Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution
To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water...
Saved in:
Published in | Environmental science & technology Vol. 46; no. 13; pp. 6915 - 6924 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
03.07.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet–visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22–28% of the particulate Ag was associated with thiols and 5–14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures. |
---|---|
AbstractList | To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures. To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures. [PUBLICATION ABSTRACT] |
Author | Unrine, Jason M Colman, Benjamin P Bone, Audrey J Matson, Cole W Gondikas, Andreas P |
AuthorAffiliation | University of Kentucky Baylor University Duke University |
AuthorAffiliation_xml | – name: Baylor University – name: Duke University – name: University of Kentucky |
Author_xml | – sequence: 1 givenname: Jason M surname: Unrine fullname: Unrine, Jason M email: jason.unrine@uky.edu – sequence: 2 givenname: Benjamin P surname: Colman fullname: Colman, Benjamin P – sequence: 3 givenname: Audrey J surname: Bone fullname: Bone, Audrey J – sequence: 4 givenname: Andreas P surname: Gondikas fullname: Gondikas, Andreas P – sequence: 5 givenname: Cole W surname: Matson fullname: Matson, Cole W |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26098047$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22452441$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkMtu2zAQRYkiRe08Fv2BgkDRRRZyhy-JWjrPBnCbLBIgO2NMUQYNm7RJCWh-oV9dOnacoisOh-feGd5jcuSDt4R8ZjBiwNl3mzjIUvPNBzJkikOhtGJHZAjARFGL8nlAjlNaAAAXoD-RAedScSnZkPy5cKFzhqJv6Hi2q-98ZyOazgWfqPN0vOlx2__pTAwmpFWiVzYjK-ctvcHOvqofw29nXPdCQ0vHc_oLfVhjzLqlTSP6kEvKRvllHu0ct96vqiuXUlj22_sp-djiMtmz_XlCnm6uHy9_FJP727vL8aRAKequaAQwyTWyGQBCWdWm1rNKtZppqxptuJYSwArbVgq5khxQQVMaWUGLWnBxQr7ufNcxbHqbuuki9NHnkdOcplBQaiEydb6j8p9TiradrqNbYXzJ0JZj00Pqmf2yd-xnK9scyLeYM_BtD2AyuGwjeuPSO1dCrUFW7xya9O9W_w_8C-Julso |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_envpol_2017_04_006 crossref_primary_10_1021_acs_est_1c02221 crossref_primary_10_1016_j_jes_2020_03_034 crossref_primary_10_1021_acs_est_3c01839 crossref_primary_10_1002_etc_2806 crossref_primary_10_3390_ma6062295 crossref_primary_10_1007_s11051_023_05708_3 crossref_primary_10_1021_es402880u crossref_primary_10_1002_etc_4147 crossref_primary_10_1007_s10661_018_6922_x crossref_primary_10_1016_j_envpol_2017_01_036 crossref_primary_10_1007_s11756_022_01251_z crossref_primary_10_1186_s12302_015_0053_6 crossref_primary_10_1007_s41204_021_00192_3 crossref_primary_10_1016_j_chemosphere_2015_10_101 crossref_primary_10_1016_j_jenvman_2019_04_128 crossref_primary_10_1007_s11356_013_1798_3 crossref_primary_10_1016_j_scitotenv_2022_156219 crossref_primary_10_3109_17435390_2014_913728 crossref_primary_10_1007_s11356_021_16347_3 crossref_primary_10_1016_j_scitotenv_2015_06_100 crossref_primary_10_1039_C7JA00059F crossref_primary_10_1007_s10646_014_1387_3 crossref_primary_10_1021_es500141h crossref_primary_10_1071_EN14064 crossref_primary_10_1016_j_jhazmat_2017_12_058 crossref_primary_10_1016_j_chemosphere_2016_07_043 crossref_primary_10_1016_j_scitotenv_2016_06_042 crossref_primary_10_1039_D2VA00128D crossref_primary_10_1039_C7EN01240C crossref_primary_10_1016_j_enmm_2015_06_001 crossref_primary_10_1039_c3en00054k crossref_primary_10_1038_srep20813 crossref_primary_10_1039_C4EN00122B crossref_primary_10_1016_j_ecoenv_2020_110781 crossref_primary_10_1016_j_scitotenv_2017_06_190 crossref_primary_10_1021_acs_est_8b01960 crossref_primary_10_1016_j_impact_2017_09_002 crossref_primary_10_1021_es405454v crossref_primary_10_1039_C7EN00026J crossref_primary_10_1515_ntrev_2021_0066 crossref_primary_10_1016_j_envpol_2013_06_027 crossref_primary_10_1007_s10646_016_1665_3 crossref_primary_10_1016_j_electacta_2021_138039 crossref_primary_10_1016_j_marenvres_2013_02_003 crossref_primary_10_1155_2014_641759 crossref_primary_10_1021_nn3058517 crossref_primary_10_1039_C6EN00324A crossref_primary_10_1016_j_ijbiomac_2020_02_004 crossref_primary_10_1021_acs_est_6b03023 crossref_primary_10_1016_j_scitotenv_2017_12_222 crossref_primary_10_1021_es502342r crossref_primary_10_1016_j_chroma_2015_02_073 crossref_primary_10_1039_C9EN00407F crossref_primary_10_1016_j_jfda_2014_01_010 crossref_primary_10_2139_ssrn_4076743 crossref_primary_10_3390_plants12040815 crossref_primary_10_2139_ssrn_4076742 crossref_primary_10_1002_etc_3924 crossref_primary_10_1016_j_plaphy_2024_108385 crossref_primary_10_1039_C8EN00971F crossref_primary_10_1016_j_watres_2013_06_015 crossref_primary_10_1021_acs_est_9b05097 crossref_primary_10_1016_j_aca_2013_06_011 crossref_primary_10_1007_s11356_012_1290_5 crossref_primary_10_1002_etc_3364 crossref_primary_10_1007_s11627_022_10287_4 crossref_primary_10_1002_etc_3644 crossref_primary_10_1016_j_scitotenv_2022_161307 crossref_primary_10_1016_j_ibiod_2014_09_004 crossref_primary_10_1016_j_bcab_2020_101832 crossref_primary_10_1016_j_envpol_2013_01_029 crossref_primary_10_1016_j_aca_2015_11_008 crossref_primary_10_1016_j_aca_2014_02_044 crossref_primary_10_1021_acs_chemrev_6b00693 crossref_primary_10_1007_s11356_019_07347_5 crossref_primary_10_1039_C9EN00348G crossref_primary_10_1002_eap_1742 crossref_primary_10_3390_nano12234319 crossref_primary_10_1080_10643389_2013_790747 crossref_primary_10_1039_D2NJ04089A crossref_primary_10_1002_etc_4103 crossref_primary_10_1007_s11051_023_05725_2 crossref_primary_10_1038_s41565_018_0231_y crossref_primary_10_1002_etc_3019 crossref_primary_10_4236_cweee_2013_23B004 crossref_primary_10_1002_wnan_1229 crossref_primary_10_1016_j_chemosphere_2016_03_076 crossref_primary_10_1002_etc_4463 crossref_primary_10_1039_D0EN00019A crossref_primary_10_1021_acs_est_6b04054 crossref_primary_10_1016_j_jare_2017_10_008 crossref_primary_10_1111_fwb_12788 crossref_primary_10_1021_es404334a crossref_primary_10_1080_15320383_2017_1363158 crossref_primary_10_3390_w15071349 crossref_primary_10_1016_j_envpol_2019_05_144 crossref_primary_10_1016_j_scitotenv_2016_02_190 crossref_primary_10_1016_j_chroma_2013_10_060 crossref_primary_10_1021_acs_est_4c00065 crossref_primary_10_3390_w14142192 crossref_primary_10_1016_j_scitotenv_2020_137685 crossref_primary_10_1021_acs_est_8b03146 crossref_primary_10_1016_j_envpol_2021_118726 crossref_primary_10_1021_es504705p crossref_primary_10_1371_journal_pone_0201412 crossref_primary_10_1038_srep09674 crossref_primary_10_1002_anie_201405050 crossref_primary_10_1021_es3025325 crossref_primary_10_1039_C3EN00108C crossref_primary_10_1039_C8EN00755A crossref_primary_10_1021_es204683m crossref_primary_10_1002_etc_3037 crossref_primary_10_1016_j_trac_2015_07_003 crossref_primary_10_1007_s11738_016_2074_1 crossref_primary_10_1007_s11051_019_4563_9 crossref_primary_10_3389_fenvs_2020_00082 crossref_primary_10_1002_ange_201405050 crossref_primary_10_1039_C5EN00104H crossref_primary_10_1016_S1002_0160_18_60036_0 crossref_primary_10_1021_acs_est_5b01116 crossref_primary_10_1016_j_chemosphere_2015_04_054 crossref_primary_10_1016_j_scitotenv_2015_07_151 crossref_primary_10_1007_s00128_016_1888_2 crossref_primary_10_5772_62202 crossref_primary_10_1002_lom3_10384 crossref_primary_10_1007_s10646_014_1259_x crossref_primary_10_1038_srep05608 crossref_primary_10_1016_j_aquatox_2016_02_013 crossref_primary_10_1039_C8EN01368C crossref_primary_10_1139_facets_2018_0047 crossref_primary_10_1039_C2NR32447D crossref_primary_10_1007_s00244_016_0294_4 crossref_primary_10_1039_C9EN01302D crossref_primary_10_1021_acs_est_8b01700 crossref_primary_10_1080_01919512_2015_1041583 crossref_primary_10_1016_j_envpol_2019_113313 crossref_primary_10_1039_c3em00235g crossref_primary_10_1016_j_cis_2013_12_002 |
Cites_doi | 10.1021/jp109789j 10.1016/0304-3770(89)90101-0 10.1016/j.plantsci.2004.01.011 10.1016/j.colsurfa.2006.05.046 10.2136/sssaj2010.0127nps 10.1111/j.1365-2427.2011.02624.x 10.1021/ac00136a016 10.1146/annurev.physchem.54.011002.103759 10.1016/j.watres.2003.11.031 10.1016/j.jbiosc.2010.09.017 10.1021/es803259g 10.1016/j.watres.2006.09.014 10.1016/j.chroma.2010.12.076 10.1365/s10337-003-0135-2 10.1021/es9035557 10.1021/es1025382 10.1016/j.tox.2009.08.008 10.1016/j.envint.2010.10.012 10.1016/j.chroma.2009.07.021 10.1080/10826070701540092 10.1071/EN09111 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical
Society 2014 INIST-CNRS Copyright American Chemical Society Jul 3, 2012 |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Jul 3, 2012 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI |
DOI | 10.1021/es204682q |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 6924 |
ExternalDocumentID | 2703873541 10_1021_es204682q 22452441 26098047 h94711958 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC .HR 08R 186 1WB 42X 6TJ 8WZ A6W AAYOK ABDTD ABFRP ABHMW ABQRX ABTAH ACKIV ADHLV AETEA AFDAS AGXLV AHGAQ ANTXH GGK IHE IQODW K78 MS~ MVM MW2 NHB OHT RNS TAE UBX UBY UQL VJK VOH XSW YV5 ZCA ZCG ZY4 ~A~ AAHBH ABJNI ADMHC ADUKH CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI |
ID | FETCH-LOGICAL-a439t-d301428a1b00a0679c98b75f818e5d8c284400e3ef75a25420a50d6c470fa8323 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Thu Oct 10 19:52:57 EDT 2024 Fri Aug 23 01:10:56 EDT 2024 Sat Sep 28 07:49:57 EDT 2024 Fri Nov 25 01:05:58 EST 2022 Thu Aug 27 13:43:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Emerging contaminant Coating material Stability Pollutant behavior Nanoparticle Gum arabic Dissolution Heavy metal Aggregation Trace element Aquatic environment Silver Dissolved organic matter Pyrrolidone(vinyl) polymer Ecosystem Coated particle Water pollution Biocide Nanostructured materials Nanotechnology Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a439t-d301428a1b00a0679c98b75f818e5d8c284400e3ef75a25420a50d6c470fa8323 |
PMID | 22452441 |
PQID | 1023506833 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1023506833 crossref_primary_10_1021_es204682q pubmed_primary_22452441 pascalfrancis_primary_26098047 acs_journals_10_1021_es204682q |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2012-07-03 |
PublicationDateYYYYMMDD | 2012-07-03 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kelley M. (ref13/cit13) 1989; 35 Pan X. (ref21/cit21) 2011; 111 Liu J. (ref3/cit3) 2010; 44 Fabrega J. (ref5/cit5) 2009; 43 Assemi S. (ref18/cit18) 2004; 38 Koukal B. (ref22/cit22) 2007; 41 Cumberland S. A. (ref4/cit4) 2009; 1216 Liu F. K. (ref11/cit11) 2004; 59 Kim S. T. (ref10/cit10) 2007; 30 Ei-Sayed M. A. (ref17/cit17) 2003; 54 Kennedy A. J. (ref6/cit6) 2010; 44 Wahlund K. G. (ref15/cit15) 1987; 59 Vanderstukken M. (ref19/cit19) 2011; 56 Poda A. R. (ref9/cit9) 2011; 1218 Cheng Y. (ref14/cit14) 2011; 115 Plathe K. L. (ref12/cit12) 2010; 7 Moon J. (ref16/cit16) 2006; 287 Aravind P. (ref20/cit20) 2004; 166 Fabrega J. (ref2/cit2) 2011; 37 Luoma S. (ref1/cit1) 2008 Bone A. (ref8/cit8) 2012 Shoults-Wilson W. A. (ref7/cit7) 2011; 75 Hartmann N. B. (ref23/cit23) 2010; 269 |
References_xml | – volume: 115 start-page: 4425 issue: 11 year: 2011 ident: ref14/cit14 publication-title: J. Phys. Chem. C doi: 10.1021/jp109789j contributor: fullname: Cheng Y. – volume: 35 start-page: 133 year: 1989 ident: ref13/cit13 publication-title: Aquat. Bot. doi: 10.1016/0304-3770(89)90101-0 contributor: fullname: Kelley M. – volume: 166 start-page: 1321 issue: 5 year: 2004 ident: ref20/cit20 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.01.011 contributor: fullname: Aravind P. – volume: 287 start-page: 232 issue: 1 year: 2006 ident: ref16/cit16 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2006.05.046 contributor: fullname: Moon J. – volume: 75 start-page: 365 issue: 2 year: 2011 ident: ref7/cit7 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0127nps contributor: fullname: Shoults-Wilson W. A. – volume: 56 start-page: 1837 issue: 9 year: 2011 ident: ref19/cit19 publication-title: Freshwater Biol. doi: 10.1111/j.1365-2427.2011.02624.x contributor: fullname: Vanderstukken M. – volume: 59 start-page: 1332 issue: 9 year: 1987 ident: ref15/cit15 publication-title: Anal. Chem. doi: 10.1021/ac00136a016 contributor: fullname: Wahlund K. G. – volume: 54 start-page: 331 year: 2003 ident: ref17/cit17 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.54.011002.103759 contributor: fullname: Ei-Sayed M. A. – year: 2012 ident: ref8/cit8 publication-title: Environ. Sci. Technol. contributor: fullname: Bone A. – volume: 38 start-page: 1467 issue: 6 year: 2004 ident: ref18/cit18 publication-title: Water Res. doi: 10.1016/j.watres.2003.11.031 contributor: fullname: Assemi S. – volume: 111 start-page: 193 issue: 2 year: 2011 ident: ref21/cit21 publication-title: J Biosci. Bioeng. doi: 10.1016/j.jbiosc.2010.09.017 contributor: fullname: Pan X. – volume: 43 start-page: 7285 year: 2009 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es803259g contributor: fullname: Fabrega J. – volume: 41 start-page: 63 issue: 1 year: 2007 ident: ref22/cit22 publication-title: Water Res. doi: 10.1016/j.watres.2006.09.014 contributor: fullname: Koukal B. – volume: 1218 start-page: 4219 issue: 27 year: 2011 ident: ref9/cit9 publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2010.12.076 contributor: fullname: Poda A. R. – volume: 59 start-page: 115 issue: 1 year: 2004 ident: ref11/cit11 publication-title: Chromatographia doi: 10.1365/s10337-003-0135-2 contributor: fullname: Liu F. K. – volume: 44 start-page: 2169 year: 2010 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es9035557 contributor: fullname: Liu J. – volume: 44 start-page: 9571 issue: 24 year: 2010 ident: ref6/cit6 publication-title: Environ. Sci. Technol. doi: 10.1021/es1025382 contributor: fullname: Kennedy A. J. – volume-title: Silver Nanotechnologies and the Environment: Old Problems or New Challenges year: 2008 ident: ref1/cit1 contributor: fullname: Luoma S. – volume: 269 start-page: 190 issue: 2 year: 2010 ident: ref23/cit23 publication-title: Toxicology doi: 10.1016/j.tox.2009.08.008 contributor: fullname: Hartmann N. B. – volume: 37 start-page: 517 issue: 2 year: 2011 ident: ref2/cit2 publication-title: Environ. Int. doi: 10.1016/j.envint.2010.10.012 contributor: fullname: Fabrega J. – volume: 1216 start-page: 9099 issue: 52 year: 2009 ident: ref4/cit4 publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2009.07.021 contributor: fullname: Cumberland S. A. – volume: 30 start-page: 2533 issue: 17 year: 2007 ident: ref10/cit10 publication-title: J. Liq. Chromatogr. Relat. Technol. doi: 10.1080/10826070701540092 contributor: fullname: Kim S. T. – volume: 7 start-page: 82 issue: 1 year: 2010 ident: ref12/cit12 publication-title: Environ. Chem. doi: 10.1071/EN09111 contributor: fullname: Plathe K. L. |
SSID | ssj0002308 |
Score | 2.5159159 |
Snippet | To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6915 |
SubjectTerms | Animal, plant and microbial ecology Applied ecology Applied sciences Aquatic plants Biological and medical sciences Biological and physicochemical phenomena Earth sciences Earth, ocean, space Ecotoxicology, biological effects of pollution Engineering and environment geology. Geothermics Exact sciences and technology Fresh Water - chemistry Fundamental and applied biological sciences. Psychology General aspects Geologic Sediments - analysis Gum Arabic - chemistry Gum Arabic - metabolism Gum Arabic - toxicity Mass spectrometry Nanoparticles Nanoparticles - chemistry Nanoparticles - toxicity Natural water pollution Plants - metabolism Pollution Pollution, environment geology Povidone - chemistry Povidone - metabolism Povidone - toxicity Sediments Silver - chemistry Silver - metabolism Silver - toxicity Solubility Surface water Toxicity Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - metabolism Water Pollutants, Chemical - toxicity Water treatment and pollution |
Title | Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution |
URI | http://dx.doi.org/10.1021/es204682q https://www.ncbi.nlm.nih.gov/pubmed/22452441 https://www.proquest.com/docview/1023506833 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60XhTxXa3WEtTr1mz2fazWIkJFUKG3kmSTUsRddVsQf4K_2sk-asXXLbAZdjf5ZuabZDIBODE-kmvPs7jmyjIl0FHnuLaiWHAf3V8Uc7Og37_2L-_dq4E3WIDjX3bwmX2qMoYxXMieF2GJBagUhv-c387MLXLosLqmIHL8QVU-aF7UuB6ZfXE9q088w1HQxfUVv_PL3M_01qFbndYp0kse2tOJaMu378Ub__qFDVgreSbpFMDYhAWVbMHKXPXBLahffB5yw66llmfb8H42TlGM8CQmHVG085XD4hBERsYJ6TybGuGS9E1Cn0yzx4x0y8waRXpIYHPpu_R1LJHnk1STzoigKccYvUzFa5MbbBK7jU8w6B_lEMmluuOZRuzAfe_i7vzSKu9ssDhSm4kVmxCNhdxGdeZmkUpGoQg8jbxAeXEo0Rui1VCO0oHHMThllHs09qUbUM3Rujh1qCVpovaASBEL5WM8piV1uesLKmwqYqXdQGnJaANaOKnDUueyYb6dzuzhbLQbcFTN9_CpqN3xU6fWFyTMeiJso5C6QQOaFTTm38Ucj_qh4zRgt4DLp6DZzEaWuf_f9x3AMtKvIvnXaUJt8jJVh0hxJqKVQ_wDG4z1yQ |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwEB5xPEBVtUALbAuLVfU1i3M4x-MWWC3HIiQWad8i27FXq6oJ4EWq-hP6qzt2sgdVK3iLFE_iODOeb-zxNwBfrY_kmjGPa648S4GONse1lxWCx-j-soLbBf3Bddy_iy5GbNTQ5NizMNgJg08ybhN_wS7gHysTYCiXBg-rsM4SdJQWBp3czmddhNLprFpBFsajGYvQsqj1QNI880Bv77nBwdB1FYv_w0znbnrv67pFrqMuy-R752kqOvLXXxyOr_uSLXjXoE7SrdVkG1ZUuQNvlrgId2D3bHHkDZs2Nm8-wO9vkwrFCC8L0hX1tVtHrI9EGDIpSffBMoZLMrDpfbIyPww5bfJsFOkhnHXSw-rnRCLqJ5Um3THBiR0j9iYxr0Nu8JL4HbwzflRjpzBO6nQyt4-PcNc7G570vaaCg8cR6Ey9wgZsQcp9NG5ul6xkloqEaUQJihWpRN-Ic4gKlU4Yx1A1oJzRIpZRQjXHuSbchbWyKtU-ECkKoWKMzrSkEY9iQYVPRaF0lCgtA9qCNg523ligyd3meuDn89FuwZfZb8_vayaPfzVqP1OIeUtU4iylUdKCg5mGLL8rCBmN0zBswV6tNQtBu7WNmPPTS_07go3-cHCVX51fX36GTQRmdVpweABr08cndYjgZyraTuv_AAzj_i4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB5BkRCo4ii0XSiLhXjN4hzO8Ri6XZWjpRKttG-Rz9UKNdnWW6nqT-BXM3ay6RaB4M1SPIntzPGNZzwGeO9sJDeMBdxwHbgS6Chz3ASFEjxF81co7jb0j47Tw7Pk85RNO0fRnYXBQVh8k_VBfCfVC2W6CgPhB20jdOfy6OI-PGBZ6MOy5f73XvMinM5XNxYUcTpdVRJaJ3VWSNo7VmhzwS0uiGlvsvg71PQmZ_IUvvWD9ZkmP0ZXSzGSN7_Vcfz_2TyDJx36JGXLLs_hnq634PFaTcIt2D64PfqGXTvZty_g58d5g2SE14qUom37_cT2aIQl85qUF65yuCRHLs1PNvbcknGXb6PJBGGtpz5trucS0T9pDClnBBU8eu5dgt6InGCThCN8MrvUM884nmo87-XkJZxNDk73D4PuJoeAI-BZBso5blHOQxRy7rauZJGLjBlEC5qpXKKNRF2iY20yxtFljShnVKUyyajhqHPibdiom1rvApFCCZ2il2YkTXiSCipCKpQ2SaaNjOgAhrjgVSeJtvJB9iis-tUewLvVr68WbUWPP3Ua3mGKvicyc5HTJBvA3opL1r8VxYymeRwPYKflnFtCF-JG7PnqX-N7Cw9PxpPq66fjL6_hEeKzNjs43oON5eWVfoMYaCmGnvF_ATgxALc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biotic+and+Abiotic+Interactions+in+Aquatic+Microcosms+Determine+Fate+and+Toxicity+of+Ag+Nanoparticles.+Part+1.+Aggregation+and+Dissolution&rft.jtitle=Environmental+science+%26+technology&rft.au=Unrine%2C+Jason+M.&rft.au=Colman%2C+Benjamin+P.&rft.au=Bone%2C+Audrey+J.&rft.au=Gondikas%2C+Andreas+P.&rft.date=2012-07-03&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=46&rft.issue=13&rft.spage=6915&rft.epage=6924&rft_id=info:doi/10.1021%2Fes204682q&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_es204682q |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |