_primary_10_1016_j_geothermics_2023_102673
crossref_primary_10_1016_j_scitotenv_2022_153606
crossref_primary_10_1002_ghg_1474
crossref_primary_10_3389_feart_2023_1138360
crossref_primary_10_1016_j_jhydrol_2024_131026
crossref_primary_10_1088_1755_1315_1159_1_012004
crossref_primary_10_1016_j_geothermics_2016_06_001
crossref_primary_10_1016_j_jsames_2019_102378
crossref_primary_10_1016_j_gexplo_2023_107294
crossref_primary_10_1016_j_jvolgeores_2018_07_007
crossref_primary_10_1016_j_geothermics_2020_101870
crossref_primary_10_1080_01496395_2025_2475120
crossref_primary_10_1016_j_jvolgeores_2016_10_010
crossref_primary_10_1016_j_geothermics_2022_102440
crossref_primary_10_1016_j_geothermics_2023_102661
crossref_primary_10_1016_j_geothermics_2025_103270
crossref_primary_10_1007_s12665_016_6298_6
crossref_primary_10_1016_j_apgeochem_2024_106222
crossref_primary_10_1016_j_apgeochem_2022_105376
crossref_primary_10_1016_j_apgeochem_2022_105256
crossref_primary_10_1016_j_gexplo_2020_106534
crossref_primary_10_1007_s10040_020_02222_x
crossref_primary_10_1016_j_apgeochem_2024_106077
crossref_primary_10_2113_2022_2576752
crossref_primary_10_3103_S0145875223050058
crossref_primary_10_1016_j_geothermics_2020_101805
crossref_primary_10_1016_j_geothermics_2017_04_003
crossref_primary_10_1016_j_acags_2023_100144
crossref_primary_10_1016_j_geothermics_2013_12_003
crossref_primary_10_1016_j_geothermics_2013_12_002
crossref_primary_10_1155_2020_6418215
crossref_primary_10_1016_j_jvolgeores_2019_106681
crossref_primary_10_1016_j_apgeochem_2016_03_004
crossref_primary_10_1007_s12665_021_09709_0
crossref_primary_10_1016_j_geothermics_2022_102377
crossref_primary_10_1016_j_jsames_2023_104247
crossref_primary_10_3390_w15111971
crossref_primary_10_3390_w15223881
crossref_primary_10_1007_s40899_024_01139_7
crossref_primary_10_1016_j_apgeochem_2019_104389
crossref_primary_10_3390_w14244041
crossref_primary_10_1007_s11242_022_01827_y
crossref_primary_10_1007_s12665_020_08947_y
crossref_primary_10_1134_S074204631803003X
crossref_primary_10_3390_w9010061
crossref_primary_10_1016_j_geothermics_2022_102548
crossref_primary_10_1016_j_renene_2022_08_024
crossref_primary_10_1016_j_geothermics_2022_102547
crossref_primary_10_1016_j_gexplo_2022_107097
crossref_primary_10_1016_j_jvolgeores_2019_106676
crossref_primary_10_1016_j_jvolgeores_2023_107784
crossref_primary_10_1134_S1819714024700180
crossref_primary_10_1016_j_gexplo_2024_107575
crossref_primary_10_1016_j_geothermics_2022_102385
crossref_primary_10_1016_j_jhydrol_2020_125889
crossref_primary_10_1007_s12665_024_11887_6
crossref_primary_10_1186_s40517_017_0070_3
crossref_primary_10_1016_j_jvolgeores_2018_01_019
crossref_primary_10_1007_s10498_019_09355_w
crossref_primary_10_1016_j_jvolgeores_2024_108149
crossref_primary_10_1016_j_chemgeo_2017_07_013
crossref_primary_10_1155_2018_8715080
crossref_primary_10_1016_j_marpetgeo_2023_106407
crossref_primary_10_1016_j_jvolgeores_2017_05_023
crossref_primary_10_3390_w14203205
crossref_primary_10_1111_1755_6724_14879
crossref_primary_10_1016_j_chemgeo_2024_122316
crossref_primary_10_1111_gfl_12194
crossref_primary_10_1016_j_jhydrol_2019_01_013
crossref_primary_10_1038_s41598_024_74462_w
crossref_primary_10_1016_j_jhydrol_2022_128172
crossref_primary_10_1016_j_geothermics_2024_102926
crossref_primary_10_1016_j_geothermics_2020_101950
crossref_primary_10_1016_j_geothermics_2021_102228
crossref_primary_10_3389_feart_2021_728162
crossref_primary_10_1016_j_geothermics_2023_102865
crossref_primary_10_3390_environments10090151
crossref_primary_10_1016_j_geothermics_2017_07_010
crossref_primary_10_1016_j_jvolgeores_2020_107065
crossref_primary_10_1016_j_geothermics_2022_102483
crossref_primary_10_1007_s12665_019_8600_x
crossref_primary_10_1134_S1819714024020039
crossref_primary_10_1016_j_gexplo_2015_07_008
crossref_primary_10_1016_j_jsames_2021_103702
crossref_primary_10_1016_j_renene_2023_05_112
crossref_primary_10_1186_s40517_024_00311_8
crossref_primary_10_1007_s12665_017_6973_2
crossref_primary_10_1016_j_geothermics_2018_11_005
crossref_primary_10_3390_w11081631
crossref_primary_10_1016_j_geothermics_2018_11_004
crossref_primary_10_1073_pnas_2020943118
crossref_primary_10_1007_s00531_020_01889_7
crossref_primary_10_1016_j_egypro_2014_10_389
crossref_primary_10_1186_s40517_020_0158_z
crossref_primary_10_1016_j_geothermics_2022_102628
crossref_primary_10_1016_j_applthermaleng_2014_09_011
crossref_primary_10_1016_j_geothermics_2023_102647
crossref_primary_10_3390_w15040766
crossref_primary_10_1016_j_geothermics_2022_102467
crossref_primary_10_3390_w14203299
crossref_primary_10_1016_j_jhydrol_2022_127668
crossref_primary_10_2139_ssrn_4072512
crossref_primary_10_1016_j_proeps_2017_01_026
Cites_doi 10.1016/0098-3004(92)90029-Q
10.1016/0375-6505(83)90026-3
10.1016/0016-7037(82)90155-7
10.1016/0016-7037(83)90277-6
10.1016/0016-7037(73)90060-4
10.1016/j.cageo.2005.06.014
10.1016/j.geothermics.2013.12.002
10.1016/0375-6505(81)90025-0
10.1016/0016-7037(84)90404-6
10.1016/j.geothermics.2008.07.004
10.1016/j.geothermics.2011.03.001
10.2475/ajs.264.9.685
10.1016/0016-7037(83)90278-8
10.1016/j.geothermics.2013.12.003
10.1111/j.1525-1314.1998.00140.x
10.1016/0016-7037(88)90143-3
10.1016/j.cageo.2010.10.007
10.1016/0016-7037(81)90143-5
10.1016/S0016-7037(98)00037-4
10.1016/0375-6505(77)90007-4
10.1016/S0016-7037(01)00555-5
10.1016/S0016-7037(96)00339-0
10.1016/j.apgeochem.2012.06.002
10.1016/0016-7037(82)90311-8
10.1016/j.envsoft.2011.02.008
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
FR3
KR7
DOI 10.1016/j.geothermics.2013.10.012
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-3576
EndPage 123
ExternalDocumentID 28481418
10_1016_j_geothermics_2013_10_012
S0375650513001016
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSR
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
8FD
FR3
KR7
ID FETCH-LOGICAL-a440t-56f23b81bc7a60ecdf494dbf4954034cff3da716c2c800c92fe91e1ad959de9d3
IEDL.DBID .~1
ISSN 0375-6505
IngestDate Fri Jul 11 08:08:02 EDT 2025
Fri Jul 11 00:14:03 EDT 2025
Wed Apr 02 07:20:31 EDT 2025
Tue Jul 01 00:36:49 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Fri Feb 23 02:36:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical modeling
Exploration
Mixing
Geothermometer
Geothermal
Optimization
experimental studies
solutes
exploration
software
mixing
simulation
transport
chemical analysis
saturation
dilution
optimization
geothermal reservoirs
numerical models
prediction
temperature
equilibrium
programs
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a440t-56f23b81bc7a60ecdf494dbf4954034cff3da716c2c800c92fe91e1ad959de9d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-2036-8449
PQID 1567056224
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1677999221
proquest_miscellaneous_1567056224
pascalfrancis_primary_28481418
crossref_primary_10_1016_j_geothermics_2013_10_012
crossref_citationtrail_10_1016_j_geothermics_2013_10_012
elsevier_sciencedirect_doi_10_1016_j_geothermics_2013_10_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Geothermics
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fournier, Rowe (bib0055) 1966; 264
Giggenbach (bib0080) 1988; 52
Fournier (bib0070) 1977; 5
Wanner, Peiffer, Sonnenthal, Spycher, Iovenitti, Kennedy (bib0185) 2014; 51
Arnorsson, Sigurdsson, Svavarsson (bib0005) 1982; 46
Finsterle, Zhang (bib0045) 2011; 26
Reed, Palandri (bib0145) 2006
Blanc, Lassin, Piantone, Azaroual, Jacquemet, Fabbri, Gaucher (bib0020) 2012; 27
Spycher, Sonnenthal, Kennedy (bib0165) 2011; 35
Xu, Spycher, Sonnenthal, Zhang, Zheng, Pruess (bib0195) 2011; 37
Peiffer, Wanner, Spycher, Sonnenthal, Kennedy, Iovenitti (bib0120) 2014; 51
Fournier, Potter (bib0065) 1982; 11
Sonnenthal, Spycher, Callahan, Cladouhos, Petty (bib0160) 2012
Fournier, Truesdell (bib0060) 1973; 37
Michard, Roekens (bib0100) 1983; 12
Palandri, Reed (bib0110) 2001; 65
Fouillac, Michard (bib0050) 1981; 10
Shock, Sassini, Willis, Sverjensky (bib0205) 1997; 61
Farrar, Sorey, Rojstaczer, Steinemann, Clark (bib0035) 1989
Sandia National Laboratories (bib0155) 2007
Reed, Spycher (bib0150) 1984; 48
Farrar, Sorey, Rojstaczer, Janik, Mariner, Winnett, Clark (bib0040) 1985
Wolery (bib0190) 1979
Arnorsson, Gunnlaugsson, Svavarsson (bib0010) 1983; 47
Tempel, Sturmer, Schilling (bib0170) 2011; 40
Wanner, Peiffer, Sonnenthal, Spycher, Iovenitti, Kennedy (bib0180) 2013
Fournier (bib0075) 1979; 3
Reed (bib0130) 1982; 46
Reed (bib0140) 1998; vol. 10
Xu, Sonnenthal, Spycher, Pruess (bib0200) 2006; 32
Doherty (bib0030) 2008
Verma, Pandarinath, Santoyo (bib0175) 2008; 37
Holland, Powell (bib0085) 1998; 16
Pang, Reed (bib0115) 1998; 62
Arnorsson, Gunnlaugsson, Svavarsson (bib0015) 1983; 47
Blanc, Lassin, Piantone (bib0025) 2007
Michard, Fouillac, Grimaud, Dennis (bib0105) 1981; 45
Powell, Cumming (bib0125) 2010
Reed (bib0135) 1997
Johnson, Oelkers, Helgeson (bib0095) 1992; 1992
Spycher (10.1016/j.geothermics.2013.10.012_bib0165) 2011; 35
Sandia National Laboratories (10.1016/j.geothermics.2013.10.012_bib0155) 2007
Fournier (10.1016/j.geothermics.2013.10.012_bib0070) 1977; 5
Xu (10.1016/j.geothermics.2013.10.012_bib0200) 2006; 32
Michard (10.1016/j.geothermics.2013.10.012_bib0100) 1983; 12
Michard (10.1016/j.geothermics.2013.10.012_bib0105) 1981; 45
Blanc (10.1016/j.geothermics.2013.10.012_bib0020) 2012; 27
Pang (10.1016/j.geothermics.2013.10.012_bib0115) 1998; 62
Verma (10.1016/j.geothermics.2013.10.012_bib0175) 2008; 37
Wanner (10.1016/j.geothermics.2013.10.012_bib0185) 2014; 51
Arnorsson (10.1016/j.geothermics.2013.10.012_bib0015) 1983; 47
Arnorsson (10.1016/j.geothermics.2013.10.012_bib0010) 1983; 47
Wanner (10.1016/j.geothermics.2013.10.012_bib0180) 2013
Powell (10.1016/j.geothermics.2013.10.012_bib0125) 2010
Johnson (10.1016/j.geothermics.2013.10.012_bib0095) 1992; 1992
Sonnenthal (10.1016/j.geothermics.2013.10.012_bib0160) 2012
Wolery (10.1016/j.geothermics.2013.10.012_bib0190) 1979
Doherty (10.1016/j.geothermics.2013.10.012_bib0030) 2008
Reed (10.1016/j.geothermics.2013.10.012_bib0135) 1997
Tempel (10.1016/j.geothermics.2013.10.012_bib0170) 2011; 40
Holland (10.1016/j.geothermics.2013.10.012_bib0085) 1998; 16
Reed (10.1016/j.geothermics.2013.10.012_bib0130) 1982; 46
Palandri (10.1016/j.geothermics.2013.10.012_bib0110) 2001; 65
Reed (10.1016/j.geothermics.2013.10.012_bib0150) 1984; 48
Fouillac (10.1016/j.geothermics.2013.10.012_bib0050) 1981; 10
Finsterle (10.1016/j.geothermics.2013.10.012_bib0045) 2011; 26
Shock (10.1016/j.geothermics.2013.10.012_bib0205) 1997; 61
Arnorsson (10.1016/j.geothermics.2013.10.012_bib0005) 1982; 46
Fournier (10.1016/j.geothermics.2013.10.012_bib0075) 1979; 3
Reed (10.1016/j.geothermics.2013.10.012_bib0145) 2006
Fournier (10.1016/j.geothermics.2013.10.012_bib0055) 1966; 264
Giggenbach (10.1016/j.geothermics.2013.10.012_bib0080) 1988; 52
Fournier (10.1016/j.geothermics.2013.10.012_bib0065) 1982; 11
Xu (10.1016/j.geothermics.2013.10.012_bib0195) 2011; 37
Reed (10.1016/j.geothermics.2013.10.012_bib0140) 1998; vol. 10
Farrar (10.1016/j.geothermics.2013.10.012_bib0035) 1989
Blanc (10.1016/j.geothermics.2013.10.012_bib0025) 2007
Fournier (10.1016/j.geothermics.2013.10.012_bib0060) 1973; 37
Peiffer (10.1016/j.geothermics.2013.10.012_bib0120) 2014; 51
Farrar (10.1016/j.geothermics.2013.10.012_bib0040) 1985
References_xml – volume: 10
  start-page: 55
  year: 1981
  end-page: 70
  ident: bib0050
  article-title: Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs
  publication-title: Geothermics
– start-page: 303
  year: 1997
  end-page: 366
  ident: bib0135
  article-title: Hydrothermal alteration and its relationship to ore fluid composition
  publication-title: Geochemistry of Hydrothermal Ore Deposits
– volume: 47
  start-page: 567
  year: 1983
  end-page: 577
  ident: bib0015
  article-title: The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations
  publication-title: Geochim. Cosmochim. Acta
– volume: 11
  start-page: 3
  year: 1982
  end-page: 12
  ident: bib0065
  article-title: A revised and expanded silica (quartz) geothermometer
  publication-title: Geotherm. Resour. Counc. Bullet.
– volume: 3
  start-page: 221
  year: 1979
  end-page: 224
  ident: bib0075
  article-title: A revised equation for the Na/K geothermometer
  publication-title: Geotherm. Resour. Trans.
– volume: 27
  start-page: 2107
  year: 2012
  end-page: 2116
  ident: bib0020
  article-title: Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials
  publication-title: Appl. Geochem.
– year: 2010
  ident: bib0125
  article-title: Spreadsheets for geothermal water and gas geochemistry
  publication-title: Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University
– year: 1989
  ident: bib0035
  article-title: Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1986
– volume: 1992
  start-page: 899
  year: 1992
  end-page: 947
  ident: bib0095
  article-title: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000
  publication-title: Comput. Geosci.
– year: 2007
  ident: bib0155
  article-title: Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems (data0.ymp.R5). Report ANL-WIS-GS-000003 REV 01
– volume: 35
  start-page: 663
  year: 2011
  end-page: 666
  ident: bib0165
  article-title: Integrating multicomponent chemical geothermometry with parameter estimation computations for geothermal exploration
  publication-title: Geotherm. Resour. Counc. Trans.
– volume: 51
  start-page: 154
  year: 2014
  end-page: 169
  ident: bib0120
  article-title: Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area
  publication-title: Geothermics
– year: 2013
  ident: bib0180
  article-title: Assessing thermo-hydrodynamic-chemical processes at the Dixie Valley geothermal area: a reactive transport modeling approach
  publication-title: Proceedings 38th Workshop on Geothermal Reservoir Engineering, Stanford Univ. Report SGP-TR-198
– year: 2007
  ident: bib0025
  article-title: THERMODDEM, a database devoted to waste minerals
– volume: 45
  start-page: 1199
  year: 1981
  end-page: 1207
  ident: bib0105
  article-title: Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais
  publication-title: Geochim. Cosmochim. Acta
– volume: 47
  start-page: 547
  year: 1983
  end-page: 566
  ident: bib0010
  article-title: The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions
  publication-title: Geochim. Cosmochim. Acta
– year: 2008
  ident: bib0030
  article-title: PEST – Model-Independent Parameter Estimation. Watermark Numerical Computing, Corinda 4075, Brisbane, Australia
– volume: 51
  start-page: 130
  year: 2014
  end-page: 141
  ident: bib0185
  article-title: Reactive transport modeling of the Dixie Valley geothermal area: insights on flow and geothermometry
  publication-title: Geothermics
– year: 1985
  ident: bib0040
  article-title: Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1982–1984
– year: 2012
  ident: bib0160
  article-title: A thermal–hydrological–chemical model for the Enhanced Geothermal System Demonstration Project at Newberry Volcano, Oregon
  publication-title: Proceedings Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University
– volume: 40
  start-page: 91
  year: 2011
  end-page: 101
  ident: bib0170
  article-title: Geochemical modeling of the near-surface hydrothermal system beneath the southern moat of Long Valley Caldera, California
  publication-title: Geothermics
– volume: 16
  start-page: 309
  year: 1998
  end-page: 343
  ident: bib0085
  article-title: An internally consistent thermodynamic dataset for phases of petrological interest
  publication-title: J. Met. Geol.
– volume: 264
  start-page: 685
  year: 1966
  end-page: 697
  ident: bib0055
  article-title: Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells
  publication-title: Am. J. Sci.
– volume: 65
  start-page: 1741
  year: 2001
  end-page: 1767
  ident: bib0110
  article-title: Reconstruction of in situ composition of sedimentary formation waters
  publication-title: Geochim. Cosmochim. Acta
– year: 2006
  ident: bib0145
  article-title: SOLTHERM.H06, a database of equilibrium constants for minerals and aqueous species
– volume: 37
  start-page: 1255
  year: 1973
  end-page: 1275
  ident: bib0060
  article-title: An empirical Na–K–Ca geothermometer for natural waters
  publication-title: Geochim. Cosmochim. Acta
– volume: 12
  start-page: 161
  year: 1983
  end-page: 169
  ident: bib0100
  article-title: Modelling of the chemical composition of alkaline hot waters
  publication-title: Geothermics
– volume: 62
  start-page: 1083
  year: 1998
  end-page: 1091
  ident: bib0115
  article-title: Theoretical chemical thermometry on geothermal waters: problems and methods
  publication-title: Geochim. Cosmochim. Acta
– volume: 46
  start-page: 1513
  year: 1982
  end-page: 1532
  ident: bib0005
  article-title: The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370
  publication-title: Geochim. Cosmochim. Acta
– volume: 37
  start-page: 763
  year: 2011
  end-page: 774
  ident: bib0195
  article-title: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions
  publication-title: Comput. Geosci.
– volume: 26
  start-page: 959
  year: 2011
  end-page: 968
  ident: bib0045
  article-title: Solving iTOUGH2 simulation and optimization problems using the PEST protocol
  publication-title: Environ. Model. Softw.
– volume: 48
  start-page: 1479
  year: 1984
  end-page: 1492
  ident: bib0150
  article-title: Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution
  publication-title: Geochim. Cosmochim. Acta
– volume: 37
  start-page: 597
  year: 2008
  end-page: 621
  ident: bib0175
  article-title: SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields
  publication-title: Geothermics
– volume: 5
  start-page: 41
  year: 1977
  end-page: 50
  ident: bib0070
  article-title: Chemical geothermometers and mixing models for geothermal systems
  publication-title: Geothermics
– volume: 52
  start-page: 2749
  year: 1988
  end-page: 2765
  ident: bib0080
  article-title: Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators
  publication-title: Geochim. Cosmochim. Acta
– volume: 32
  start-page: 145
  year: 2006
  end-page: 156
  ident: bib0200
  article-title: TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO
  publication-title: Comput. Geosci.
– volume: vol. 10
  start-page: 109
  year: 1998
  end-page: 124
  ident: bib0140
  article-title: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes
  publication-title: Techniques in Hydrothermal Ore Deposits Geology, Reviews in Economic Geology
– year: 1979
  ident: bib0190
  article-title: Calculation of chemical equilibrium between aqueous solution and minerals; the EQ3/6 software package. UCRL-52658
– volume: 46
  start-page: 513
  year: 1982
  end-page: 528
  ident: bib0130
  article-title: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase
  publication-title: Geochim. Cosmochim. Acta
– volume: 61
  start-page: 907
  year: 1997
  end-page: 950
  ident: bib0205
  article-title: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes
  publication-title: Geochim. Cosmochim. Acta
– year: 1985
  ident: 10.1016/j.geothermics.2013.10.012_bib0040
– volume: 1992
  start-page: 899
  issue: 18
  year: 1992
  ident: 10.1016/j.geothermics.2013.10.012_bib0095
  article-title: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000bar and 0 to 1000°C
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(92)90029-Q
– volume: 12
  start-page: 161
  year: 1983
  ident: 10.1016/j.geothermics.2013.10.012_bib0100
  article-title: Modelling of the chemical composition of alkaline hot waters
  publication-title: Geothermics
  doi: 10.1016/0375-6505(83)90026-3
– volume: 46
  start-page: 513
  year: 1982
  ident: 10.1016/j.geothermics.2013.10.012_bib0130
  article-title: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(82)90155-7
– volume: 47
  start-page: 547
  year: 1983
  ident: 10.1016/j.geothermics.2013.10.012_bib0010
  article-title: The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(83)90277-6
– volume: 37
  start-page: 1255
  year: 1973
  ident: 10.1016/j.geothermics.2013.10.012_bib0060
  article-title: An empirical Na–K–Ca geothermometer for natural waters
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(73)90060-4
– year: 2010
  ident: 10.1016/j.geothermics.2013.10.012_bib0125
  article-title: Spreadsheets for geothermal water and gas geochemistry
– start-page: 303
  year: 1997
  ident: 10.1016/j.geothermics.2013.10.012_bib0135
  article-title: Hydrothermal alteration and its relationship to ore fluid composition
– volume: 11
  start-page: 3
  issue: 10
  year: 1982
  ident: 10.1016/j.geothermics.2013.10.012_bib0065
  article-title: A revised and expanded silica (quartz) geothermometer
  publication-title: Geotherm. Resour. Counc. Bullet.
– volume: 32
  start-page: 145
  year: 2006
  ident: 10.1016/j.geothermics.2013.10.012_bib0200
  article-title: TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.06.014
– volume: vol. 10
  start-page: 109
  year: 1998
  ident: 10.1016/j.geothermics.2013.10.012_bib0140
  article-title: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes
– volume: 51
  start-page: 154
  year: 2014
  ident: 10.1016/j.geothermics.2013.10.012_bib0120
  article-title: Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.12.002
– volume: 10
  start-page: 55
  year: 1981
  ident: 10.1016/j.geothermics.2013.10.012_bib0050
  article-title: Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs
  publication-title: Geothermics
  doi: 10.1016/0375-6505(81)90025-0
– volume: 48
  start-page: 1479
  year: 1984
  ident: 10.1016/j.geothermics.2013.10.012_bib0150
  article-title: Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(84)90404-6
– year: 2008
  ident: 10.1016/j.geothermics.2013.10.012_bib0030
– year: 2012
  ident: 10.1016/j.geothermics.2013.10.012_bib0160
  article-title: A thermal–hydrological–chemical model for the Enhanced Geothermal System Demonstration Project at Newberry Volcano, Oregon
– year: 2007
  ident: 10.1016/j.geothermics.2013.10.012_bib0025
– volume: 37
  start-page: 597
  year: 2008
  ident: 10.1016/j.geothermics.2013.10.012_bib0175
  article-title: SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2008.07.004
– year: 2006
  ident: 10.1016/j.geothermics.2013.10.012_bib0145
– volume: 40
  start-page: 91
  issue: 2011
  year: 2011
  ident: 10.1016/j.geothermics.2013.10.012_bib0170
  article-title: Geochemical modeling of the near-surface hydrothermal system beneath the southern moat of Long Valley Caldera, California
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2011.03.001
– year: 2013
  ident: 10.1016/j.geothermics.2013.10.012_bib0180
  article-title: Assessing thermo-hydrodynamic-chemical processes at the Dixie Valley geothermal area: a reactive transport modeling approach
– year: 1989
  ident: 10.1016/j.geothermics.2013.10.012_bib0035
– volume: 264
  start-page: 685
  year: 1966
  ident: 10.1016/j.geothermics.2013.10.012_bib0055
  article-title: Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.264.9.685
– volume: 47
  start-page: 567
  year: 1983
  ident: 10.1016/j.geothermics.2013.10.012_bib0015
  article-title: The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(83)90278-8
– volume: 51
  start-page: 130
  year: 2014
  ident: 10.1016/j.geothermics.2013.10.012_bib0185
  article-title: Reactive transport modeling of the Dixie Valley geothermal area: insights on flow and geothermometry
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.12.003
– volume: 16
  start-page: 309
  year: 1998
  ident: 10.1016/j.geothermics.2013.10.012_bib0085
  article-title: An internally consistent thermodynamic dataset for phases of petrological interest
  publication-title: J. Met. Geol.
  doi: 10.1111/j.1525-1314.1998.00140.x
– volume: 3
  start-page: 221
  year: 1979
  ident: 10.1016/j.geothermics.2013.10.012_bib0075
  article-title: A revised equation for the Na/K geothermometer
  publication-title: Geotherm. Resour. Trans.
– volume: 52
  start-page: 2749
  year: 1988
  ident: 10.1016/j.geothermics.2013.10.012_bib0080
  article-title: Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90143-3
– volume: 37
  start-page: 763
  year: 2011
  ident: 10.1016/j.geothermics.2013.10.012_bib0195
  article-title: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.10.007
– volume: 45
  start-page: 1199
  year: 1981
  ident: 10.1016/j.geothermics.2013.10.012_bib0105
  article-title: Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(81)90143-5
– year: 1979
  ident: 10.1016/j.geothermics.2013.10.012_bib0190
– volume: 62
  start-page: 1083
  year: 1998
  ident: 10.1016/j.geothermics.2013.10.012_bib0115
  article-title: Theoretical chemical thermometry on geothermal waters: problems and methods
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00037-4
– volume: 5
  start-page: 41
  year: 1977
  ident: 10.1016/j.geothermics.2013.10.012_bib0070
  article-title: Chemical geothermometers and mixing models for geothermal systems
  publication-title: Geothermics
  doi: 10.1016/0375-6505(77)90007-4
– volume: 65
  start-page: 1741
  year: 2001
  ident: 10.1016/j.geothermics.2013.10.012_bib0110
  article-title: Reconstruction of in situ composition of sedimentary formation waters
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00555-5
– volume: 61
  start-page: 907
  year: 1997
  ident: 10.1016/j.geothermics.2013.10.012_bib0205
  article-title: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(96)00339-0
– year: 2007
  ident: 10.1016/j.geothermics.2013.10.012_bib0155
– volume: 35
  start-page: 663
  year: 2011
  ident: 10.1016/j.geothermics.2013.10.012_bib0165
  article-title: Integrating multicomponent chemical geothermometry with parameter estimation computations for geothermal exploration
  publication-title: Geotherm. Resour. Counc. Trans.
– volume: 27
  start-page: 2107
  year: 2012
  ident: 10.1016/j.geothermics.2013.10.012_bib0020
  article-title: Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.06.002
– volume: 46
  start-page: 1513
  year: 1982
  ident: 10.1016/j.geothermics.2013.10.012_bib0005
  article-title: The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370°C
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(82)90311-8
– volume: 26
  start-page: 959
  year: 2011
  ident: 10.1016/j.geothermics.2013.10.012_bib0045
  article-title: Solving iTOUGH2 simulation and optimization problems using the PEST protocol
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.02.008
SSID ssj0007570
Score 2.395153
Snippet •Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition...
The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113
SubjectTerms Computational fluid dynamics
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Exploration
Fluid flow
Fluids
Geothermal
Geothermics
Geothermometer
Geothermometry
Mathematical models
Minerals
Mixing
Numerical modeling
Optimization
Reservoirs
Title Integrated multicomponent solute geothermometry
URI https://dx.doi.org/10.1016/j.geothermics.2013.10.012
https://www.proquest.com/docview/1567056224
https://www.proquest.com/docview/1677999221
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB4WBRVEfOL6WCp4rWvSpDHgRcRlddGDD_RW0iTVFfeBrgcv_nZn-thVRBG8tLRNSJhMJ9-Qb2YAdrn0MfOehZkVcSiUkqHRyoTSyjRVxkdGUDTy-UXcvhFnd_KuBsdVLAzRKkvbX9j03FqXb5qlNJvDbrd5RdVbEV9IOpAhH5Qi2IUiLd97n9A8lMwLxlHjkFrPwM6E43Xv8zCnXtdS5m4W7RHRi_Gf9qj5oXlByWVFyYtv1jvfklqLsFBiyeComO4S1Hx_GWbLsuYPbyvQPK2SQbggZw4SgXzQx30myFXOB9XUBj0_en5bhZvWyfVxOywrJIRGiP1RKOOMRykiT6tMvO-ty4QWLsUrArFI2CyLnEGPyHKLwNBqnnnNPDNOS-28dtEaTPVx2HUImJDOpdwYpbwQnqeWm0hLhABWoRMb1eGgkkliy_ThVMXiKal4Yo_JJ3EmJE76hOKsAx93HRY5NP7S6bASfPJFIRK09X_p3viyWOOBOdUPEOygDjvV6iX4R9Exien7wetLgh6tIljIxS9tYqU0pfRlG_-b5ybM4ZMoCMBbMDV6fvXbCHNGaSPX4wZMH5122hd071zedj4AIaEBhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB3RIEElVBUoaiikG4nrEuy117HUSxQVJYXkQiJxs7y2tw0qSQThwL_vzH4EEGqF1Msedj2yNfaO38jP8wBOuAwpC4HFuRNpLJSSsdXKxtLJLFM2JFbQbeTROB1MxY9reb0B_fouDNEqq9hfxvQiWldvOpU3O8vZrHNF6q2ILyQdyFAO-g42qTqVbMBmb3gxGK8DspKFZhy1j8lgC9pPNK-fobjpdDtzVLybJafE9WL8b9vUztLeo_PyUvXiVQAvdqXzj_ChgpNRrxzxLmyE-R5sV8rmvx73oTOs60H4qCAPEod8McetJipWXYjqoS1uw-ru8RNMz79P-oO4EkmIrRBnq1imOU8yBJ9O2fQsOJ8LLXyGT8RiiXB5nniLSZHjDrGh0zwPmgVmvZbaB-2TA2jMsdvPEDEhvc-4tUoFIQLPHLeJlogCnMI8NmlCt_aJcVUFcRKy-G1qqtiNeeZOQ-6kT-jOJvC16bIso_EWo2-1482LNWEw3L_FvPVistYdc5IQEKzbhHY9ewZ_KjopsfOweLg3mNQqQoZc_KNNqpSmqr7s8P_G-RW2B5PRpbkcji--wHv8Iko-8BE0VncP4RhRzyprVav6D9V9ApI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+multicomponent+solute+geothermometry&rft.jtitle=Geothermics&rft.au=Spycher%2C+N.&rft.au=Peiffer%2C+L.&rft.au=Sonnenthal%2C+E.L.&rft.au=Saldi%2C+G.&rft.date=2014-07-01&rft.issn=0375-6505&rft.volume=51&rft.spage=113&rft.epage=123&rft_id=info:doi/10.1016%2Fj.geothermics.2013.10.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geothermics_2013_10_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon