Constructing All Carbon Nanotube Hollow Fiber Membranes with Improved Performance in Separation and Antifouling for Water Treatment

Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diamete...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 14; pp. 8062 - 8068
Main Authors Wei, Gaoliang, Yu, Hongtao, Quan, Xie, Chen, Shuo, Zhao, Huimin, Fan, Xinfei
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–2 h–1 at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.
AbstractList Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86±5% and a permeation flux of about 460±50 L m(-2) h(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86±5% and a permeation flux of about 460±50 L m(-2) h(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–2 h–1 at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–² h–¹ at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 plus or minus 5% and a permeation flux of about 460 plus or minus 50 L m super(-2) h super(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86±5% and a permeation flux of about 460±50 L m(-2) h(-1) at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation.
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m... h... at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. (ProQuest: ... denotes formulae/symbols omitted.)
Author Zhao, Huimin
Chen, Shuo
Quan, Xie
Fan, Xinfei
Wei, Gaoliang
Yu, Hongtao
AuthorAffiliation School of Environmental Science and Technology
Dalian University of Technology
AuthorAffiliation_xml – name: School of Environmental Science and Technology
– name: Dalian University of Technology
Author_xml – sequence: 1
  givenname: Gaoliang
  surname: Wei
  fullname: Wei, Gaoliang
– sequence: 2
  givenname: Hongtao
  surname: Yu
  fullname: Yu, Hongtao
– sequence: 3
  givenname: Xie
  surname: Quan
  fullname: Quan, Xie
  email: quanxie@dlut.edu.cn
– sequence: 4
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
– sequence: 5
  givenname: Huimin
  surname: Zhao
  fullname: Zhao, Huimin
– sequence: 6
  givenname: Xinfei
  surname: Fan
  fullname: Fan, Xinfei
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28691262$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24938619$$D View this record in MEDLINE/PubMed
BookMark eNqN0k1vFCEcBnBiauy2evALGBJjooexvAwMc9xsrG1SXxJr9DYBBpSGgS0wbnruF5e1WzXVRE9cfjzw8OcA7IUYDACPMXqJEcFHJjOEGOKbe2CBGUENEwzvgQVCmDY95Z_3wUHOFwghQpF4APZJ21PBcb8A16sYckmzLi58gUvv4UomFQN8K0MsszLwJHofN_DYKZPgGzOpJIPJcOPKV3g6rVP8Zkb43iQb0ySDNtAF-MGsZZLF1RwZRrgMxdk4--0RlcFPstSs82RkmUwoD8F9K302j3brIfh4_Op8ddKcvXt9ulqeNbKlfWmsVsIKZSzCmHNERddSbbkWY2cJNmRkfe3dSaOYtq3CnRhVJ3jPRqG7lmF6CJ7f5NZLX84ml2FyWRvva6E454FsHwj3mPX_pJhxhAmhPf0P2rK2PjjilT69Qy_inELtvFUdEx2m28AnOzWryYzDOrlJpqvhdmgVPNsBmbX0tg5Eu_zL1c6YcFLd0Y3TKeacjB20Kz-mUpJ0fsBo2H6f4ef3qTte3NlxG_o3u7uF1Pm3Hn-47zljz9s
CODEN ESTHAG
CitedBy_id crossref_primary_10_1007_s11783_020_1303_4
crossref_primary_10_1007_s11783_024_1763_z
crossref_primary_10_1016_j_jclepro_2021_125789
crossref_primary_10_1021_acsestengg_3c00175
crossref_primary_10_1016_j_cej_2015_10_105
crossref_primary_10_1021_acsestengg_1c00015
crossref_primary_10_1002_admt_202001189
crossref_primary_10_1016_j_cej_2022_138476
crossref_primary_10_1007_s10311_018_0778_8
crossref_primary_10_1016_j_jes_2016_12_023
crossref_primary_10_1039_D2EN00545J
crossref_primary_10_1016_j_jwpe_2024_105685
crossref_primary_10_1016_j_cej_2019_04_136
crossref_primary_10_1021_acs_est_8b06422
crossref_primary_10_1016_j_jhazmat_2017_05_026
crossref_primary_10_1039_C6RA07705F
crossref_primary_10_1016_j_jes_2016_04_022
crossref_primary_10_1039_C8TA01286E
crossref_primary_10_1016_j_memsci_2019_04_026
crossref_primary_10_1021_acsanm_8b00762
crossref_primary_10_1021_acs_nanolett_8b01907
crossref_primary_10_1016_j_carbon_2016_08_077
crossref_primary_10_1039_C6EW00193A
crossref_primary_10_1039_C6EN00364H
crossref_primary_10_3390_min11020179
crossref_primary_10_1016_j_memsci_2022_120719
crossref_primary_10_1021_acsami_5b01183
crossref_primary_10_1134_S0965545X18030161
crossref_primary_10_1021_acs_chemrev_0c00080
crossref_primary_10_1016_j_apsusc_2019_144664
crossref_primary_10_1016_j_jece_2024_115210
crossref_primary_10_1016_j_memsci_2020_119000
crossref_primary_10_1016_j_coco_2020_100379
crossref_primary_10_1016_j_colsurfb_2019_06_051
crossref_primary_10_1016_S1872_5805_16_60021_5
crossref_primary_10_1016_j_surfcoat_2016_04_054
crossref_primary_10_1016_j_seppur_2015_09_044
crossref_primary_10_1021_acs_est_7b05341
crossref_primary_10_1007_s11783_019_1103_x
crossref_primary_10_1016_j_memsci_2017_06_046
crossref_primary_10_1016_j_watres_2018_12_012
crossref_primary_10_1016_j_memsci_2015_05_073
crossref_primary_10_1016_j_diamond_2024_111859
crossref_primary_10_1016_j_memsci_2020_117935
crossref_primary_10_1186_s11671_021_03542_x
crossref_primary_10_1016_j_memsci_2019_117613
crossref_primary_10_1002_smll_201800615
crossref_primary_10_1016_j_seppur_2017_12_058
Cites_doi 10.1021/es302867f
10.1021/es901132x
10.1002/adfm.201100983
10.1016/j.memsci.2011.04.045
10.1016/S0376-7388(98)00361-5
10.1016/j.memsci.2008.07.047
10.1039/c1jm11798j
10.1016/j.memsci.2005.12.025
10.1016/j.watres.2007.05.036
10.1002/adma.201001863
10.1021/es300995x
10.1016/j.memsci.2007.02.017
10.1021/jp111844j
10.1021/es202026v
10.1002/adfm.200901435
10.1021/es300514s
10.1021/es4013917
10.1016/j.memsci.2009.03.018
10.1016/j.memsci.2010.10.070
10.1016/j.memsci.2007.07.025
10.1021/es801777n
10.1002/anie.201006633
10.1021/es400356z
10.1021/es400571g
10.1021/es203197e
10.1038/nature06599
10.1016/S0376-7388(01)00455-0
10.1021/es1005785
10.1016/j.memsci.2010.08.013
10.1021/es403270n
10.1016/j.memsci.2009.02.040
10.1021/nn101558x
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Chemical Society Jul 15, 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Jul 15, 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
7S9
L.6
DOI 10.1021/es500506w
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 8068
ExternalDocumentID 3381320501
24938619
28691262
10_1021_es500506w
a55885357
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-a439t-fcb8f8bef01166038743cf6c8d7f21e2d595857aeb5cf4b178db78695d8c74513
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 09:00:29 EDT 2025
Fri Jul 11 16:40:14 EDT 2025
Fri Jul 11 10:37:42 EDT 2025
Mon Jun 30 03:19:45 EDT 2025
Thu Apr 03 07:02:05 EDT 2025
Wed Apr 02 07:13:59 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 04:28:48 EDT 2025
Thu Aug 27 13:41:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Membrane separation
Polymeric membrane
Water treatment
Fouling
Multiwalled nanotube
Vinylidene fluoride polymer
Antifouling membrane
Hollow fiber
Carbon nanotubes
Performance
Nanostructured materials
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a439t-fcb8f8bef01166038743cf6c8d7f21e2d595857aeb5cf4b178db78695d8c74513
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24938619
PQID 1547587133
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_2000219159
proquest_miscellaneous_1560122393
proquest_miscellaneous_1545424906
proquest_journals_1547587133
pubmed_primary_24938619
pascalfrancis_primary_28691262
crossref_citationtrail_10_1021_es500506w
crossref_primary_10_1021_es500506w
acs_journals_10_1021_es500506w
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-15
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Shannon M. A. (ref1/cit1) 2008; 452
Rodrigues D. F. (ref23/cit23) 2010; 44
Hancock N. T. (ref14/cit14) 2009; 43
Do V. T. (ref8/cit8) 2012; 46
He X. Z. (ref27/cit27) 2011; 378
Liu R. X. (ref5/cit5) 2007; 294
Liang H. W. (ref20/cit20) 2011; 21
Yang Y. (ref16/cit16) 2011; 50
Ma N. (ref4/cit4) 2009; 335
Liang H. W. (ref17/cit17) 2010; 22
Ma N. (ref3/cit3) 2009; 336
Zhang X. W. (ref18/cit18) 2009; 19
Li H. J. (ref12/cit12) 2006; 279
Vecitis C. D. (ref26/cit26) 2011; 115
Hu M. (ref2/cit2) 2013; 47
Shin D. H. (ref9/cit9) 2011; 376
Decarolis J. (ref13/cit13) 2001; 191
Yip N. Y. (ref15/cit15) 2011; 45
Huang H. O. (ref10/cit10) 2012; 46
Han G. (ref7/cit7) 2013; 47
Huang H. O. (ref11/cit11) 2007; 41
Sun S. P. (ref19/cit19) 2013; 47
Zhu L. W. (ref30/cit30) 2011; 21
Comerton A. M. (ref31/cit31) 2007; 303
Simone S. (ref28/cit28) 2010; 364
Li X. N. (ref24/cit24) 2011; 45
Pasquini L. M. (ref22/cit22) 2012; 46
Pan B. (ref25/cit25) 2008; 42
Vecitis C. D. (ref21/cit21) 2010; 4
Wang P. (ref29/cit29) 2013; 47
Qin J. J. (ref6/cit6) 1999; 157
Tian J. Y. (ref32/cit32) 2008; 325
References_xml – volume: 46
  start-page: 13184
  year: 2012
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302867f
– volume: 43
  start-page: 6769
  year: 2009
  ident: ref14/cit14
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901132x
– volume: 21
  start-page: 3851
  year: 2011
  ident: ref20/cit20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100983
– volume: 376
  start-page: 302
  year: 2011
  ident: ref9/cit9
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.04.045
– volume: 157
  start-page: 35
  year: 1999
  ident: ref6/cit6
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00361-5
– volume: 325
  start-page: 262
  year: 2008
  ident: ref32/cit32
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.07.047
– volume: 21
  start-page: 12503
  year: 2011
  ident: ref30/cit30
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11798j
– volume: 279
  start-page: 328
  year: 2006
  ident: ref12/cit12
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.12.025
– volume: 41
  start-page: 3823
  year: 2007
  ident: ref11/cit11
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.05.036
– volume: 22
  start-page: 4691
  year: 2010
  ident: ref17/cit17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001863
– volume: 46
  start-page: 10711
  year: 2012
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300995x
– volume: 294
  start-page: 103
  year: 2007
  ident: ref5/cit5
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.02.017
– volume: 115
  start-page: 3621
  year: 2011
  ident: ref26/cit26
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111844j
– volume: 45
  start-page: 8498
  year: 2011
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202026v
– volume: 19
  start-page: 3731
  year: 2009
  ident: ref18/cit18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200901435
– volume: 46
  start-page: 6297
  year: 2012
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300514s
– volume: 47
  start-page: 8070
  year: 2013
  ident: ref7/cit7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4013917
– volume: 336
  start-page: 109
  year: 2009
  ident: ref3/cit3
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.03.018
– volume: 378
  start-page: 1
  year: 2011
  ident: ref27/cit27
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.10.070
– volume: 303
  start-page: 267
  year: 2007
  ident: ref31/cit31
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.07.025
– volume: 42
  start-page: 9005
  year: 2008
  ident: ref25/cit25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801777n
– volume: 50
  start-page: 1
  year: 2011
  ident: ref16/cit16
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201006633
– volume: 47
  start-page: 6272
  year: 2013
  ident: ref29/cit29
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400356z
– volume: 47
  start-page: 3715
  year: 2013
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400571g
– volume: 45
  start-page: 10273
  year: 2011
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203197e
– volume: 452
  start-page: 301
  year: 2008
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 191
  start-page: 165
  year: 2001
  ident: ref13/cit13
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00455-0
– volume: 44
  start-page: 4583
  year: 2010
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1005785
– volume: 364
  start-page: 219
  year: 2010
  ident: ref28/cit28
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.08.013
– volume: 47
  start-page: 13167
  year: 2013
  ident: ref19/cit19
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403270n
– volume: 335
  start-page: 58
  year: 2009
  ident: ref4/cit4
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.02.040
– volume: 4
  start-page: 5471
  year: 2010
  ident: ref21/cit21
  publication-title: ACS Nano
  doi: 10.1021/nn101558x
SSID ssj0002308
Score 2.3600645
Snippet Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8062
SubjectTerms Adsorption
Applied sciences
Biofouling - prevention & control
carbon nanotubes
Chemical engineering
decontamination
disinfection
Disinfection & disinfectants
Drinking water and swimming-pool water. Desalination
Electrochemical Techniques
electrochemistry
engineering
Exact sciences and technology
fluorides
General purification processes
Hollow fiber membranes
Membrane separation (reverse osmosis, dialysis...)
Membranes
Membranes, Artificial
Microspheres
Nanotubes
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
Permeability
Pollution
Polystyrenes - chemistry
Polyvinyls - chemistry
Porosity
Rhodamines - isolation & purification
Wastewaters
Water Purification - methods
Water treatment
Water treatment and pollution
Title Constructing All Carbon Nanotube Hollow Fiber Membranes with Improved Performance in Separation and Antifouling for Water Treatment
URI http://dx.doi.org/10.1021/es500506w
https://www.ncbi.nlm.nih.gov/pubmed/24938619
https://www.proquest.com/docview/1547587133
https://www.proquest.com/docview/1545424906
https://www.proquest.com/docview/1560122393
https://www.proquest.com/docview/2000219159
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N8QKa-BiMFUZlPh54yWgc23Eeq7KqQhpC2ib6VtmxjRAlmZZWk3jlH-eu-WgntvKci-PYd77f3fnuAN7rwJ1F1YDMO9CRUJZHBpFppFAfWJlQwJCSk0-_qMmF-DyV0x14d0cEn8cffSWpSIm6vgf3udIpWVjD0Vl33CKG1m2bgixR07Z80OarpHry6obq2bs0Fa5CqNtX3I0vV3pm_Bg-tdk69fWSn8fLhT3Of_9bvHHbLzyBRw3OZMOaMZ7Cji_24eFG9cF9ODhZJ7khaSPl1TP4Q10867qyxXc2nM_ZyFzZsmB4FJeLpfVsgtxTXrMxXTdhp_4Xmtx4ZDJy6rLaTeEd-7rOSWA_Cnbm6zLjOI4pHBvSLSVqx46fQDL2DUHvFTtv770_h4vxyfloEjXNGiKDmGYRhdzqoK0PFNlRFBQXSR5Url0aeOy5kxlaJqnxVuZB2DjVzqZaZdLpPBUyTg5gtygLfwhsEEySGS5M6rxwxlk9QI1itIutSHngPejjbs4aYatmqzg6j2fdMvfgQ7vRs7wpdU4dN-a3kb7tSC_r-h63EfVvcEtHyfEHYq5wRkct-2xMSwo0xsgJ0IM33WOUXgrJ4K6UyxWNFGgBD9Q2GkXxzyTbMg4lXKHuQWzagxc1-64nKbJEo5388n_L9goeIBwU5LmO5RHsIqP51wi5Fra_Erm_xiwmbQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgCEeBQKgRIMAonLlqzX6_UeOEShUUqbCqmpyG2x1zaqGjZVN1EEV_4Ff4U_x3hfSVEpp0qcM_JOxjOez54XwCthqVboGlB5O8JjXFFPIjL1OPoDFQYuYOiKk4cHfHDEPozD8Rr8rGthkIkcV8qLIP6yu4D_1uSh61XCF1UC5Z75tsDrWf5u9z3u5WtK-zuj3sCrJgh4Eh3tzLOpElYoY124gbtILQtSy1OhI0t9Q3UYI1yOpFFhapnyI6FVJHgcapFGLPQDXPcaXEfQQ93Frts7bE55hO6ino4QB3xcdy1aZdV5vDQ_5_Fun8ochW_LqRl_h7WFe-vfhV-NYIqslpPt-Uxtp9__6Bn5f0ruHtypUDXplmZwH9ZMtgG3VnotbsDmzrKkD0mrMy1_AD_czNKyi272hXQnE9KTZ2qaEXQ809lcGTJAW5kuSN8l15Ch-apQrCYn7gmblI8yRpOPywoMcpyRQ1M2Vcd1ZKZJ1-VkueHz-AkkI58Q4p-RUZ3l_xCOrkQ8m7CeTTPzGEjHyiCWlMlIG6alVqKD_lMK7SsWUUtb0MZdTaqjJU-KrAHqJ822tuBNrV9JWjV2d_NFJheRvmxIT8tuJhcRtc8paUNJ8Q_4lCNHW7XWrrAVMrx6uiePFrxofsazygWgcFem84ImZHjf7_DLaLiL9gbxJeu48jL0tIjEW_CotJolkywOBPfjJ_8S23O4MRgN95P93YO9p3ATgTBzb_Z-uAXrqHTmGYLNmWoXVk_g81Uby29yu4kk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR3LbhMxcFSKhECIR6EQKMEgkHrZkvV6vd4DhyhtlFJaVWorclvstV1VhE3UTRTBlf_gV_g1xvtKiko5VeKckXcyb3teAG-EpVqha0Dh7QiPcUU9iZGpx9EfqDBwCUPXnLx_wAcn7MMwHK7Az7oXBpHI8aS8SOI7rZ5oW00Y8N-ZPHTzSvi8KqLcM9_meEXL3-9uIz_fUtrfOe4NvGqLgCfR2U49myphhTLWpRy4y9ayILU8FTqy1DdUhzGGzJE0KkwtU34ktIoEj0Mt0oiFfoDn3oCbLj3oLnfd3lFj6TF8F_WGhDjgw3py0TKqzuul-QWvd3cic2SALTdn_D20LVxc_z78aohTVLZ82ZpN1Vb6_Y-5kf8v9R7AvSq6Jt1SHR7CisnW4M7SzMU1WN9ZtPYhaGXb8kfww-0uLafpZqekOxqRnjxX44ygAxpPZ8qQAerMeE76rsiG7JuvCklrcuKeskn5OGM0OVx0YpCzjByZcrg6niMzTbquNsstocdPIBj5hKH-OTmuq_0fw8m1kGcdVrNxZp4C6VgZxJIyGWnDtNRKdNCPSqF9xSJqaQvayNmkMjF5UlQPUD9p2NqCzVrGkrQa8O72jIwuA33dgE7KqSaXAbUvCGoDSfEP-JQjRhu15C6hFTK8grqnjxa8an5Gm-USUciV8ayACRne-zv8Khjusr5BfMU5rs0MPS5G5C14UmrOAkkWB4L78bN_ke0l3Drc7icfdw_2nsNtjIeZe7r3ww1YRZkzLzDmnKp2ofgEPl-3rvwGOo2Lpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+all+carbon+nanotube+hollow+fiber+membranes+with+improved+performance+in+separation+and+antifouling+for+water+treatment&rft.jtitle=Environmental+science+%26+technology&rft.au=Wei%2C+Gaoliang&rft.au=Yu%2C+Hongtao&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Shuo&rft.date=2014-07-15&rft.eissn=1520-5851&rft.volume=48&rft.issue=14&rft.spage=8062&rft_id=info:doi/10.1021%2Fes500506w&rft_id=info%3Apmid%2F24938619&rft.externalDocID=24938619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon