Constructing All Carbon Nanotube Hollow Fiber Membranes with Improved Performance in Separation and Antifouling for Water Treatment
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diamete...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 14; pp. 8062 - 8068 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–2 h–1 at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. |
---|---|
AbstractList | Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86±5% and a permeation flux of about 460±50 L m(-2) h(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86±5% and a permeation flux of about 460±50 L m(-2) h(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–2 h–1 at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–² h–¹ at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 plus or minus 5% and a permeation flux of about 460 plus or minus 50 L m super(-2) h super(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86±5% and a permeation flux of about 460±50 L m(-2) h(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m... h... at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Zhao, Huimin Chen, Shuo Quan, Xie Fan, Xinfei Wei, Gaoliang Yu, Hongtao |
AuthorAffiliation | School of Environmental Science and Technology Dalian University of Technology |
AuthorAffiliation_xml | – name: School of Environmental Science and Technology – name: Dalian University of Technology |
Author_xml | – sequence: 1 givenname: Gaoliang surname: Wei fullname: Wei, Gaoliang – sequence: 2 givenname: Hongtao surname: Yu fullname: Yu, Hongtao – sequence: 3 givenname: Xie surname: Quan fullname: Quan, Xie email: quanxie@dlut.edu.cn – sequence: 4 givenname: Shuo surname: Chen fullname: Chen, Shuo – sequence: 5 givenname: Huimin surname: Zhao fullname: Zhao, Huimin – sequence: 6 givenname: Xinfei surname: Fan fullname: Fan, Xinfei |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28691262$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24938619$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0k1vFCEcBnBiauy2evALGBJjooexvAwMc9xsrG1SXxJr9DYBBpSGgS0wbnruF5e1WzXVRE9cfjzw8OcA7IUYDACPMXqJEcFHJjOEGOKbe2CBGUENEwzvgQVCmDY95Z_3wUHOFwghQpF4APZJ21PBcb8A16sYckmzLi58gUvv4UomFQN8K0MsszLwJHofN_DYKZPgGzOpJIPJcOPKV3g6rVP8Zkb43iQb0ySDNtAF-MGsZZLF1RwZRrgMxdk4--0RlcFPstSs82RkmUwoD8F9K302j3brIfh4_Op8ddKcvXt9ulqeNbKlfWmsVsIKZSzCmHNERddSbbkWY2cJNmRkfe3dSaOYtq3CnRhVJ3jPRqG7lmF6CJ7f5NZLX84ml2FyWRvva6E454FsHwj3mPX_pJhxhAmhPf0P2rK2PjjilT69Qy_inELtvFUdEx2m28AnOzWryYzDOrlJpqvhdmgVPNsBmbX0tg5Eu_zL1c6YcFLd0Y3TKeacjB20Kz-mUpJ0fsBo2H6f4ef3qTte3NlxG_o3u7uF1Pm3Hn-47zljz9s |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1007_s11783_020_1303_4 crossref_primary_10_1007_s11783_024_1763_z crossref_primary_10_1016_j_jclepro_2021_125789 crossref_primary_10_1021_acsestengg_3c00175 crossref_primary_10_1016_j_cej_2015_10_105 crossref_primary_10_1021_acsestengg_1c00015 crossref_primary_10_1002_admt_202001189 crossref_primary_10_1016_j_cej_2022_138476 crossref_primary_10_1007_s10311_018_0778_8 crossref_primary_10_1016_j_jes_2016_12_023 crossref_primary_10_1039_D2EN00545J crossref_primary_10_1016_j_jwpe_2024_105685 crossref_primary_10_1016_j_cej_2019_04_136 crossref_primary_10_1021_acs_est_8b06422 crossref_primary_10_1016_j_jhazmat_2017_05_026 crossref_primary_10_1039_C6RA07705F crossref_primary_10_1016_j_jes_2016_04_022 crossref_primary_10_1039_C8TA01286E crossref_primary_10_1016_j_memsci_2019_04_026 crossref_primary_10_1021_acsanm_8b00762 crossref_primary_10_1021_acs_nanolett_8b01907 crossref_primary_10_1016_j_carbon_2016_08_077 crossref_primary_10_1039_C6EW00193A crossref_primary_10_1039_C6EN00364H crossref_primary_10_3390_min11020179 crossref_primary_10_1016_j_memsci_2022_120719 crossref_primary_10_1021_acsami_5b01183 crossref_primary_10_1134_S0965545X18030161 crossref_primary_10_1021_acs_chemrev_0c00080 crossref_primary_10_1016_j_apsusc_2019_144664 crossref_primary_10_1016_j_jece_2024_115210 crossref_primary_10_1016_j_memsci_2020_119000 crossref_primary_10_1016_j_coco_2020_100379 crossref_primary_10_1016_j_colsurfb_2019_06_051 crossref_primary_10_1016_S1872_5805_16_60021_5 crossref_primary_10_1016_j_surfcoat_2016_04_054 crossref_primary_10_1016_j_seppur_2015_09_044 crossref_primary_10_1021_acs_est_7b05341 crossref_primary_10_1007_s11783_019_1103_x crossref_primary_10_1016_j_memsci_2017_06_046 crossref_primary_10_1016_j_watres_2018_12_012 crossref_primary_10_1016_j_memsci_2015_05_073 crossref_primary_10_1016_j_diamond_2024_111859 crossref_primary_10_1016_j_memsci_2020_117935 crossref_primary_10_1186_s11671_021_03542_x crossref_primary_10_1016_j_memsci_2019_117613 crossref_primary_10_1002_smll_201800615 crossref_primary_10_1016_j_seppur_2017_12_058 |
Cites_doi | 10.1021/es302867f 10.1021/es901132x 10.1002/adfm.201100983 10.1016/j.memsci.2011.04.045 10.1016/S0376-7388(98)00361-5 10.1016/j.memsci.2008.07.047 10.1039/c1jm11798j 10.1016/j.memsci.2005.12.025 10.1016/j.watres.2007.05.036 10.1002/adma.201001863 10.1021/es300995x 10.1016/j.memsci.2007.02.017 10.1021/jp111844j 10.1021/es202026v 10.1002/adfm.200901435 10.1021/es300514s 10.1021/es4013917 10.1016/j.memsci.2009.03.018 10.1016/j.memsci.2010.10.070 10.1016/j.memsci.2007.07.025 10.1021/es801777n 10.1002/anie.201006633 10.1021/es400356z 10.1021/es400571g 10.1021/es203197e 10.1038/nature06599 10.1016/S0376-7388(01)00455-0 10.1021/es1005785 10.1016/j.memsci.2010.08.013 10.1021/es403270n 10.1016/j.memsci.2009.02.040 10.1021/nn101558x |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Chemical Society Jul 15, 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Jul 15, 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G 7S9 L.6 |
DOI | 10.1021/es500506w |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 8068 |
ExternalDocumentID | 3381320501 24938619 28691262 10_1021_es500506w a55885357 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-a439t-fcb8f8bef01166038743cf6c8d7f21e2d595857aeb5cf4b178db78695d8c74513 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 09:00:29 EDT 2025 Fri Jul 11 16:40:14 EDT 2025 Fri Jul 11 10:37:42 EDT 2025 Mon Jun 30 03:19:45 EDT 2025 Thu Apr 03 07:02:05 EDT 2025 Wed Apr 02 07:13:59 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 04:28:48 EDT 2025 Thu Aug 27 13:41:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Membrane separation Polymeric membrane Water treatment Fouling Multiwalled nanotube Vinylidene fluoride polymer Antifouling membrane Hollow fiber Carbon nanotubes Performance Nanostructured materials Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a439t-fcb8f8bef01166038743cf6c8d7f21e2d595857aeb5cf4b178db78695d8c74513 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24938619 |
PQID | 1547587133 |
PQPubID | 45412 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000219159 proquest_miscellaneous_1560122393 proquest_miscellaneous_1545424906 proquest_journals_1547587133 pubmed_primary_24938619 pascalfrancis_primary_28691262 crossref_citationtrail_10_1021_es500506w crossref_primary_10_1021_es500506w acs_journals_10_1021_es500506w |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-15 |
PublicationDateYYYYMMDD | 2014-07-15 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Shannon M. A. (ref1/cit1) 2008; 452 Rodrigues D. F. (ref23/cit23) 2010; 44 Hancock N. T. (ref14/cit14) 2009; 43 Do V. T. (ref8/cit8) 2012; 46 He X. Z. (ref27/cit27) 2011; 378 Liu R. X. (ref5/cit5) 2007; 294 Liang H. W. (ref20/cit20) 2011; 21 Yang Y. (ref16/cit16) 2011; 50 Ma N. (ref4/cit4) 2009; 335 Liang H. W. (ref17/cit17) 2010; 22 Ma N. (ref3/cit3) 2009; 336 Zhang X. W. (ref18/cit18) 2009; 19 Li H. J. (ref12/cit12) 2006; 279 Vecitis C. D. (ref26/cit26) 2011; 115 Hu M. (ref2/cit2) 2013; 47 Shin D. H. (ref9/cit9) 2011; 376 Decarolis J. (ref13/cit13) 2001; 191 Yip N. Y. (ref15/cit15) 2011; 45 Huang H. O. (ref10/cit10) 2012; 46 Han G. (ref7/cit7) 2013; 47 Huang H. O. (ref11/cit11) 2007; 41 Sun S. P. (ref19/cit19) 2013; 47 Zhu L. W. (ref30/cit30) 2011; 21 Comerton A. M. (ref31/cit31) 2007; 303 Simone S. (ref28/cit28) 2010; 364 Li X. N. (ref24/cit24) 2011; 45 Pasquini L. M. (ref22/cit22) 2012; 46 Pan B. (ref25/cit25) 2008; 42 Vecitis C. D. (ref21/cit21) 2010; 4 Wang P. (ref29/cit29) 2013; 47 Qin J. J. (ref6/cit6) 1999; 157 Tian J. Y. (ref32/cit32) 2008; 325 |
References_xml | – volume: 46 start-page: 13184 year: 2012 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es302867f – volume: 43 start-page: 6769 year: 2009 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es901132x – volume: 21 start-page: 3851 year: 2011 ident: ref20/cit20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100983 – volume: 376 start-page: 302 year: 2011 ident: ref9/cit9 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.045 – volume: 157 start-page: 35 year: 1999 ident: ref6/cit6 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00361-5 – volume: 325 start-page: 262 year: 2008 ident: ref32/cit32 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.07.047 – volume: 21 start-page: 12503 year: 2011 ident: ref30/cit30 publication-title: J. Mater. Chem. doi: 10.1039/c1jm11798j – volume: 279 start-page: 328 year: 2006 ident: ref12/cit12 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.12.025 – volume: 41 start-page: 3823 year: 2007 ident: ref11/cit11 publication-title: Water Res. doi: 10.1016/j.watres.2007.05.036 – volume: 22 start-page: 4691 year: 2010 ident: ref17/cit17 publication-title: Adv. Mater. doi: 10.1002/adma.201001863 – volume: 46 start-page: 10711 year: 2012 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es300995x – volume: 294 start-page: 103 year: 2007 ident: ref5/cit5 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.02.017 – volume: 115 start-page: 3621 year: 2011 ident: ref26/cit26 publication-title: J. Phys. Chem. C doi: 10.1021/jp111844j – volume: 45 start-page: 8498 year: 2011 ident: ref24/cit24 publication-title: Environ. Sci. Technol. doi: 10.1021/es202026v – volume: 19 start-page: 3731 year: 2009 ident: ref18/cit18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901435 – volume: 46 start-page: 6297 year: 2012 ident: ref22/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/es300514s – volume: 47 start-page: 8070 year: 2013 ident: ref7/cit7 publication-title: Environ. Sci. Technol. doi: 10.1021/es4013917 – volume: 336 start-page: 109 year: 2009 ident: ref3/cit3 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.03.018 – volume: 378 start-page: 1 year: 2011 ident: ref27/cit27 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.10.070 – volume: 303 start-page: 267 year: 2007 ident: ref31/cit31 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.07.025 – volume: 42 start-page: 9005 year: 2008 ident: ref25/cit25 publication-title: Environ. Sci. Technol. doi: 10.1021/es801777n – volume: 50 start-page: 1 year: 2011 ident: ref16/cit16 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201006633 – volume: 47 start-page: 6272 year: 2013 ident: ref29/cit29 publication-title: Environ. Sci. Technol. doi: 10.1021/es400356z – volume: 47 start-page: 3715 year: 2013 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es400571g – volume: 45 start-page: 10273 year: 2011 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es203197e – volume: 452 start-page: 301 year: 2008 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature06599 – volume: 191 start-page: 165 year: 2001 ident: ref13/cit13 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00455-0 – volume: 44 start-page: 4583 year: 2010 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es1005785 – volume: 364 start-page: 219 year: 2010 ident: ref28/cit28 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.08.013 – volume: 47 start-page: 13167 year: 2013 ident: ref19/cit19 publication-title: Environ. Sci. Technol. doi: 10.1021/es403270n – volume: 335 start-page: 58 year: 2009 ident: ref4/cit4 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.02.040 – volume: 4 start-page: 5471 year: 2010 ident: ref21/cit21 publication-title: ACS Nano doi: 10.1021/nn101558x |
SSID | ssj0002308 |
Score | 2.3600645 |
Snippet | Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8062 |
SubjectTerms | Adsorption Applied sciences Biofouling - prevention & control carbon nanotubes Chemical engineering decontamination disinfection Disinfection & disinfectants Drinking water and swimming-pool water. Desalination Electrochemical Techniques electrochemistry engineering Exact sciences and technology fluorides General purification processes Hollow fiber membranes Membrane separation (reverse osmosis, dialysis...) Membranes Membranes, Artificial Microspheres Nanotubes Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Permeability Pollution Polystyrenes - chemistry Polyvinyls - chemistry Porosity Rhodamines - isolation & purification Wastewaters Water Purification - methods Water treatment Water treatment and pollution |
Title | Constructing All Carbon Nanotube Hollow Fiber Membranes with Improved Performance in Separation and Antifouling for Water Treatment |
URI | http://dx.doi.org/10.1021/es500506w https://www.ncbi.nlm.nih.gov/pubmed/24938619 https://www.proquest.com/docview/1547587133 https://www.proquest.com/docview/1545424906 https://www.proquest.com/docview/1560122393 https://www.proquest.com/docview/2000219159 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N8QKa-BiMFUZlPh54yWgc23Eeq7KqQhpC2ib6VtmxjRAlmZZWk3jlH-eu-WgntvKci-PYd77f3fnuAN7rwJ1F1YDMO9CRUJZHBpFppFAfWJlQwJCSk0-_qMmF-DyV0x14d0cEn8cffSWpSIm6vgf3udIpWVjD0Vl33CKG1m2bgixR07Z80OarpHry6obq2bs0Fa5CqNtX3I0vV3pm_Bg-tdk69fWSn8fLhT3Of_9bvHHbLzyBRw3OZMOaMZ7Cji_24eFG9cF9ODhZJ7khaSPl1TP4Q10867qyxXc2nM_ZyFzZsmB4FJeLpfVsgtxTXrMxXTdhp_4Xmtx4ZDJy6rLaTeEd-7rOSWA_Cnbm6zLjOI4pHBvSLSVqx46fQDL2DUHvFTtv770_h4vxyfloEjXNGiKDmGYRhdzqoK0PFNlRFBQXSR5Url0aeOy5kxlaJqnxVuZB2DjVzqZaZdLpPBUyTg5gtygLfwhsEEySGS5M6rxwxlk9QI1itIutSHngPejjbs4aYatmqzg6j2fdMvfgQ7vRs7wpdU4dN-a3kb7tSC_r-h63EfVvcEtHyfEHYq5wRkct-2xMSwo0xsgJ0IM33WOUXgrJ4K6UyxWNFGgBD9Q2GkXxzyTbMg4lXKHuQWzagxc1-64nKbJEo5388n_L9goeIBwU5LmO5RHsIqP51wi5Fra_Erm_xiwmbQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgCEeBQKgRIMAonLlqzX6_UeOEShUUqbCqmpyG2x1zaqGjZVN1EEV_4Ff4U_x3hfSVEpp0qcM_JOxjOez54XwCthqVboGlB5O8JjXFFPIjL1OPoDFQYuYOiKk4cHfHDEPozD8Rr8rGthkIkcV8qLIP6yu4D_1uSh61XCF1UC5Z75tsDrWf5u9z3u5WtK-zuj3sCrJgh4Eh3tzLOpElYoY124gbtILQtSy1OhI0t9Q3UYI1yOpFFhapnyI6FVJHgcapFGLPQDXPcaXEfQQ93Frts7bE55hO6ino4QB3xcdy1aZdV5vDQ_5_Fun8ochW_LqRl_h7WFe-vfhV-NYIqslpPt-Uxtp9__6Bn5f0ruHtypUDXplmZwH9ZMtgG3VnotbsDmzrKkD0mrMy1_AD_czNKyi272hXQnE9KTZ2qaEXQ809lcGTJAW5kuSN8l15Ch-apQrCYn7gmblI8yRpOPywoMcpyRQ1M2Vcd1ZKZJ1-VkueHz-AkkI58Q4p-RUZ3l_xCOrkQ8m7CeTTPzGEjHyiCWlMlIG6alVqKD_lMK7SsWUUtb0MZdTaqjJU-KrAHqJ822tuBNrV9JWjV2d_NFJheRvmxIT8tuJhcRtc8paUNJ8Q_4lCNHW7XWrrAVMrx6uiePFrxofsazygWgcFem84ImZHjf7_DLaLiL9gbxJeu48jL0tIjEW_CotJolkywOBPfjJ_8S23O4MRgN95P93YO9p3ATgTBzb_Z-uAXrqHTmGYLNmWoXVk_g81Uby29yu4kk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR3LbhMxcFSKhECIR6EQKMEgkHrZkvV6vd4DhyhtlFJaVWorclvstV1VhE3UTRTBlf_gV_g1xvtKiko5VeKckXcyb3teAG-EpVqha0Dh7QiPcUU9iZGpx9EfqDBwCUPXnLx_wAcn7MMwHK7Az7oXBpHI8aS8SOI7rZ5oW00Y8N-ZPHTzSvi8KqLcM9_meEXL3-9uIz_fUtrfOe4NvGqLgCfR2U49myphhTLWpRy4y9ayILU8FTqy1DdUhzGGzJE0KkwtU34ktIoEj0Mt0oiFfoDn3oCbLj3oLnfd3lFj6TF8F_WGhDjgw3py0TKqzuul-QWvd3cic2SALTdn_D20LVxc_z78aohTVLZ82ZpN1Vb6_Y-5kf8v9R7AvSq6Jt1SHR7CisnW4M7SzMU1WN9ZtPYhaGXb8kfww-0uLafpZqekOxqRnjxX44ygAxpPZ8qQAerMeE76rsiG7JuvCklrcuKeskn5OGM0OVx0YpCzjByZcrg6niMzTbquNsstocdPIBj5hKH-OTmuq_0fw8m1kGcdVrNxZp4C6VgZxJIyGWnDtNRKdNCPSqF9xSJqaQvayNmkMjF5UlQPUD9p2NqCzVrGkrQa8O72jIwuA33dgE7KqSaXAbUvCGoDSfEP-JQjRhu15C6hFTK8grqnjxa8an5Gm-USUciV8ayACRne-zv8Khjusr5BfMU5rs0MPS5G5C14UmrOAkkWB4L78bN_ke0l3Drc7icfdw_2nsNtjIeZe7r3ww1YRZkzLzDmnKp2ofgEPl-3rvwGOo2Lpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+all+carbon+nanotube+hollow+fiber+membranes+with+improved+performance+in+separation+and+antifouling+for+water+treatment&rft.jtitle=Environmental+science+%26+technology&rft.au=Wei%2C+Gaoliang&rft.au=Yu%2C+Hongtao&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Shuo&rft.date=2014-07-15&rft.eissn=1520-5851&rft.volume=48&rft.issue=14&rft.spage=8062&rft_id=info:doi/10.1021%2Fes500506w&rft_id=info%3Apmid%2F24938619&rft.externalDocID=24938619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |