Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution

To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 46; no. 13; pp. 6915 - 6924
Main Authors Unrine, Jason M, Colman, Benjamin P, Bone, Audrey J, Gondikas, Andreas P, Matson, Cole W
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 03.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet–visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22–28% of the particulate Ag was associated with thiols and 5–14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.
AbstractList To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.
To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures. [PUBLICATION ABSTRACT]
Author Unrine, Jason M
Colman, Benjamin P
Bone, Audrey J
Matson, Cole W
Gondikas, Andreas P
AuthorAffiliation University of Kentucky
Baylor University
Duke University
AuthorAffiliation_xml – name: Baylor University
– name: Duke University
– name: University of Kentucky
Author_xml – sequence: 1
  givenname: Jason M
  surname: Unrine
  fullname: Unrine, Jason M
  email: jason.unrine@uky.edu
– sequence: 2
  givenname: Benjamin P
  surname: Colman
  fullname: Colman, Benjamin P
– sequence: 3
  givenname: Audrey J
  surname: Bone
  fullname: Bone, Audrey J
– sequence: 4
  givenname: Andreas P
  surname: Gondikas
  fullname: Gondikas, Andreas P
– sequence: 5
  givenname: Cole W
  surname: Matson
  fullname: Matson, Cole W
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26098047$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22452441$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtu2zAQRYkiRe08Fv2BgkDRRRZyhy-JWjrPBnCbLBIgO2NMUQYNm7RJCWh-oV9dOnacoisOh-feGd5jcuSDt4R8ZjBiwNl3mzjIUvPNBzJkikOhtGJHZAjARFGL8nlAjlNaAAAXoD-RAedScSnZkPy5cKFzhqJv6Hi2q-98ZyOazgWfqPN0vOlx2__pTAwmpFWiVzYjK-ctvcHOvqofw29nXPdCQ0vHc_oLfVhjzLqlTSP6kEvKRvllHu0ct96vqiuXUlj22_sp-djiMtmz_XlCnm6uHy9_FJP727vL8aRAKequaAQwyTWyGQBCWdWm1rNKtZppqxptuJYSwArbVgq5khxQQVMaWUGLWnBxQr7ufNcxbHqbuuki9NHnkdOcplBQaiEydb6j8p9TiradrqNbYXzJ0JZj00Pqmf2yd-xnK9scyLeYM_BtD2AyuGwjeuPSO1dCrUFW7xya9O9W_w_8C-Julso
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_envpol_2017_04_006
crossref_primary_10_1021_acs_est_1c02221
crossref_primary_10_1016_j_jes_2020_03_034
crossref_primary_10_1021_acs_est_3c01839
crossref_primary_10_1002_etc_2806
crossref_primary_10_3390_ma6062295
crossref_primary_10_1007_s11051_023_05708_3
crossref_primary_10_1021_es402880u
crossref_primary_10_1002_etc_4147
crossref_primary_10_1007_s10661_018_6922_x
crossref_primary_10_1016_j_envpol_2017_01_036
crossref_primary_10_1007_s11756_022_01251_z
crossref_primary_10_1186_s12302_015_0053_6
crossref_primary_10_1007_s41204_021_00192_3
crossref_primary_10_1016_j_chemosphere_2015_10_101
crossref_primary_10_1016_j_jenvman_2019_04_128
crossref_primary_10_1007_s11356_013_1798_3
crossref_primary_10_1016_j_scitotenv_2022_156219
crossref_primary_10_3109_17435390_2014_913728
crossref_primary_10_1007_s11356_021_16347_3
crossref_primary_10_1016_j_scitotenv_2015_06_100
crossref_primary_10_1039_C7JA00059F
crossref_primary_10_1007_s10646_014_1387_3
crossref_primary_10_1021_es500141h
crossref_primary_10_1071_EN14064
crossref_primary_10_1016_j_jhazmat_2017_12_058
crossref_primary_10_1016_j_chemosphere_2016_07_043
crossref_primary_10_1016_j_scitotenv_2016_06_042
crossref_primary_10_1039_D2VA00128D
crossref_primary_10_1039_C7EN01240C
crossref_primary_10_1016_j_enmm_2015_06_001
crossref_primary_10_1039_c3en00054k
crossref_primary_10_1038_srep20813
crossref_primary_10_1039_C4EN00122B
crossref_primary_10_1016_j_ecoenv_2020_110781
crossref_primary_10_1016_j_scitotenv_2017_06_190
crossref_primary_10_1021_acs_est_8b01960
crossref_primary_10_1016_j_impact_2017_09_002
crossref_primary_10_1021_es405454v
crossref_primary_10_1039_C7EN00026J
crossref_primary_10_1515_ntrev_2021_0066
crossref_primary_10_1016_j_envpol_2013_06_027
crossref_primary_10_1007_s10646_016_1665_3
crossref_primary_10_1016_j_electacta_2021_138039
crossref_primary_10_1016_j_marenvres_2013_02_003
crossref_primary_10_1155_2014_641759
crossref_primary_10_1021_nn3058517
crossref_primary_10_1039_C6EN00324A
crossref_primary_10_1016_j_ijbiomac_2020_02_004
crossref_primary_10_1021_acs_est_6b03023
crossref_primary_10_1016_j_scitotenv_2017_12_222
crossref_primary_10_1021_es502342r
crossref_primary_10_1016_j_chroma_2015_02_073
crossref_primary_10_1039_C9EN00407F
crossref_primary_10_1016_j_jfda_2014_01_010
crossref_primary_10_2139_ssrn_4076743
crossref_primary_10_3390_plants12040815
crossref_primary_10_2139_ssrn_4076742
crossref_primary_10_1002_etc_3924
crossref_primary_10_1016_j_plaphy_2024_108385
crossref_primary_10_1039_C8EN00971F
crossref_primary_10_1016_j_watres_2013_06_015
crossref_primary_10_1021_acs_est_9b05097
crossref_primary_10_1016_j_aca_2013_06_011
crossref_primary_10_1007_s11356_012_1290_5
crossref_primary_10_1002_etc_3364
crossref_primary_10_1007_s11627_022_10287_4
crossref_primary_10_1002_etc_3644
crossref_primary_10_1016_j_scitotenv_2022_161307
crossref_primary_10_1016_j_ibiod_2014_09_004
crossref_primary_10_1016_j_bcab_2020_101832
crossref_primary_10_1016_j_envpol_2013_01_029
crossref_primary_10_1016_j_aca_2015_11_008
crossref_primary_10_1016_j_aca_2014_02_044
crossref_primary_10_1021_acs_chemrev_6b00693
crossref_primary_10_1007_s11356_019_07347_5
crossref_primary_10_1039_C9EN00348G
crossref_primary_10_1002_eap_1742
crossref_primary_10_3390_nano12234319
crossref_primary_10_1080_10643389_2013_790747
crossref_primary_10_1039_D2NJ04089A
crossref_primary_10_1002_etc_4103
crossref_primary_10_1007_s11051_023_05725_2
crossref_primary_10_1038_s41565_018_0231_y
crossref_primary_10_1002_etc_3019
crossref_primary_10_4236_cweee_2013_23B004
crossref_primary_10_1002_wnan_1229
crossref_primary_10_1016_j_chemosphere_2016_03_076
crossref_primary_10_1002_etc_4463
crossref_primary_10_1039_D0EN00019A
crossref_primary_10_1021_acs_est_6b04054
crossref_primary_10_1016_j_jare_2017_10_008
crossref_primary_10_1111_fwb_12788
crossref_primary_10_1021_es404334a
crossref_primary_10_1080_15320383_2017_1363158
crossref_primary_10_3390_w15071349
crossref_primary_10_1016_j_envpol_2019_05_144
crossref_primary_10_1016_j_scitotenv_2016_02_190
crossref_primary_10_1016_j_chroma_2013_10_060
crossref_primary_10_1021_acs_est_4c00065
crossref_primary_10_3390_w14142192
crossref_primary_10_1016_j_scitotenv_2020_137685
crossref_primary_10_1021_acs_est_8b03146
crossref_primary_10_1016_j_envpol_2021_118726
crossref_primary_10_1021_es504705p
crossref_primary_10_1371_journal_pone_0201412
crossref_primary_10_1038_srep09674
crossref_primary_10_1002_anie_201405050
crossref_primary_10_1021_es3025325
crossref_primary_10_1039_C3EN00108C
crossref_primary_10_1039_C8EN00755A
crossref_primary_10_1021_es204683m
crossref_primary_10_1002_etc_3037
crossref_primary_10_1016_j_trac_2015_07_003
crossref_primary_10_1007_s11738_016_2074_1
crossref_primary_10_1007_s11051_019_4563_9
crossref_primary_10_3389_fenvs_2020_00082
crossref_primary_10_1002_ange_201405050
crossref_primary_10_1039_C5EN00104H
crossref_primary_10_1016_S1002_0160_18_60036_0
crossref_primary_10_1021_acs_est_5b01116
crossref_primary_10_1016_j_chemosphere_2015_04_054
crossref_primary_10_1016_j_scitotenv_2015_07_151
crossref_primary_10_1007_s00128_016_1888_2
crossref_primary_10_5772_62202
crossref_primary_10_1002_lom3_10384
crossref_primary_10_1007_s10646_014_1259_x
crossref_primary_10_1038_srep05608
crossref_primary_10_1016_j_aquatox_2016_02_013
crossref_primary_10_1039_C8EN01368C
crossref_primary_10_1139_facets_2018_0047
crossref_primary_10_1039_C2NR32447D
crossref_primary_10_1007_s00244_016_0294_4
crossref_primary_10_1039_C9EN01302D
crossref_primary_10_1021_acs_est_8b01700
crossref_primary_10_1080_01919512_2015_1041583
crossref_primary_10_1016_j_envpol_2019_113313
crossref_primary_10_1039_c3em00235g
crossref_primary_10_1016_j_cis_2013_12_002
Cites_doi 10.1021/jp109789j
10.1016/0304-3770(89)90101-0
10.1016/j.plantsci.2004.01.011
10.1016/j.colsurfa.2006.05.046
10.2136/sssaj2010.0127nps
10.1111/j.1365-2427.2011.02624.x
10.1021/ac00136a016
10.1146/annurev.physchem.54.011002.103759
10.1016/j.watres.2003.11.031
10.1016/j.jbiosc.2010.09.017
10.1021/es803259g
10.1016/j.watres.2006.09.014
10.1016/j.chroma.2010.12.076
10.1365/s10337-003-0135-2
10.1021/es9035557
10.1021/es1025382
10.1016/j.tox.2009.08.008
10.1016/j.envint.2010.10.012
10.1016/j.chroma.2009.07.021
10.1080/10826070701540092
10.1071/EN09111
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2014 INIST-CNRS
Copyright American Chemical Society Jul 3, 2012
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2014 INIST-CNRS
– notice: Copyright American Chemical Society Jul 3, 2012
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
DOI 10.1021/es204682q
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 6924
ExternalDocumentID 2703873541
10_1021_es204682q
22452441
26098047
h94711958
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
.HR
08R
186
1WB
42X
6TJ
8WZ
A6W
AAYOK
ABDTD
ABFRP
ABHMW
ABQRX
ABTAH
ACKIV
ADHLV
AETEA
AFDAS
AGXLV
AHGAQ
ANTXH
GGK
IHE
IQODW
K78
MS~
MVM
MW2
NHB
OHT
RNS
TAE
UBX
UBY
UQL
VJK
VOH
XSW
YV5
ZCA
ZCG
ZY4
~A~
AAHBH
ABJNI
ADMHC
ADUKH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
ID FETCH-LOGICAL-a439t-d301428a1b00a0679c98b75f818e5d8c284400e3ef75a25420a50d6c470fa8323
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Thu Oct 10 19:52:57 EDT 2024
Fri Aug 23 01:10:56 EDT 2024
Sat Sep 28 07:49:57 EDT 2024
Fri Nov 25 01:05:58 EST 2022
Thu Aug 27 13:43:03 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Emerging contaminant
Coating material
Stability
Pollutant behavior
Nanoparticle
Gum arabic
Dissolution
Heavy metal
Aggregation
Trace element
Aquatic environment
Silver
Dissolved organic matter
Pyrrolidone(vinyl) polymer
Ecosystem
Coated particle
Water pollution
Biocide
Nanostructured materials
Nanotechnology
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a439t-d301428a1b00a0679c98b75f818e5d8c284400e3ef75a25420a50d6c470fa8323
PMID 22452441
PQID 1023506833
PQPubID 45412
PageCount 10
ParticipantIDs proquest_journals_1023506833
crossref_primary_10_1021_es204682q
pubmed_primary_22452441
pascalfrancis_primary_26098047
acs_journals_10_1021_es204682q
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2012-07-03
PublicationDateYYYYMMDD 2012-07-03
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kelley M. (ref13/cit13) 1989; 35
Pan X. (ref21/cit21) 2011; 111
Liu J. (ref3/cit3) 2010; 44
Fabrega J. (ref5/cit5) 2009; 43
Assemi S. (ref18/cit18) 2004; 38
Koukal B. (ref22/cit22) 2007; 41
Cumberland S. A. (ref4/cit4) 2009; 1216
Liu F. K. (ref11/cit11) 2004; 59
Kim S. T. (ref10/cit10) 2007; 30
Ei-Sayed M. A. (ref17/cit17) 2003; 54
Kennedy A. J. (ref6/cit6) 2010; 44
Wahlund K. G. (ref15/cit15) 1987; 59
Vanderstukken M. (ref19/cit19) 2011; 56
Poda A. R. (ref9/cit9) 2011; 1218
Cheng Y. (ref14/cit14) 2011; 115
Plathe K. L. (ref12/cit12) 2010; 7
Moon J. (ref16/cit16) 2006; 287
Aravind P. (ref20/cit20) 2004; 166
Fabrega J. (ref2/cit2) 2011; 37
Luoma S. (ref1/cit1) 2008
Bone A. (ref8/cit8) 2012
Shoults-Wilson W. A. (ref7/cit7) 2011; 75
Hartmann N. B. (ref23/cit23) 2010; 269
References_xml – volume: 115
  start-page: 4425
  issue: 11
  year: 2011
  ident: ref14/cit14
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109789j
  contributor:
    fullname: Cheng Y.
– volume: 35
  start-page: 133
  year: 1989
  ident: ref13/cit13
  publication-title: Aquat. Bot.
  doi: 10.1016/0304-3770(89)90101-0
  contributor:
    fullname: Kelley M.
– volume: 166
  start-page: 1321
  issue: 5
  year: 2004
  ident: ref20/cit20
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.01.011
  contributor:
    fullname: Aravind P.
– volume: 287
  start-page: 232
  issue: 1
  year: 2006
  ident: ref16/cit16
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2006.05.046
  contributor:
    fullname: Moon J.
– volume: 75
  start-page: 365
  issue: 2
  year: 2011
  ident: ref7/cit7
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0127nps
  contributor:
    fullname: Shoults-Wilson W. A.
– volume: 56
  start-page: 1837
  issue: 9
  year: 2011
  ident: ref19/cit19
  publication-title: Freshwater Biol.
  doi: 10.1111/j.1365-2427.2011.02624.x
  contributor:
    fullname: Vanderstukken M.
– volume: 59
  start-page: 1332
  issue: 9
  year: 1987
  ident: ref15/cit15
  publication-title: Anal. Chem.
  doi: 10.1021/ac00136a016
  contributor:
    fullname: Wahlund K. G.
– volume: 54
  start-page: 331
  year: 2003
  ident: ref17/cit17
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.54.011002.103759
  contributor:
    fullname: Ei-Sayed M. A.
– year: 2012
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Bone A.
– volume: 38
  start-page: 1467
  issue: 6
  year: 2004
  ident: ref18/cit18
  publication-title: Water Res.
  doi: 10.1016/j.watres.2003.11.031
  contributor:
    fullname: Assemi S.
– volume: 111
  start-page: 193
  issue: 2
  year: 2011
  ident: ref21/cit21
  publication-title: J Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2010.09.017
  contributor:
    fullname: Pan X.
– volume: 43
  start-page: 7285
  year: 2009
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803259g
  contributor:
    fullname: Fabrega J.
– volume: 41
  start-page: 63
  issue: 1
  year: 2007
  ident: ref22/cit22
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.09.014
  contributor:
    fullname: Koukal B.
– volume: 1218
  start-page: 4219
  issue: 27
  year: 2011
  ident: ref9/cit9
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2010.12.076
  contributor:
    fullname: Poda A. R.
– volume: 59
  start-page: 115
  issue: 1
  year: 2004
  ident: ref11/cit11
  publication-title: Chromatographia
  doi: 10.1365/s10337-003-0135-2
  contributor:
    fullname: Liu F. K.
– volume: 44
  start-page: 2169
  year: 2010
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9035557
  contributor:
    fullname: Liu J.
– volume: 44
  start-page: 9571
  issue: 24
  year: 2010
  ident: ref6/cit6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1025382
  contributor:
    fullname: Kennedy A. J.
– volume-title: Silver Nanotechnologies and the Environment: Old Problems or New Challenges
  year: 2008
  ident: ref1/cit1
  contributor:
    fullname: Luoma S.
– volume: 269
  start-page: 190
  issue: 2
  year: 2010
  ident: ref23/cit23
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.08.008
  contributor:
    fullname: Hartmann N. B.
– volume: 37
  start-page: 517
  issue: 2
  year: 2011
  ident: ref2/cit2
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2010.10.012
  contributor:
    fullname: Fabrega J.
– volume: 1216
  start-page: 9099
  issue: 52
  year: 2009
  ident: ref4/cit4
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2009.07.021
  contributor:
    fullname: Cumberland S. A.
– volume: 30
  start-page: 2533
  issue: 17
  year: 2007
  ident: ref10/cit10
  publication-title: J. Liq. Chromatogr. Relat. Technol.
  doi: 10.1080/10826070701540092
  contributor:
    fullname: Kim S. T.
– volume: 7
  start-page: 82
  issue: 1
  year: 2010
  ident: ref12/cit12
  publication-title: Environ. Chem.
  doi: 10.1071/EN09111
  contributor:
    fullname: Plathe K. L.
SSID ssj0002308
Score 2.5159159
Snippet To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and...
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6915
SubjectTerms Animal, plant and microbial ecology
Applied ecology
Applied sciences
Aquatic plants
Biological and medical sciences
Biological and physicochemical phenomena
Earth sciences
Earth, ocean, space
Ecotoxicology, biological effects of pollution
Engineering and environment geology. Geothermics
Exact sciences and technology
Fresh Water - chemistry
Fundamental and applied biological sciences. Psychology
General aspects
Geologic Sediments - analysis
Gum Arabic - chemistry
Gum Arabic - metabolism
Gum Arabic - toxicity
Mass spectrometry
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - toxicity
Natural water pollution
Plants - metabolism
Pollution
Pollution, environment geology
Povidone - chemistry
Povidone - metabolism
Povidone - toxicity
Sediments
Silver - chemistry
Silver - metabolism
Silver - toxicity
Solubility
Surface water
Toxicity
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - metabolism
Water Pollutants, Chemical - toxicity
Water treatment and pollution
Title Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution
URI http://dx.doi.org/10.1021/es204682q
https://www.ncbi.nlm.nih.gov/pubmed/22452441
https://www.proquest.com/docview/1023506833
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60XhTxXa3WEtTr1mz2fazWIkJFUKG3kmSTUsRddVsQf4K_2sk-asXXLbAZdjf5ZuabZDIBODE-kmvPs7jmyjIl0FHnuLaiWHAf3V8Uc7Og37_2L-_dq4E3WIDjX3bwmX2qMoYxXMieF2GJBagUhv-c387MLXLosLqmIHL8QVU-aF7UuB6ZfXE9q088w1HQxfUVv_PL3M_01qFbndYp0kse2tOJaMu378Ub__qFDVgreSbpFMDYhAWVbMHKXPXBLahffB5yw66llmfb8H42TlGM8CQmHVG085XD4hBERsYJ6TybGuGS9E1Cn0yzx4x0y8waRXpIYHPpu_R1LJHnk1STzoigKccYvUzFa5MbbBK7jU8w6B_lEMmluuOZRuzAfe_i7vzSKu9ssDhSm4kVmxCNhdxGdeZmkUpGoQg8jbxAeXEo0Rui1VCO0oHHMThllHs09qUbUM3Rujh1qCVpovaASBEL5WM8piV1uesLKmwqYqXdQGnJaANaOKnDUueyYb6dzuzhbLQbcFTN9_CpqN3xU6fWFyTMeiJso5C6QQOaFTTm38Ucj_qh4zRgt4DLp6DZzEaWuf_f9x3AMtKvIvnXaUJt8jJVh0hxJqKVQ_wDG4z1yQ
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwEB5xPEBVtUALbAuLVfU1i3M4x-MWWC3HIiQWad8i27FXq6oJ4EWq-hP6qzt2sgdVK3iLFE_iODOeb-zxNwBfrY_kmjGPa648S4GONse1lxWCx-j-soLbBf3Bddy_iy5GbNTQ5NizMNgJg08ybhN_wS7gHysTYCiXBg-rsM4SdJQWBp3czmddhNLprFpBFsajGYvQsqj1QNI880Bv77nBwdB1FYv_w0znbnrv67pFrqMuy-R752kqOvLXXxyOr_uSLXjXoE7SrdVkG1ZUuQNvlrgId2D3bHHkDZs2Nm8-wO9vkwrFCC8L0hX1tVtHrI9EGDIpSffBMoZLMrDpfbIyPww5bfJsFOkhnHXSw-rnRCLqJ5Um3THBiR0j9iYxr0Nu8JL4HbwzflRjpzBO6nQyt4-PcNc7G570vaaCg8cR6Ey9wgZsQcp9NG5ul6xkloqEaUQJihWpRN-Ic4gKlU4Yx1A1oJzRIpZRQjXHuSbchbWyKtU-ECkKoWKMzrSkEY9iQYVPRaF0lCgtA9qCNg523ligyd3meuDn89FuwZfZb8_vayaPfzVqP1OIeUtU4iylUdKCg5mGLL8rCBmN0zBswV6tNQtBu7WNmPPTS_07go3-cHCVX51fX36GTQRmdVpweABr08cndYjgZyraTuv_AAzj_i4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB5BkRCo4ii0XSiLhXjN4hzO8Ri6XZWjpRKttG-Rz9UKNdnWW6nqT-BXM3ay6RaB4M1SPIntzPGNZzwGeO9sJDeMBdxwHbgS6Chz3ASFEjxF81co7jb0j47Tw7Pk85RNO0fRnYXBQVh8k_VBfCfVC2W6CgPhB20jdOfy6OI-PGBZ6MOy5f73XvMinM5XNxYUcTpdVRJaJ3VWSNo7VmhzwS0uiGlvsvg71PQmZ_IUvvWD9ZkmP0ZXSzGSN7_Vcfz_2TyDJx36JGXLLs_hnq634PFaTcIt2D64PfqGXTvZty_g58d5g2SE14qUom37_cT2aIQl85qUF65yuCRHLs1PNvbcknGXb6PJBGGtpz5trucS0T9pDClnBBU8eu5dgt6InGCThCN8MrvUM884nmo87-XkJZxNDk73D4PuJoeAI-BZBso5blHOQxRy7rauZJGLjBlEC5qpXKKNRF2iY20yxtFljShnVKUyyajhqHPibdiom1rvApFCCZ2il2YkTXiSCipCKpQ2SaaNjOgAhrjgVSeJtvJB9iis-tUewLvVr68WbUWPP3Ua3mGKvicyc5HTJBvA3opL1r8VxYymeRwPYKflnFtCF-JG7PnqX-N7Cw9PxpPq66fjL6_hEeKzNjs43oON5eWVfoMYaCmGnvF_ATgxALc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biotic+and+Abiotic+Interactions+in+Aquatic+Microcosms+Determine+Fate+and+Toxicity+of+Ag+Nanoparticles.+Part+1.+Aggregation+and+Dissolution&rft.jtitle=Environmental+science+%26+technology&rft.au=Unrine%2C+Jason+M.&rft.au=Colman%2C+Benjamin+P.&rft.au=Bone%2C+Audrey+J.&rft.au=Gondikas%2C+Andreas+P.&rft.date=2012-07-03&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=46&rft.issue=13&rft.spage=6915&rft.epage=6924&rft_id=info:doi/10.1021%2Fes204682q&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_es204682q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon