Integrated multicomponent solute geothermometry
•Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition amenable to numerical optimization.•Correct for near surface processes that mask deep chemical signatures.•Improves assessment of reservoir temper...
Saved in:
Published in | Geothermics Vol. 51; pp. 113 - 123 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition amenable to numerical optimization.•Correct for near surface processes that mask deep chemical signatures.•Improves assessment of reservoir temperatures compared to interpretations using classical geothermometers.
The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid–rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. |
---|---|
AbstractList | The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid-rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. •Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition amenable to numerical optimization.•Correct for near surface processes that mask deep chemical signatures.•Improves assessment of reservoir temperatures compared to interpretations using classical geothermometers. The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid–rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. |
Author | Sonnenthal, E.L. Spycher, N. Reed, M.H. Kennedy, B.M. Peiffer, L. Saldi, G. |
Author_xml | – sequence: 1 givenname: N. surname: Spycher fullname: Spycher, N. email: nspycher@lbl.gov organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States – sequence: 2 givenname: L. orcidid: 0000-0002-2036-8449 surname: Peiffer fullname: Peiffer, L. organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States – sequence: 3 givenname: E.L. surname: Sonnenthal fullname: Sonnenthal, E.L. organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States – sequence: 4 givenname: G. surname: Saldi fullname: Saldi, G. organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States – sequence: 5 givenname: M.H. surname: Reed fullname: Reed, M.H. organization: Department of Geological Sciences, University of Oregon, Eugene, OR 97403, United States – sequence: 6 givenname: B.M. surname: Kennedy fullname: Kennedy, B.M. organization: Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28481418$$DView record in Pascal Francis |
BookMark | eNqNkMtKAzEUQIMoWB__UBeCm6k3mTwmK5HiCwQ3ug5pckdTZiY1SQX_3ilVETe6SSA591w4B2R3iAMSckJhRoHK8-XsGWN5wdQHl2cMaD2-z4CyHTKhjdJVLZTcJROolaikALFPDnJeAoASCibk_G4o-JxsQT_t110JLvarccVQpjl264LTL3_ssaT3I7LX2i7j8ed9SJ6urx7nt9X9w83d_PK-spxDqYRsWb1o6MIpKwGdb7nmfjGegkPNXdvW3ioqHXMNgNOsRU2RWq-F9qh9fUjOtt5Viq9rzMX0ITvsOjtgXGdDpVJaa8bo36iQCoRkjI_o6Sdqs7Ndm-zgQjarFHqb3g1reEM5bUZObzmXYs4J22-Egtl0N0vzo7vZdN98jd3H2Ytfsy4UW0IcSrKh-5dhvjXgGPgtYDLZBRwc-pDQFeNj-IflAwNSqbE |
CODEN | GTMCAT |
CitedBy_id | crossref_primary_10_1186_s40517_018_0117_0 crossref_primary_10_3390_w15030422 crossref_primary_10_26599_JGSE_2017_9280017 crossref_primary_10_3390_w17060788 crossref_primary_10_1088_1755_1315_1383_1_012007 crossref_primary_10_1007_s12665_023_11241_2 crossref_primary_10_1016_j_proeps_2016_12_023 crossref_primary_10_1016_j_scitotenv_2017_09_269 crossref_primary_10_5194_gtes_4_11_2016 crossref_primary_10_1007_s00767_019_00429_8 crossref_primary_10_1016_j_geothermics_2023_102793 crossref_primary_10_1016_j_geothermics_2023_102673 crossref_primary_10_1016_j_scitotenv_2022_153606 crossref_primary_10_1002_ghg_1474 crossref_primary_10_3389_feart_2023_1138360 crossref_primary_10_1016_j_jhydrol_2024_131026 crossref_primary_10_1088_1755_1315_1159_1_012004 crossref_primary_10_1016_j_geothermics_2016_06_001 crossref_primary_10_1016_j_jsames_2019_102378 crossref_primary_10_1016_j_gexplo_2023_107294 crossref_primary_10_1016_j_jvolgeores_2018_07_007 crossref_primary_10_1016_j_geothermics_2020_101870 crossref_primary_10_1080_01496395_2025_2475120 crossref_primary_10_1016_j_jvolgeores_2016_10_010 crossref_primary_10_1016_j_geothermics_2022_102440 crossref_primary_10_1016_j_geothermics_2023_102661 crossref_primary_10_1016_j_geothermics_2025_103270 crossref_primary_10_1007_s12665_016_6298_6 crossref_primary_10_1016_j_apgeochem_2024_106222 crossref_primary_10_1016_j_apgeochem_2022_105376 crossref_primary_10_1016_j_apgeochem_2022_105256 crossref_primary_10_1016_j_gexplo_2020_106534 crossref_primary_10_1007_s10040_020_02222_x crossref_primary_10_1016_j_apgeochem_2024_106077 crossref_primary_10_2113_2022_2576752 crossref_primary_10_3103_S0145875223050058 crossref_primary_10_1016_j_geothermics_2020_101805 crossref_primary_10_1016_j_geothermics_2017_04_003 crossref_primary_10_1016_j_acags_2023_100144 crossref_primary_10_1016_j_geothermics_2013_12_003 crossref_primary_10_1016_j_geothermics_2013_12_002 crossref_primary_10_1155_2020_6418215 crossref_primary_10_1016_j_jvolgeores_2019_106681 crossref_primary_10_1016_j_apgeochem_2016_03_004 crossref_primary_10_1007_s12665_021_09709_0 crossref_primary_10_1016_j_geothermics_2022_102377 crossref_primary_10_1016_j_jsames_2023_104247 crossref_primary_10_3390_w15111971 crossref_primary_10_3390_w15223881 crossref_primary_10_1007_s40899_024_01139_7 crossref_primary_10_1016_j_apgeochem_2019_104389 crossref_primary_10_3390_w14244041 crossref_primary_10_1007_s11242_022_01827_y crossref_primary_10_1007_s12665_020_08947_y crossref_primary_10_1134_S074204631803003X crossref_primary_10_3390_w9010061 crossref_primary_10_1016_j_geothermics_2022_102548 crossref_primary_10_1016_j_renene_2022_08_024 crossref_primary_10_1016_j_geothermics_2022_102547 crossref_primary_10_1016_j_gexplo_2022_107097 crossref_primary_10_1016_j_jvolgeores_2019_106676 crossref_primary_10_1016_j_jvolgeores_2023_107784 crossref_primary_10_1134_S1819714024700180 crossref_primary_10_1016_j_gexplo_2024_107575 crossref_primary_10_1016_j_geothermics_2022_102385 crossref_primary_10_1016_j_jhydrol_2020_125889 crossref_primary_10_1007_s12665_024_11887_6 crossref_primary_10_1186_s40517_017_0070_3 crossref_primary_10_1016_j_jvolgeores_2018_01_019 crossref_primary_10_1007_s10498_019_09355_w crossref_primary_10_1016_j_jvolgeores_2024_108149 crossref_primary_10_1016_j_chemgeo_2017_07_013 crossref_primary_10_1155_2018_8715080 crossref_primary_10_1016_j_marpetgeo_2023_106407 crossref_primary_10_1016_j_jvolgeores_2017_05_023 crossref_primary_10_3390_w14203205 crossref_primary_10_1111_1755_6724_14879 crossref_primary_10_1016_j_chemgeo_2024_122316 crossref_primary_10_1111_gfl_12194 crossref_primary_10_1016_j_jhydrol_2019_01_013 crossref_primary_10_1038_s41598_024_74462_w crossref_primary_10_1016_j_jhydrol_2022_128172 crossref_primary_10_1016_j_geothermics_2024_102926 crossref_primary_10_1016_j_geothermics_2020_101950 crossref_primary_10_1016_j_geothermics_2021_102228 crossref_primary_10_3389_feart_2021_728162 crossref_primary_10_1016_j_geothermics_2023_102865 crossref_primary_10_3390_environments10090151 crossref_primary_10_1016_j_geothermics_2017_07_010 crossref_primary_10_1016_j_jvolgeores_2020_107065 crossref_primary_10_1016_j_geothermics_2022_102483 crossref_primary_10_1007_s12665_019_8600_x crossref_primary_10_1134_S1819714024020039 crossref_primary_10_1016_j_gexplo_2015_07_008 crossref_primary_10_1016_j_jsames_2021_103702 crossref_primary_10_1016_j_renene_2023_05_112 crossref_primary_10_1186_s40517_024_00311_8 crossref_primary_10_1007_s12665_017_6973_2 crossref_primary_10_1016_j_geothermics_2018_11_005 crossref_primary_10_3390_w11081631 crossref_primary_10_1016_j_geothermics_2018_11_004 crossref_primary_10_1073_pnas_2020943118 crossref_primary_10_1007_s00531_020_01889_7 crossref_primary_10_1016_j_egypro_2014_10_389 crossref_primary_10_1186_s40517_020_0158_z crossref_primary_10_1016_j_geothermics_2022_102628 crossref_primary_10_1016_j_applthermaleng_2014_09_011 crossref_primary_10_1016_j_geothermics_2023_102647 crossref_primary_10_3390_w15040766 crossref_primary_10_1016_j_geothermics_2022_102467 crossref_primary_10_3390_w14203299 crossref_primary_10_1016_j_jhydrol_2022_127668 crossref_primary_10_2139_ssrn_4072512 crossref_primary_10_1016_j_proeps_2017_01_026 |
Cites_doi | 10.1016/0098-3004(92)90029-Q 10.1016/0375-6505(83)90026-3 10.1016/0016-7037(82)90155-7 10.1016/0016-7037(83)90277-6 10.1016/0016-7037(73)90060-4 10.1016/j.cageo.2005.06.014 10.1016/j.geothermics.2013.12.002 10.1016/0375-6505(81)90025-0 10.1016/0016-7037(84)90404-6 10.1016/j.geothermics.2008.07.004 10.1016/j.geothermics.2011.03.001 10.2475/ajs.264.9.685 10.1016/0016-7037(83)90278-8 10.1016/j.geothermics.2013.12.003 10.1111/j.1525-1314.1998.00140.x 10.1016/0016-7037(88)90143-3 10.1016/j.cageo.2010.10.007 10.1016/0016-7037(81)90143-5 10.1016/S0016-7037(98)00037-4 10.1016/0375-6505(77)90007-4 10.1016/S0016-7037(01)00555-5 10.1016/S0016-7037(96)00339-0 10.1016/j.apgeochem.2012.06.002 10.1016/0016-7037(82)90311-8 10.1016/j.envsoft.2011.02.008 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8FD FR3 KR7 |
DOI | 10.1016/j.geothermics.2013.10.012 |
DatabaseName | CrossRef Pascal-Francis Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-3576 |
EndPage | 123 |
ExternalDocumentID | 28481418 10_1016_j_geothermics_2013_10_012 S0375650513001016 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JARJE KOM LY3 LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SET SEW SPC SPCBC SSE SSR SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 8FD FR3 KR7 |
ID | FETCH-LOGICAL-a440t-56f23b81bc7a60ecdf494dbf4954034cff3da716c2c800c92fe91e1ad959de9d3 |
IEDL.DBID | .~1 |
ISSN | 0375-6505 |
IngestDate | Fri Jul 11 08:08:02 EDT 2025 Fri Jul 11 00:14:03 EDT 2025 Wed Apr 02 07:20:31 EDT 2025 Tue Jul 01 00:36:49 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:36:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical modeling Exploration Mixing Geothermometer Geothermal Optimization experimental studies solutes exploration software mixing simulation transport chemical analysis saturation dilution optimization geothermal reservoirs numerical models prediction temperature equilibrium programs |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a440t-56f23b81bc7a60ecdf494dbf4954034cff3da716c2c800c92fe91e1ad959de9d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0002-2036-8449 |
PQID | 1567056224 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1677999221 proquest_miscellaneous_1567056224 pascalfrancis_primary_28481418 crossref_primary_10_1016_j_geothermics_2013_10_012 crossref_citationtrail_10_1016_j_geothermics_2013_10_012 elsevier_sciencedirect_doi_10_1016_j_geothermics_2013_10_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Geothermics |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fournier, Rowe (bib0055) 1966; 264 Giggenbach (bib0080) 1988; 52 Fournier (bib0070) 1977; 5 Wanner, Peiffer, Sonnenthal, Spycher, Iovenitti, Kennedy (bib0185) 2014; 51 Arnorsson, Sigurdsson, Svavarsson (bib0005) 1982; 46 Finsterle, Zhang (bib0045) 2011; 26 Reed, Palandri (bib0145) 2006 Blanc, Lassin, Piantone, Azaroual, Jacquemet, Fabbri, Gaucher (bib0020) 2012; 27 Spycher, Sonnenthal, Kennedy (bib0165) 2011; 35 Xu, Spycher, Sonnenthal, Zhang, Zheng, Pruess (bib0195) 2011; 37 Peiffer, Wanner, Spycher, Sonnenthal, Kennedy, Iovenitti (bib0120) 2014; 51 Fournier, Potter (bib0065) 1982; 11 Sonnenthal, Spycher, Callahan, Cladouhos, Petty (bib0160) 2012 Fournier, Truesdell (bib0060) 1973; 37 Michard, Roekens (bib0100) 1983; 12 Palandri, Reed (bib0110) 2001; 65 Fouillac, Michard (bib0050) 1981; 10 Shock, Sassini, Willis, Sverjensky (bib0205) 1997; 61 Farrar, Sorey, Rojstaczer, Steinemann, Clark (bib0035) 1989 Sandia National Laboratories (bib0155) 2007 Reed, Spycher (bib0150) 1984; 48 Farrar, Sorey, Rojstaczer, Janik, Mariner, Winnett, Clark (bib0040) 1985 Wolery (bib0190) 1979 Arnorsson, Gunnlaugsson, Svavarsson (bib0010) 1983; 47 Tempel, Sturmer, Schilling (bib0170) 2011; 40 Wanner, Peiffer, Sonnenthal, Spycher, Iovenitti, Kennedy (bib0180) 2013 Fournier (bib0075) 1979; 3 Reed (bib0130) 1982; 46 Reed (bib0140) 1998; vol. 10 Xu, Sonnenthal, Spycher, Pruess (bib0200) 2006; 32 Doherty (bib0030) 2008 Verma, Pandarinath, Santoyo (bib0175) 2008; 37 Holland, Powell (bib0085) 1998; 16 Pang, Reed (bib0115) 1998; 62 Arnorsson, Gunnlaugsson, Svavarsson (bib0015) 1983; 47 Blanc, Lassin, Piantone (bib0025) 2007 Michard, Fouillac, Grimaud, Dennis (bib0105) 1981; 45 Powell, Cumming (bib0125) 2010 Reed (bib0135) 1997 Johnson, Oelkers, Helgeson (bib0095) 1992; 1992 Spycher (10.1016/j.geothermics.2013.10.012_bib0165) 2011; 35 Sandia National Laboratories (10.1016/j.geothermics.2013.10.012_bib0155) 2007 Fournier (10.1016/j.geothermics.2013.10.012_bib0070) 1977; 5 Xu (10.1016/j.geothermics.2013.10.012_bib0200) 2006; 32 Michard (10.1016/j.geothermics.2013.10.012_bib0100) 1983; 12 Michard (10.1016/j.geothermics.2013.10.012_bib0105) 1981; 45 Blanc (10.1016/j.geothermics.2013.10.012_bib0020) 2012; 27 Pang (10.1016/j.geothermics.2013.10.012_bib0115) 1998; 62 Verma (10.1016/j.geothermics.2013.10.012_bib0175) 2008; 37 Wanner (10.1016/j.geothermics.2013.10.012_bib0185) 2014; 51 Arnorsson (10.1016/j.geothermics.2013.10.012_bib0015) 1983; 47 Arnorsson (10.1016/j.geothermics.2013.10.012_bib0010) 1983; 47 Wanner (10.1016/j.geothermics.2013.10.012_bib0180) 2013 Powell (10.1016/j.geothermics.2013.10.012_bib0125) 2010 Johnson (10.1016/j.geothermics.2013.10.012_bib0095) 1992; 1992 Sonnenthal (10.1016/j.geothermics.2013.10.012_bib0160) 2012 Wolery (10.1016/j.geothermics.2013.10.012_bib0190) 1979 Doherty (10.1016/j.geothermics.2013.10.012_bib0030) 2008 Reed (10.1016/j.geothermics.2013.10.012_bib0135) 1997 Tempel (10.1016/j.geothermics.2013.10.012_bib0170) 2011; 40 Holland (10.1016/j.geothermics.2013.10.012_bib0085) 1998; 16 Reed (10.1016/j.geothermics.2013.10.012_bib0130) 1982; 46 Palandri (10.1016/j.geothermics.2013.10.012_bib0110) 2001; 65 Reed (10.1016/j.geothermics.2013.10.012_bib0150) 1984; 48 Fouillac (10.1016/j.geothermics.2013.10.012_bib0050) 1981; 10 Finsterle (10.1016/j.geothermics.2013.10.012_bib0045) 2011; 26 Shock (10.1016/j.geothermics.2013.10.012_bib0205) 1997; 61 Arnorsson (10.1016/j.geothermics.2013.10.012_bib0005) 1982; 46 Fournier (10.1016/j.geothermics.2013.10.012_bib0075) 1979; 3 Reed (10.1016/j.geothermics.2013.10.012_bib0145) 2006 Fournier (10.1016/j.geothermics.2013.10.012_bib0055) 1966; 264 Giggenbach (10.1016/j.geothermics.2013.10.012_bib0080) 1988; 52 Fournier (10.1016/j.geothermics.2013.10.012_bib0065) 1982; 11 Xu (10.1016/j.geothermics.2013.10.012_bib0195) 2011; 37 Reed (10.1016/j.geothermics.2013.10.012_bib0140) 1998; vol. 10 Farrar (10.1016/j.geothermics.2013.10.012_bib0035) 1989 Blanc (10.1016/j.geothermics.2013.10.012_bib0025) 2007 Fournier (10.1016/j.geothermics.2013.10.012_bib0060) 1973; 37 Peiffer (10.1016/j.geothermics.2013.10.012_bib0120) 2014; 51 Farrar (10.1016/j.geothermics.2013.10.012_bib0040) 1985 |
References_xml | – volume: 10 start-page: 55 year: 1981 end-page: 70 ident: bib0050 article-title: Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs publication-title: Geothermics – start-page: 303 year: 1997 end-page: 366 ident: bib0135 article-title: Hydrothermal alteration and its relationship to ore fluid composition publication-title: Geochemistry of Hydrothermal Ore Deposits – volume: 47 start-page: 567 year: 1983 end-page: 577 ident: bib0015 article-title: The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations publication-title: Geochim. Cosmochim. Acta – volume: 11 start-page: 3 year: 1982 end-page: 12 ident: bib0065 article-title: A revised and expanded silica (quartz) geothermometer publication-title: Geotherm. Resour. Counc. Bullet. – volume: 3 start-page: 221 year: 1979 end-page: 224 ident: bib0075 article-title: A revised equation for the Na/K geothermometer publication-title: Geotherm. Resour. Trans. – volume: 27 start-page: 2107 year: 2012 end-page: 2116 ident: bib0020 article-title: Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials publication-title: Appl. Geochem. – year: 2010 ident: bib0125 article-title: Spreadsheets for geothermal water and gas geochemistry publication-title: Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University – year: 1989 ident: bib0035 article-title: Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1986 – volume: 1992 start-page: 899 year: 1992 end-page: 947 ident: bib0095 article-title: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 publication-title: Comput. Geosci. – year: 2007 ident: bib0155 article-title: Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems (data0.ymp.R5). Report ANL-WIS-GS-000003 REV 01 – volume: 35 start-page: 663 year: 2011 end-page: 666 ident: bib0165 article-title: Integrating multicomponent chemical geothermometry with parameter estimation computations for geothermal exploration publication-title: Geotherm. Resour. Counc. Trans. – volume: 51 start-page: 154 year: 2014 end-page: 169 ident: bib0120 article-title: Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area publication-title: Geothermics – year: 2013 ident: bib0180 article-title: Assessing thermo-hydrodynamic-chemical processes at the Dixie Valley geothermal area: a reactive transport modeling approach publication-title: Proceedings 38th Workshop on Geothermal Reservoir Engineering, Stanford Univ. Report SGP-TR-198 – year: 2007 ident: bib0025 article-title: THERMODDEM, a database devoted to waste minerals – volume: 45 start-page: 1199 year: 1981 end-page: 1207 ident: bib0105 article-title: Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais publication-title: Geochim. Cosmochim. Acta – volume: 47 start-page: 547 year: 1983 end-page: 566 ident: bib0010 article-title: The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions publication-title: Geochim. Cosmochim. Acta – year: 2008 ident: bib0030 article-title: PEST – Model-Independent Parameter Estimation. Watermark Numerical Computing, Corinda 4075, Brisbane, Australia – volume: 51 start-page: 130 year: 2014 end-page: 141 ident: bib0185 article-title: Reactive transport modeling of the Dixie Valley geothermal area: insights on flow and geothermometry publication-title: Geothermics – year: 1985 ident: bib0040 article-title: Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1982–1984 – year: 2012 ident: bib0160 article-title: A thermal–hydrological–chemical model for the Enhanced Geothermal System Demonstration Project at Newberry Volcano, Oregon publication-title: Proceedings Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University – volume: 40 start-page: 91 year: 2011 end-page: 101 ident: bib0170 article-title: Geochemical modeling of the near-surface hydrothermal system beneath the southern moat of Long Valley Caldera, California publication-title: Geothermics – volume: 16 start-page: 309 year: 1998 end-page: 343 ident: bib0085 article-title: An internally consistent thermodynamic dataset for phases of petrological interest publication-title: J. Met. Geol. – volume: 264 start-page: 685 year: 1966 end-page: 697 ident: bib0055 article-title: Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells publication-title: Am. J. Sci. – volume: 65 start-page: 1741 year: 2001 end-page: 1767 ident: bib0110 article-title: Reconstruction of in situ composition of sedimentary formation waters publication-title: Geochim. Cosmochim. Acta – year: 2006 ident: bib0145 article-title: SOLTHERM.H06, a database of equilibrium constants for minerals and aqueous species – volume: 37 start-page: 1255 year: 1973 end-page: 1275 ident: bib0060 article-title: An empirical Na–K–Ca geothermometer for natural waters publication-title: Geochim. Cosmochim. Acta – volume: 12 start-page: 161 year: 1983 end-page: 169 ident: bib0100 article-title: Modelling of the chemical composition of alkaline hot waters publication-title: Geothermics – volume: 62 start-page: 1083 year: 1998 end-page: 1091 ident: bib0115 article-title: Theoretical chemical thermometry on geothermal waters: problems and methods publication-title: Geochim. Cosmochim. Acta – volume: 46 start-page: 1513 year: 1982 end-page: 1532 ident: bib0005 article-title: The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370 publication-title: Geochim. Cosmochim. Acta – volume: 37 start-page: 763 year: 2011 end-page: 774 ident: bib0195 article-title: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions publication-title: Comput. Geosci. – volume: 26 start-page: 959 year: 2011 end-page: 968 ident: bib0045 article-title: Solving iTOUGH2 simulation and optimization problems using the PEST protocol publication-title: Environ. Model. Softw. – volume: 48 start-page: 1479 year: 1984 end-page: 1492 ident: bib0150 article-title: Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution publication-title: Geochim. Cosmochim. Acta – volume: 37 start-page: 597 year: 2008 end-page: 621 ident: bib0175 article-title: SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields publication-title: Geothermics – volume: 5 start-page: 41 year: 1977 end-page: 50 ident: bib0070 article-title: Chemical geothermometers and mixing models for geothermal systems publication-title: Geothermics – volume: 52 start-page: 2749 year: 1988 end-page: 2765 ident: bib0080 article-title: Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators publication-title: Geochim. Cosmochim. Acta – volume: 32 start-page: 145 year: 2006 end-page: 156 ident: bib0200 article-title: TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO publication-title: Comput. Geosci. – volume: vol. 10 start-page: 109 year: 1998 end-page: 124 ident: bib0140 article-title: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes publication-title: Techniques in Hydrothermal Ore Deposits Geology, Reviews in Economic Geology – year: 1979 ident: bib0190 article-title: Calculation of chemical equilibrium between aqueous solution and minerals; the EQ3/6 software package. UCRL-52658 – volume: 46 start-page: 513 year: 1982 end-page: 528 ident: bib0130 article-title: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase publication-title: Geochim. Cosmochim. Acta – volume: 61 start-page: 907 year: 1997 end-page: 950 ident: bib0205 article-title: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes publication-title: Geochim. Cosmochim. Acta – year: 1985 ident: 10.1016/j.geothermics.2013.10.012_bib0040 – volume: 1992 start-page: 899 issue: 18 year: 1992 ident: 10.1016/j.geothermics.2013.10.012_bib0095 article-title: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000bar and 0 to 1000°C publication-title: Comput. Geosci. doi: 10.1016/0098-3004(92)90029-Q – volume: 12 start-page: 161 year: 1983 ident: 10.1016/j.geothermics.2013.10.012_bib0100 article-title: Modelling of the chemical composition of alkaline hot waters publication-title: Geothermics doi: 10.1016/0375-6505(83)90026-3 – volume: 46 start-page: 513 year: 1982 ident: 10.1016/j.geothermics.2013.10.012_bib0130 article-title: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90155-7 – volume: 47 start-page: 547 year: 1983 ident: 10.1016/j.geothermics.2013.10.012_bib0010 article-title: The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(83)90277-6 – volume: 37 start-page: 1255 year: 1973 ident: 10.1016/j.geothermics.2013.10.012_bib0060 article-title: An empirical Na–K–Ca geothermometer for natural waters publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(73)90060-4 – year: 2010 ident: 10.1016/j.geothermics.2013.10.012_bib0125 article-title: Spreadsheets for geothermal water and gas geochemistry – start-page: 303 year: 1997 ident: 10.1016/j.geothermics.2013.10.012_bib0135 article-title: Hydrothermal alteration and its relationship to ore fluid composition – volume: 11 start-page: 3 issue: 10 year: 1982 ident: 10.1016/j.geothermics.2013.10.012_bib0065 article-title: A revised and expanded silica (quartz) geothermometer publication-title: Geotherm. Resour. Counc. Bullet. – volume: 32 start-page: 145 year: 2006 ident: 10.1016/j.geothermics.2013.10.012_bib0200 article-title: TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.06.014 – volume: vol. 10 start-page: 109 year: 1998 ident: 10.1016/j.geothermics.2013.10.012_bib0140 article-title: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes – volume: 51 start-page: 154 year: 2014 ident: 10.1016/j.geothermics.2013.10.012_bib0120 article-title: Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area publication-title: Geothermics doi: 10.1016/j.geothermics.2013.12.002 – volume: 10 start-page: 55 year: 1981 ident: 10.1016/j.geothermics.2013.10.012_bib0050 article-title: Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs publication-title: Geothermics doi: 10.1016/0375-6505(81)90025-0 – volume: 48 start-page: 1479 year: 1984 ident: 10.1016/j.geothermics.2013.10.012_bib0150 article-title: Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(84)90404-6 – year: 2008 ident: 10.1016/j.geothermics.2013.10.012_bib0030 – year: 2012 ident: 10.1016/j.geothermics.2013.10.012_bib0160 article-title: A thermal–hydrological–chemical model for the Enhanced Geothermal System Demonstration Project at Newberry Volcano, Oregon – year: 2007 ident: 10.1016/j.geothermics.2013.10.012_bib0025 – volume: 37 start-page: 597 year: 2008 ident: 10.1016/j.geothermics.2013.10.012_bib0175 article-title: SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields publication-title: Geothermics doi: 10.1016/j.geothermics.2008.07.004 – year: 2006 ident: 10.1016/j.geothermics.2013.10.012_bib0145 – volume: 40 start-page: 91 issue: 2011 year: 2011 ident: 10.1016/j.geothermics.2013.10.012_bib0170 article-title: Geochemical modeling of the near-surface hydrothermal system beneath the southern moat of Long Valley Caldera, California publication-title: Geothermics doi: 10.1016/j.geothermics.2011.03.001 – year: 2013 ident: 10.1016/j.geothermics.2013.10.012_bib0180 article-title: Assessing thermo-hydrodynamic-chemical processes at the Dixie Valley geothermal area: a reactive transport modeling approach – year: 1989 ident: 10.1016/j.geothermics.2013.10.012_bib0035 – volume: 264 start-page: 685 year: 1966 ident: 10.1016/j.geothermics.2013.10.012_bib0055 article-title: Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells publication-title: Am. J. Sci. doi: 10.2475/ajs.264.9.685 – volume: 47 start-page: 567 year: 1983 ident: 10.1016/j.geothermics.2013.10.012_bib0015 article-title: The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(83)90278-8 – volume: 51 start-page: 130 year: 2014 ident: 10.1016/j.geothermics.2013.10.012_bib0185 article-title: Reactive transport modeling of the Dixie Valley geothermal area: insights on flow and geothermometry publication-title: Geothermics doi: 10.1016/j.geothermics.2013.12.003 – volume: 16 start-page: 309 year: 1998 ident: 10.1016/j.geothermics.2013.10.012_bib0085 article-title: An internally consistent thermodynamic dataset for phases of petrological interest publication-title: J. Met. Geol. doi: 10.1111/j.1525-1314.1998.00140.x – volume: 3 start-page: 221 year: 1979 ident: 10.1016/j.geothermics.2013.10.012_bib0075 article-title: A revised equation for the Na/K geothermometer publication-title: Geotherm. Resour. Trans. – volume: 52 start-page: 2749 year: 1988 ident: 10.1016/j.geothermics.2013.10.012_bib0080 article-title: Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90143-3 – volume: 37 start-page: 763 year: 2011 ident: 10.1016/j.geothermics.2013.10.012_bib0195 article-title: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.10.007 – volume: 45 start-page: 1199 year: 1981 ident: 10.1016/j.geothermics.2013.10.012_bib0105 article-title: Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(81)90143-5 – year: 1979 ident: 10.1016/j.geothermics.2013.10.012_bib0190 – volume: 62 start-page: 1083 year: 1998 ident: 10.1016/j.geothermics.2013.10.012_bib0115 article-title: Theoretical chemical thermometry on geothermal waters: problems and methods publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00037-4 – volume: 5 start-page: 41 year: 1977 ident: 10.1016/j.geothermics.2013.10.012_bib0070 article-title: Chemical geothermometers and mixing models for geothermal systems publication-title: Geothermics doi: 10.1016/0375-6505(77)90007-4 – volume: 65 start-page: 1741 year: 2001 ident: 10.1016/j.geothermics.2013.10.012_bib0110 article-title: Reconstruction of in situ composition of sedimentary formation waters publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00555-5 – volume: 61 start-page: 907 year: 1997 ident: 10.1016/j.geothermics.2013.10.012_bib0205 article-title: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(96)00339-0 – year: 2007 ident: 10.1016/j.geothermics.2013.10.012_bib0155 – volume: 35 start-page: 663 year: 2011 ident: 10.1016/j.geothermics.2013.10.012_bib0165 article-title: Integrating multicomponent chemical geothermometry with parameter estimation computations for geothermal exploration publication-title: Geotherm. Resour. Counc. Trans. – volume: 27 start-page: 2107 year: 2012 ident: 10.1016/j.geothermics.2013.10.012_bib0020 article-title: Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.06.002 – volume: 46 start-page: 1513 year: 1982 ident: 10.1016/j.geothermics.2013.10.012_bib0005 article-title: The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370°C publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90311-8 – volume: 26 start-page: 959 year: 2011 ident: 10.1016/j.geothermics.2013.10.012_bib0045 article-title: Solving iTOUGH2 simulation and optimization problems using the PEST protocol publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.02.008 |
SSID | ssj0007570 |
Score | 2.395153 |
Snippet | •Computer program (GeoT) automates existing geothermometry method based on mineral saturation indices.•Automatic reconstruction of deep fluid composition... The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | Computational fluid dynamics Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Exploration Fluid flow Fluids Geothermal Geothermics Geothermometer Geothermometry Mathematical models Minerals Mixing Numerical modeling Optimization Reservoirs |
Title | Integrated multicomponent solute geothermometry |
URI | https://dx.doi.org/10.1016/j.geothermics.2013.10.012 https://www.proquest.com/docview/1567056224 https://www.proquest.com/docview/1677999221 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB4WBRVEfOL6WCp4rWvSpDHgRcRlddGDD_RW0iTVFfeBrgcv_nZn-thVRBG8tLRNSJhMJ9-Qb2YAdrn0MfOehZkVcSiUkqHRyoTSyjRVxkdGUDTy-UXcvhFnd_KuBsdVLAzRKkvbX9j03FqXb5qlNJvDbrd5RdVbEV9IOpAhH5Qi2IUiLd97n9A8lMwLxlHjkFrPwM6E43Xv8zCnXtdS5m4W7RHRi_Gf9qj5oXlByWVFyYtv1jvfklqLsFBiyeComO4S1Hx_GWbLsuYPbyvQPK2SQbggZw4SgXzQx30myFXOB9XUBj0_en5bhZvWyfVxOywrJIRGiP1RKOOMRykiT6tMvO-ty4QWLsUrArFI2CyLnEGPyHKLwNBqnnnNPDNOS-28dtEaTPVx2HUImJDOpdwYpbwQnqeWm0hLhABWoRMb1eGgkkliy_ThVMXiKal4Yo_JJ3EmJE76hOKsAx93HRY5NP7S6bASfPJFIRK09X_p3viyWOOBOdUPEOygDjvV6iX4R9Exien7wetLgh6tIljIxS9tYqU0pfRlG_-b5ybM4ZMoCMBbMDV6fvXbCHNGaSPX4wZMH5122hd071zedj4AIaEBhA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB3RIEElVBUoaiikG4nrEuy117HUSxQVJYXkQiJxs7y2tw0qSQThwL_vzH4EEGqF1Msedj2yNfaO38jP8wBOuAwpC4HFuRNpLJSSsdXKxtLJLFM2JFbQbeTROB1MxY9reb0B_fouDNEqq9hfxvQiWldvOpU3O8vZrHNF6q2ILyQdyFAO-g42qTqVbMBmb3gxGK8DspKFZhy1j8lgC9pPNK-fobjpdDtzVLybJafE9WL8b9vUztLeo_PyUvXiVQAvdqXzj_ChgpNRrxzxLmyE-R5sV8rmvx73oTOs60H4qCAPEod8McetJipWXYjqoS1uw-ru8RNMz79P-oO4EkmIrRBnq1imOU8yBJ9O2fQsOJ8LLXyGT8RiiXB5nniLSZHjDrGh0zwPmgVmvZbaB-2TA2jMsdvPEDEhvc-4tUoFIQLPHLeJlogCnMI8NmlCt_aJcVUFcRKy-G1qqtiNeeZOQ-6kT-jOJvC16bIso_EWo2-1482LNWEw3L_FvPVistYdc5IQEKzbhHY9ewZ_KjopsfOweLg3mNQqQoZc_KNNqpSmqr7s8P_G-RW2B5PRpbkcji--wHv8Iko-8BE0VncP4RhRzyprVav6D9V9ApI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+multicomponent+solute+geothermometry&rft.jtitle=Geothermics&rft.au=Spycher%2C+N.&rft.au=Peiffer%2C+L.&rft.au=Sonnenthal%2C+E.L.&rft.au=Saldi%2C+G.&rft.date=2014-07-01&rft.issn=0375-6505&rft.volume=51&rft.spage=113&rft.epage=123&rft_id=info:doi/10.1016%2Fj.geothermics.2013.10.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geothermics_2013_10_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon |