Constructing All Carbon Nanotube Hollow Fiber Membranes with Improved Performance in Separation and Antifouling for Water Treatment
Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diamete...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 14; pp. 8062 - 8068 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Manipulating carbon nanotubes (CNTs) through engineering into advanced membranes with superior performance for disinfection and decontamination of water shows great promise but is challenging. In this paper, a facile assembly of CNTs into novel hollow fiber membranes with tunable inner/outer diameters and structures is developed for the first time. These free-standing membranes composed entirely of CNTs feature a porosity of 86 ± 5% and a permeation flux of about 460 ± 50 L m–2 h–1 at a pressure differential of 0.04 MPa across the membrane. The randomly oriented interwoven structure of CNTs endows the membranes considerable resistance to pore blockage. Moreover, the adsorption capability of the CNT hollow fiber membranes, which is crucial in the efficient removal of small and trace contaminant molecules, is about 2 orders of magnitude higher than that of commercial polyvinylidene fluoride hollow fiber membranes. The unique advantage of the CNT hollow fiber membranes over other commercial membranes is that they can be in situ electrochemically regenerated after adsorption saturation. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-936X 1520-5851 1520-5851 |
DOI: | 10.1021/es500506w |