Arsenite Binding to Sulfhydryl Groups in the Absence and Presence of Ferrihydrite: A Model Study

Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)–As(III) complexes on...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 7; pp. 3822 - 3831
Main Authors Hoffmann, Martin, Mikutta, Christian, Kretzschmar, Ruben
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)–As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0–9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO–) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R–SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)–As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t 1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.
AbstractList Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)–As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0–9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO–) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R–SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)–As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t 1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.
Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO(-)) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO(-)) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.
Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO(-)) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.
Binding of arsenite (As(III)) to sulfhydryl groups (S...(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of S...(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)...AsO-) and trithio ((AmbS)...As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ...FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of S...(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t... = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. (ProQuest: ... denotes formulae/symbols omitted.)
Binding of arsenite (As(III)) to sulfhydryl groups (Sₒᵣg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sₒᵣg(-II)–As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0–9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)₂AsO–) and trithio ((AmbS)₃As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R–SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sₒᵣg(-II)–As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t₁/₂ = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.
Author Hoffmann, Martin
Mikutta, Christian
Kretzschmar, Ruben
AuthorAffiliation ETH Zurich
Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science
AuthorAffiliation_xml – name: Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science
– name: ETH Zurich
Author_xml – sequence: 1
  givenname: Martin
  surname: Hoffmann
  fullname: Hoffmann, Martin
– sequence: 2
  givenname: Christian
  surname: Mikutta
  fullname: Mikutta, Christian
  email: christian.mikutta@env.ethz.ch
– sequence: 3
  givenname: Ruben
  surname: Kretzschmar
  fullname: Kretzschmar, Ruben
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28433569$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24564801$$D View this record in MEDLINE/PubMed
BookMark eNqF0t9rFDEQB_AgFXs9ffAfkIAI-rA2P3ezfTuLrUJFoQq-rbO7E5uyl5xJ9uH613eXO6tUoU8h8Jkh38kckQMfPBLynLO3nAl-jEkxLQS_eUQWXAtWaKP5AVkwxmVRy_L7ITlK6ZoxJiQzT8ihULpUhvEF-bGKCb3LSN853zv_k-ZAL8fBXm37uB3oeQzjJlHnab5Cumon3CEF39MvEXeXYOkZxujmiqnRCV3RT6HHgV7msd8-JY8tDAmf7c8l-Xb2_uvph-Li8_nH09VFAUrWuQCpgNW2161UXABo29Z920rdgWiZaG2FZYslsAqlBG6s0Ai2qqTRslKmlkvyetd3E8OvEVNu1i51OAzgMYypEXP6aUp19SDlZWmErrjgD1PNhRD1POgleXmPXocx-inzrJTRjFWzerFXY7vGvtlEt4a4bX7_yARe7QGkDgYbwXcu_XFGSanLOe-bnetiSCmivSOcNfNWNHdbMdnje7ZzGbILPkdww38r9q-ALv2V4x93C16gwgQ
CODEN ESTHAG
CitedBy_id crossref_primary_10_1002_lno_10560
crossref_primary_10_1016_j_gca_2017_01_013
crossref_primary_10_1016_j_chemgeo_2016_06_023
crossref_primary_10_1039_C6CP00249H
crossref_primary_10_1016_j_envpol_2024_124977
crossref_primary_10_1016_j_colsurfa_2021_126601
crossref_primary_10_1002_agg2_70063
crossref_primary_10_1021_es503550g
crossref_primary_10_1016_j_jcis_2015_08_045
crossref_primary_10_1021_acs_est_3c05771
crossref_primary_10_1016_j_watres_2021_117657
crossref_primary_10_1021_acs_est_8b01542
crossref_primary_10_3390_antiox9040283
crossref_primary_10_1016_j_aca_2016_09_035
crossref_primary_10_1021_acs_est_0c00457
crossref_primary_10_1021_acs_est_9b03020
crossref_primary_10_3390_soils1010001
crossref_primary_10_3390_microorganisms12112279
crossref_primary_10_1016_j_scitotenv_2015_02_047
crossref_primary_10_1021_acsearthspacechem_8b00201
crossref_primary_10_1002_jctb_6339
crossref_primary_10_1021_acs_est_9b00495
crossref_primary_10_1016_j_chemgeo_2016_10_002
crossref_primary_10_1021_es5031323
Cites_doi 10.1016/j.geoderma.2009.08.015
10.1016/j.chemgeo.2009.10.010
10.1021/es302590x
10.2136/sssaj2005.0373
10.1016/S0966-842X(99)01494-8
10.1021/es4023317
10.1016/j.jmb.2006.07.002
10.1002/9781444308785
10.1016/S0883-2927(02)00018-5
10.1007/s10498-007-9021-0
10.1016/j.jcis.2012.03.025
10.1007/s00216-008-2395-z
10.1021/la900655v
10.1107/S010827018300949X
10.1021/es049513m
10.1021/es103793y
10.1080/01496398508060697
10.1016/S1381-5148(02)00174-8
10.1021/es101150w
10.1021/es4049785
10.1021/es0002518
10.1021/es100594t
10.1021/es1000616
10.1038/35054664
10.1021/ic048694q
10.1107/S0909049505012719
10.1097/SS.0b013e31828683f8
10.1016/S0043-1354(99)00055-X
10.1016/j.cageo.2005.12.005
10.1016/j.watres.2011.09.051
10.2166/wst.1996.0169
10.1021/es049358b
10.1002/aheh.200300485
10.1021/es202300w
10.1104/pp.122.4.1171
10.1103/PhysRevB.58.7565
10.1107/S0909049597019298
10.1016/j.jinorgbio.2004.03.010
10.1524/zkri.1972.136.1-2.48
10.1021/es061057+
10.1016/S0016-7037(98)00306-8
10.1021/es401315e
10.1039/B307945G
10.1021/es035006d
10.1021/es703072d
10.2136/sssaj2002.4130
10.1039/dt9850001195
10.1002/3527602097
10.1016/1381-5148(96)00032-6
10.1038/ngeo1329
10.1021/es0258475
10.1021/es030309t
10.1021/es201503g
10.1016/j.micromeso.2009.03.021
10.1021/es0351645
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Apr 1, 2014
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Apr 1, 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TN
7UA
F1W
H97
L.G
7S9
L.6
DOI 10.1021/es405221z
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Oceanic Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biotechnology Research Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 3831
ExternalDocumentID 3272389921
24564801
28433569
10_1021_es405221z
a323745357
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TN
7UA
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-a439t-a34a09fd5b3412aa5fb9dbb35ca2b02bf7e6be6a07e33a18f25eaf77385374893
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 03:21:54 EDT 2025
Fri Jul 11 04:49:44 EDT 2025
Fri Jul 11 15:58:21 EDT 2025
Mon Jun 30 06:15:27 EDT 2025
Wed Feb 19 01:57:21 EST 2025
Wed Apr 02 07:13:54 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Tue Jul 01 04:28:45 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Complexation
Organic matter
Arsenic
Pollutant behavior
Organic ligand
Surface complexation model
Stability constant
Soil pollution
Sediments
Arsenites
Iron Hydroxides oxides
Trace element
Carcinogen
Sulfhydryl radicals
Poison
Water pollution
Wetland
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a439t-a34a09fd5b3412aa5fb9dbb35ca2b02bf7e6be6a07e33a18f25eaf77385374893
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24564801
PQID 1514850071
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_2000205297
proquest_miscellaneous_1668257121
proquest_miscellaneous_1512229001
proquest_journals_1514850071
pubmed_primary_24564801
pascalfrancis_primary_28433569
crossref_primary_10_1021_es405221z
crossref_citationtrail_10_1021_es405221z
acs_journals_10_1021_es405221z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ravenscroft P. (ref1/cit1) 2009
Bostick B. C. (ref57/cit57) 2004; 38
Smedley P. L. (ref2/cit2) 2002; 17
Hao J. M. (ref25/cit25) 2009; 124
Spuches A. M. (ref28/cit28) 2005; 44
(ref42/cit42) 1999
Morin G. (ref48/cit48) 2009; 25
Wang X. (ref50/cit50) 2013; 178
Buschmann J. (ref8/cit8) 2006; 40
Ravel B. (ref36/cit36) 2005; 12
Prietzel J. (ref60/cit60) 2009; 153
Hoffmann M. (ref12/cit12) 2013; 47
Maurer F. (ref32/cit32) 2010; 44
Appelo C. A. J. (ref47/cit47) 2005
Smith P. G. (ref45/cit45) 2005; 39
Rey N. A. (ref27/cit27) 2004; 98
Rosen B. P. (ref15/cit15) 1999; 7
Zhao Z. (ref53/cit53) 2011; 45
Haque S. E. (ref56/cit56) 2007; 13
Yücel M. (ref62/cit62) 2010; 269
Langner P. (ref11/cit11) 2012; 5
Bhandari N. (ref54/cit54) 2011; 45
Dominguez L. (ref24/cit24) 2002; 53
Pigna M. (ref49/cit49) 2006; 70
Teixeira M. C. (ref21/cit21) 2005; 39
Bluemlein K. (ref30/cit30) 2009; 393
Ressler T. (ref35/cit35) 1998; 5
Chanda M. (ref44/cit44) 1986; 4
Urban N. R. (ref61/cit61) 1999; 63
Brechbühl Y. (ref6/cit6) 2012; 377
Huang J. W. (ref20/cit20) 2004; 38
Stumm W. (ref39/cit39) 1992
Styles P. M. (ref23/cit23) 1996; 31
Cornell R. G. (ref7/cit7) 2003
Bissen M. (ref52/cit52) 2003; 31
Goldberg S. (ref4/cit4) 2002; 66
Langner P. (ref59/cit59) 2013; 47
Rothwell J. J. (ref9/cit9) 2010; 44
Christl I. (ref31/cit31) 2001; 35
Borho M. (ref26/cit26) 1996; 34
Messens J. (ref14/cit14) 2006; 362
Pickering I. J. (ref16/cit16) 2000; 122
Hoffmann M. (ref13/cit13) 2012; 46
Ankudinov A. L. (ref37/cit37) 1998; 58
Miot J. (ref17/cit17) 2008; 42
Mullen D. J. E. (ref38/cit38) 1972; 136
Ona-Nguema G. (ref55/cit55) 2010; 44
Dixit S. (ref5/cit5) 2003; 37
Pappalardo G. C. (ref46/cit46) 1983; 39
Mikutta C. (ref10/cit10) 2011; 45
Martell A. E. (ref43/cit43) 1989
Webb S. M. (ref18/cit18) 2003; 37
Huang J.-H. (ref33/cit33) 2011; 45
Swedlund P. J. (ref3/cit3) 1999; 33
Gans P. (ref58/cit58) 1985
Langner P. (ref51/cit51) 2014; 48
Turner B. F. (ref40/cit40) 2006; 32
Egawa H. (ref22/cit22) 1985; 20
Dzombak D. A. (ref34/cit34) 1990
ref41/cit41
Ma L. Q. (ref19/cit19) 2001; 409
Raab A. (ref29/cit29) 2004; 19
References_xml – volume: 153
  start-page: 318
  year: 2009
  ident: ref60/cit60
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.08.015
– volume: 269
  start-page: 364
  year: 2010
  ident: ref62/cit62
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.10.010
– volume: 46
  start-page: 11788
  year: 2012
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302590x
– volume-title: Geochemistry, Groundwater and Pollution
  year: 2005
  ident: ref47/cit47
– volume: 70
  start-page: 2017
  year: 2006
  ident: ref49/cit49
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0373
– volume: 7
  start-page: 207
  year: 1999
  ident: ref15/cit15
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(99)01494-8
– volume: 47
  start-page: 12165
  year: 2013
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4023317
– volume: 362
  start-page: 1
  year: 2006
  ident: ref14/cit14
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.07.002
– volume-title: Arsenic Pollution a Global Synthesis
  year: 2009
  ident: ref1/cit1
  doi: 10.1002/9781444308785
– volume: 17
  start-page: 517
  year: 2002
  ident: ref2/cit2
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(02)00018-5
– volume: 13
  start-page: 289
  year: 2007
  ident: ref56/cit56
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-007-9021-0
– volume: 377
  start-page: 313
  year: 2012
  ident: ref6/cit6
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.03.025
– volume: 393
  start-page: 357
  year: 2009
  ident: ref30/cit30
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-008-2395-z
– volume: 25
  start-page: 9119
  year: 2009
  ident: ref48/cit48
  publication-title: Langmuir
  doi: 10.1021/la900655v
– volume: 39
  start-page: 1618
  year: 1983
  ident: ref46/cit46
  publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
  doi: 10.1107/S010827018300949X
– volume: 39
  start-page: 895
  year: 2005
  ident: ref21/cit21
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049513m
– volume: 45
  start-page: 2783
  year: 2011
  ident: ref54/cit54
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103793y
– volume: 20
  start-page: 653
  year: 1985
  ident: ref22/cit22
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496398508060697
– volume: 53
  start-page: 205
  year: 2002
  ident: ref24/cit24
  publication-title: React. Funct. Polym.
  doi: 10.1016/S1381-5148(02)00174-8
– volume: 44
  start-page: 8497
  year: 2010
  ident: ref9/cit9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101150w
– volume: 48
  start-page: 2281
  year: 2014
  ident: ref51/cit51
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4049785
– volume: 35
  start-page: 2505
  year: 2001
  ident: ref31/cit31
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0002518
– volume: 4
  start-page: 213
  year: 1986
  ident: ref44/cit44
  publication-title: React. Polym.
– volume: 44
  start-page: 5787
  year: 2010
  ident: ref32/cit32
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100594t
– volume: 44
  start-page: 5416
  year: 2010
  ident: ref55/cit55
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1000616
– volume: 409
  start-page: 579
  year: 2001
  ident: ref19/cit19
  publication-title: Nature
  doi: 10.1038/35054664
– volume: 44
  start-page: 2964
  year: 2005
  ident: ref28/cit28
  publication-title: Inorg. Chem.
  doi: 10.1021/ic048694q
– volume-title: Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems
  year: 1992
  ident: ref39/cit39
– volume: 12
  start-page: 537
  year: 2005
  ident: ref36/cit36
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 178
  start-page: 1
  year: 2013
  ident: ref50/cit50
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31828683f8
– volume: 33
  start-page: 3413
  year: 1999
  ident: ref3/cit3
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00055-X
– volume: 32
  start-page: 1344
  year: 2006
  ident: ref40/cit40
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.005
– volume: 45
  start-page: 6496
  year: 2011
  ident: ref53/cit53
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.09.051
– volume: 34
  start-page: 25
  year: 1996
  ident: ref26/cit26
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1996.0169
– volume-title: User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations
  year: 1999
  ident: ref42/cit42
– volume: 39
  start-page: 248
  year: 2005
  ident: ref45/cit45
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049358b
– volume: 31
  start-page: 97
  year: 2003
  ident: ref52/cit52
  publication-title: Acta Hydrochim. Hydrobiol.
  doi: 10.1002/aheh.200300485
– volume: 45
  start-page: 9550
  year: 2011
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202300w
– volume-title: Surface Complexation Modeling
  year: 1990
  ident: ref34/cit34
– volume: 122
  start-page: 1171
  year: 2000
  ident: ref16/cit16
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1171
– volume: 58
  start-page: 7565
  year: 1998
  ident: ref37/cit37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.7565
– volume: 5
  start-page: 118
  year: 1998
  ident: ref35/cit35
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049597019298
– volume: 98
  start-page: 1151
  year: 2004
  ident: ref27/cit27
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2004.03.010
– volume: 136
  start-page: 48
  year: 1972
  ident: ref38/cit38
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.1972.136.1-2.48
– volume: 40
  start-page: 6015
  year: 2006
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061057+
– volume: 63
  start-page: 837
  year: 1999
  ident: ref61/cit61
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00306-8
– volume: 47
  start-page: 9706
  year: 2013
  ident: ref59/cit59
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401315e
– volume-title: Critical Stability Constants
  year: 1989
  ident: ref43/cit43
– volume: 19
  start-page: 183
  year: 2004
  ident: ref29/cit29
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/B307945G
– volume: 38
  start-page: 3299
  year: 2004
  ident: ref57/cit57
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035006d
– volume: 42
  start-page: 5342
  year: 2008
  ident: ref17/cit17
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703072d
– volume: 66
  start-page: 413
  year: 2002
  ident: ref4/cit4
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.4130
– start-page: 1195
  year: 1985
  ident: ref58/cit58
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9850001195
– volume-title: The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses
  year: 2003
  ident: ref7/cit7
  doi: 10.1002/3527602097
– volume: 31
  start-page: 89
  year: 1996
  ident: ref23/cit23
  publication-title: React. Funct. Polym.
  doi: 10.1016/1381-5148(96)00032-6
– volume: 5
  start-page: 66
  year: 2012
  ident: ref11/cit11
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1329
– ident: ref41/cit41
– volume: 37
  start-page: 754
  year: 2003
  ident: ref18/cit18
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0258475
– volume: 37
  start-page: 4182
  year: 2003
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030309t
– volume: 45
  start-page: 7701
  year: 2011
  ident: ref33/cit33
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201503g
– volume: 124
  start-page: 1
  year: 2009
  ident: ref25/cit25
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2009.03.021
– volume: 38
  start-page: 3412
  year: 2004
  ident: ref20/cit20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0351645
SSID ssj0002308
Score 2.2524512
Snippet Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation...
Binding of arsenite (As(III)) to sulfhydryl groups (S...(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation...
Binding of arsenite (As(III)) to sulfhydryl groups (Sₒᵣg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3822
SubjectTerms Acidity
Adsorbents
Adsorption
air
Applied sciences
arsenic
arsenites
Arsenites - chemistry
Binding sites
Biological and physicochemical phenomena
Biological and physicochemical properties of pollutants. Interaction in the soil
Bioremediation
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environment
estuaries
Exact sciences and technology
Ferric Compounds - chemistry
ferrihydrite
Hydrogen-Ion Concentration
Kinetics
Ligands
marshes
Minerals - chemistry
Models, Theoretical
Natural water pollution
Organic chemistry
organic matter
Oxidation
Oxidation-Reduction
peatlands
plants (botany)
Pollution
Pollution, environment geology
Protons
redox potential
remediation
Resins, Synthetic - chemistry
Soil and sediments pollution
Sulfhydryl Compounds - chemistry
sulfhydryl groups
Water treatment and pollution
water vapor
X-Ray Absorption Spectroscopy
Title Arsenite Binding to Sulfhydryl Groups in the Absence and Presence of Ferrihydrite: A Model Study
URI http://dx.doi.org/10.1021/es405221z
https://www.ncbi.nlm.nih.gov/pubmed/24564801
https://www.proquest.com/docview/1514850071
https://www.proquest.com/docview/1512229001
https://www.proquest.com/docview/1668257121
https://www.proquest.com/docview/2000205297
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RemlV0ZaWkpau3Mehl9DEdpwNt4WyQj1UlSjS3rZ2YgvUVRZtsgf49Z1xHiwClmOUceLYM57PGc83AF8JcsjUyHAoChFKq2SoOddhFBlaMJ0xuT9t8UudnMmfk2SyAV8eiODz-LutEFNwHl8_gadcofES_jk67ZdbxNDDrkxBJtSkow9abUquJ69uuZ4Xl7rCUXBN-YqH8aX3M-OX8KPL1mmOl_zbX9ZmP7--S9647hNewVaLM9moUYzXsGHLbXi-wj64DTvHN0luKNpaefUG_o4WlSUsyg4vfNILq-fsdDlz51fF4mrG_P-qil2UDNEjG5mK2jFdFuy3T2bCi7ljY-J8pBb4oAM2YlR1Dd9CdLZv4Wx8_OfoJGwrMYQaAUsdaiF1lLkiMej0uNaJM1lhjEhyzU3EjUutMlbpKLVC6HjoeGK1S4kpp6G32YHNcl7aXWCIl5zUIqONlywyxI8yz1MXaaOIW98GMMCpmraWVE19kJzH034MA_jWzeI0b3nMqZzG7D7Rz73oZUPecZ_Q4JYq9JLouIVIVBbAXqcbK91CoDlMCKAF8Km_jaZJ8RZd2vnSy1C1dNTMNTJK4R49jfkaGe7jxQnP0gDeNbp500miA0KU8f6xYfsAzxDrtYeO9mCzXiztR8RTtRl4e_oPCeEX_A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPAotgbIYxIFLSmLnseEWqq4WKBVSW2lvqZ3YouoqW62zh_bXM-Nks1tUCscoY2cyGXs-Z-xvAD4Q5IhSFflDUQk_0knkS86lHwSKJkyjVOl2Wxwm45Po2ySedDQ5dBYGlbDYk3VJ_BW7QPhJW4QWnIdXd-EeghBO3pzvHfWzLkLp4bJaQSaSyZJFaL0pRaDSXotAjy6kRWOYtorF32GmCzejJ23dIqeo22Vyvrto1G559QeH4_-9yVN43KFOlrdu8gzu6HoTHq5xEW7C1v7qyBuKdmPePofTfG41IVP25cwdgWHNjB0tpubXZTW_nDL398qys5ohlmS5stSOybpiP93RJryYGTYiBkhqgR19ZjmjGmz4FCK3fQEno_3jvbHf1WXwJcKXxpcikkFmqlhhCORSxkZllVIiLiVXAVcm1YnSiQxSLYQMh4bHWpqUeHNaspst2KhntX4JDNGTiaTIaBkWVRmiyagsUxNIlRDTvvZggCYsunFlC5cy52HR29CDj8uPWZQdqzkV15jeJPq-F71oqTxuEhpc84heEsO4EHGSebCzdJE1tRB2DmOCax6862_jQKXsi6z1bOFkqHY6OugtMkmCK_Y05LfIcJc9jnmWerDduuhKSSIHQszx6l9mewv3x8c_DoqDr4ffX8MDRIHddqQd2GjmC_0GkVajBm6I_QbT4SBd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiEQ4lEohJbFIA5cUhI7jw23tHRVHiqVSqW9pXZii4pVdrXOHtpfz4yTTbdVKRyjjB3HmfF8zni-AXhPkCNKVeQPRSX8SCeRLzmXfhAoWjCNUqU7bXGYHJxEX8fxuNsoUi4MDsJiT9YF8cmqZ5XpGAbCj9oivOA8vLgDdylcRxqd7x33Ky_C6eGyYkEmkvGSSWi1KXmh0l7xQg9n0uKEmLaSxd-hpnM5o8fwox-sO2nye2fRqJ3y4hqP4_-_zRN41KFPlrfq8hTWdL0BD1Y4CTdgc_8y9Q1FO9u3z-A0n1tNCJXtnrlUGNZM2fFiYn6dV_PzCXN_sSw7qxliSpYrS-2YrCt25FKc8GJq2IiYIKkFdvSJ5YxqseFTiOT2OZyM9n_uHfhdfQZfIoxpfCkiGWSmihW6Qi5lbFRWKSXiUnIVcGVSnSidyCDVQshwaHispUmJP6clvdmE9Xpa65fAEEWZSIqMtmNRlSGqjMoyNYFUCTHuaw8GOI1FZ1-2cKFzHhb9HHrwYflBi7JjN6ciG5ObRN_1orOW0uMmocEVregl0Z0LESeZB9tLNVkZFsLPYUywzYO3_W00WIrCyFpPF06Gaqijkt4ikyS4c09DfosMd1HkmGepBy9aNb0cJJEEIfZ49a9pewP3jj6Piu9fDr9twX0Eg92ppG1Yb-YL_RoBV6MGzsr-ACvtIuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arsenite+Binding+to+Sulfhydryl+Groups+in+the+Absence+and+Presence+of+Ferrihydrite%3A+A+Model+Study&rft.jtitle=Environmental+science+%26+technology&rft.au=Hoffmann%2C+Martin&rft.au=Mikutta%2C+Christian&rft.au=Kretzschmar%2C+Ruben&rft.date=2014-04-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=48&rft.issue=7&rft.spage=3822&rft.epage=3831&rft_id=info:doi/10.1021%2Fes405221z&rft.externalDocID=a323745357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon