Arsenite Binding to Sulfhydryl Groups in the Absence and Presence of Ferrihydrite: A Model Study
Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)–As(III) complexes on...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 7; pp. 3822 - 3831 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)–As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0–9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO–) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R–SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)–As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t 1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. |
---|---|
AbstractList | Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)–As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0–9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO–) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R–SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)–As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t 1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO(-)) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries.Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO(-)) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sorg(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)2AsO(-)) and trithio ((AmbS)3As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sorg(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t1/2 = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. Binding of arsenite (As(III)) to sulfhydryl groups (S...(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of S...(-II)-As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0-9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)...AsO-) and trithio ((AmbS)...As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R-SH and ...FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of S...(-II)-As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t... = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. (ProQuest: ... denotes formulae/symbols omitted.) Binding of arsenite (As(III)) to sulfhydryl groups (Sₒᵣg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation techniques, and reduced environmental systems rich in natural organic matter. Here, we studied the formation of Sₒᵣg(-II)–As(III) complexes on a sulfhydryl model adsorbent (Ambersep GT74 resin) in the absence and presence of ferrihydrite as a competing mineral adsorbent under reducing conditions and tested their stability against oxidation in air. Adsorption of As(III) onto the resin was studied in the pH range 4.0–9.0. On the basis of As X-ray absorption spectroscopy (XAS) results, a surface complexation model describing the pH dependence of As(III) binding to the organic adsorbent was developed. Stability constants (log K) determined for dithio ((AmbS)₂AsO–) and trithio ((AmbS)₃As) surface complexes were 8.4 and 7.3, respectively. The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) was tested in various anoxic mixtures of both adsorbents at pH 7.0. At a 1:1 ratio of their reactive binding sites, R–SH and ≡FeOH, both adsorbents possessed nearly identical affinities for As(III). The oxidation of Sₒᵣg(-II)–As(III) complexes in water vapor saturated air over 80 days, monitored by As and S XAS, revealed that the complexed As(III) is stabilized against oxidation (t₁/₂ = 318 days). Our results thus document that sulfhydryl ligands are highly competitive As(III) complexing agents that can stabilize As in its reduced oxidation state even under prolonged oxidizing conditions. These findings are particularly relevant for organic S-rich semiterrestrial environments subject to periodic redox potential changes such as peatlands, marshes, and estuaries. |
Author | Hoffmann, Martin Mikutta, Christian Kretzschmar, Ruben |
AuthorAffiliation | ETH Zurich Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science |
AuthorAffiliation_xml | – name: Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science – name: ETH Zurich |
Author_xml | – sequence: 1 givenname: Martin surname: Hoffmann fullname: Hoffmann, Martin – sequence: 2 givenname: Christian surname: Mikutta fullname: Mikutta, Christian email: christian.mikutta@env.ethz.ch – sequence: 3 givenname: Ruben surname: Kretzschmar fullname: Kretzschmar, Ruben |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28433569$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24564801$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t9rFDEQB_AgFXs9ffAfkIAI-rA2P3ezfTuLrUJFoQq-rbO7E5uyl5xJ9uH613eXO6tUoU8h8Jkh38kckQMfPBLynLO3nAl-jEkxLQS_eUQWXAtWaKP5AVkwxmVRy_L7ITlK6ZoxJiQzT8ihULpUhvEF-bGKCb3LSN853zv_k-ZAL8fBXm37uB3oeQzjJlHnab5Cumon3CEF39MvEXeXYOkZxujmiqnRCV3RT6HHgV7msd8-JY8tDAmf7c8l-Xb2_uvph-Li8_nH09VFAUrWuQCpgNW2161UXABo29Z920rdgWiZaG2FZYslsAqlBG6s0Ai2qqTRslKmlkvyetd3E8OvEVNu1i51OAzgMYypEXP6aUp19SDlZWmErrjgD1PNhRD1POgleXmPXocx-inzrJTRjFWzerFXY7vGvtlEt4a4bX7_yARe7QGkDgYbwXcu_XFGSanLOe-bnetiSCmivSOcNfNWNHdbMdnje7ZzGbILPkdww38r9q-ALv2V4x93C16gwgQ |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1002_lno_10560 crossref_primary_10_1016_j_gca_2017_01_013 crossref_primary_10_1016_j_chemgeo_2016_06_023 crossref_primary_10_1039_C6CP00249H crossref_primary_10_1016_j_envpol_2024_124977 crossref_primary_10_1016_j_colsurfa_2021_126601 crossref_primary_10_1002_agg2_70063 crossref_primary_10_1021_es503550g crossref_primary_10_1016_j_jcis_2015_08_045 crossref_primary_10_1021_acs_est_3c05771 crossref_primary_10_1016_j_watres_2021_117657 crossref_primary_10_1021_acs_est_8b01542 crossref_primary_10_3390_antiox9040283 crossref_primary_10_1016_j_aca_2016_09_035 crossref_primary_10_1021_acs_est_0c00457 crossref_primary_10_1021_acs_est_9b03020 crossref_primary_10_3390_soils1010001 crossref_primary_10_3390_microorganisms12112279 crossref_primary_10_1016_j_scitotenv_2015_02_047 crossref_primary_10_1021_acsearthspacechem_8b00201 crossref_primary_10_1002_jctb_6339 crossref_primary_10_1021_acs_est_9b00495 crossref_primary_10_1016_j_chemgeo_2016_10_002 crossref_primary_10_1021_es5031323 |
Cites_doi | 10.1016/j.geoderma.2009.08.015 10.1016/j.chemgeo.2009.10.010 10.1021/es302590x 10.2136/sssaj2005.0373 10.1016/S0966-842X(99)01494-8 10.1021/es4023317 10.1016/j.jmb.2006.07.002 10.1002/9781444308785 10.1016/S0883-2927(02)00018-5 10.1007/s10498-007-9021-0 10.1016/j.jcis.2012.03.025 10.1007/s00216-008-2395-z 10.1021/la900655v 10.1107/S010827018300949X 10.1021/es049513m 10.1021/es103793y 10.1080/01496398508060697 10.1016/S1381-5148(02)00174-8 10.1021/es101150w 10.1021/es4049785 10.1021/es0002518 10.1021/es100594t 10.1021/es1000616 10.1038/35054664 10.1021/ic048694q 10.1107/S0909049505012719 10.1097/SS.0b013e31828683f8 10.1016/S0043-1354(99)00055-X 10.1016/j.cageo.2005.12.005 10.1016/j.watres.2011.09.051 10.2166/wst.1996.0169 10.1021/es049358b 10.1002/aheh.200300485 10.1021/es202300w 10.1104/pp.122.4.1171 10.1103/PhysRevB.58.7565 10.1107/S0909049597019298 10.1016/j.jinorgbio.2004.03.010 10.1524/zkri.1972.136.1-2.48 10.1021/es061057+ 10.1016/S0016-7037(98)00306-8 10.1021/es401315e 10.1039/B307945G 10.1021/es035006d 10.1021/es703072d 10.2136/sssaj2002.4130 10.1039/dt9850001195 10.1002/3527602097 10.1016/1381-5148(96)00032-6 10.1038/ngeo1329 10.1021/es0258475 10.1021/es030309t 10.1021/es201503g 10.1016/j.micromeso.2009.03.021 10.1021/es0351645 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American
Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Apr 1, 2014 |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Apr 1, 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TN 7UA F1W H97 L.G 7S9 L.6 |
DOI | 10.1021/es405221z |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Oceanic Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 3831 |
ExternalDocumentID | 3272389921 24564801 28433569 10_1021_es405221z a323745357 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TN 7UA F1W H97 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-a439t-a34a09fd5b3412aa5fb9dbb35ca2b02bf7e6be6a07e33a18f25eaf77385374893 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 03:21:54 EDT 2025 Fri Jul 11 04:49:44 EDT 2025 Fri Jul 11 15:58:21 EDT 2025 Mon Jun 30 06:15:27 EDT 2025 Wed Feb 19 01:57:21 EST 2025 Wed Apr 02 07:13:54 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 04:28:45 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Complexation Organic matter Arsenic Pollutant behavior Organic ligand Surface complexation model Stability constant Soil pollution Sediments Arsenites Iron Hydroxides oxides Trace element Carcinogen Sulfhydryl radicals Poison Water pollution Wetland |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a439t-a34a09fd5b3412aa5fb9dbb35ca2b02bf7e6be6a07e33a18f25eaf77385374893 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24564801 |
PQID | 1514850071 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000205297 proquest_miscellaneous_1668257121 proquest_miscellaneous_1512229001 proquest_journals_1514850071 pubmed_primary_24564801 pascalfrancis_primary_28433569 crossref_primary_10_1021_es405221z crossref_citationtrail_10_1021_es405221z acs_journals_10_1021_es405221z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ravenscroft P. (ref1/cit1) 2009 Bostick B. C. (ref57/cit57) 2004; 38 Smedley P. L. (ref2/cit2) 2002; 17 Hao J. M. (ref25/cit25) 2009; 124 Spuches A. M. (ref28/cit28) 2005; 44 (ref42/cit42) 1999 Morin G. (ref48/cit48) 2009; 25 Wang X. (ref50/cit50) 2013; 178 Buschmann J. (ref8/cit8) 2006; 40 Ravel B. (ref36/cit36) 2005; 12 Prietzel J. (ref60/cit60) 2009; 153 Hoffmann M. (ref12/cit12) 2013; 47 Maurer F. (ref32/cit32) 2010; 44 Appelo C. A. J. (ref47/cit47) 2005 Smith P. G. (ref45/cit45) 2005; 39 Rey N. A. (ref27/cit27) 2004; 98 Rosen B. P. (ref15/cit15) 1999; 7 Zhao Z. (ref53/cit53) 2011; 45 Haque S. E. (ref56/cit56) 2007; 13 Yücel M. (ref62/cit62) 2010; 269 Langner P. (ref11/cit11) 2012; 5 Bhandari N. (ref54/cit54) 2011; 45 Dominguez L. (ref24/cit24) 2002; 53 Pigna M. (ref49/cit49) 2006; 70 Teixeira M. C. (ref21/cit21) 2005; 39 Bluemlein K. (ref30/cit30) 2009; 393 Ressler T. (ref35/cit35) 1998; 5 Chanda M. (ref44/cit44) 1986; 4 Urban N. R. (ref61/cit61) 1999; 63 Brechbühl Y. (ref6/cit6) 2012; 377 Huang J. W. (ref20/cit20) 2004; 38 Stumm W. (ref39/cit39) 1992 Styles P. M. (ref23/cit23) 1996; 31 Cornell R. G. (ref7/cit7) 2003 Bissen M. (ref52/cit52) 2003; 31 Goldberg S. (ref4/cit4) 2002; 66 Langner P. (ref59/cit59) 2013; 47 Rothwell J. J. (ref9/cit9) 2010; 44 Christl I. (ref31/cit31) 2001; 35 Borho M. (ref26/cit26) 1996; 34 Messens J. (ref14/cit14) 2006; 362 Pickering I. J. (ref16/cit16) 2000; 122 Hoffmann M. (ref13/cit13) 2012; 46 Ankudinov A. L. (ref37/cit37) 1998; 58 Miot J. (ref17/cit17) 2008; 42 Mullen D. J. E. (ref38/cit38) 1972; 136 Ona-Nguema G. (ref55/cit55) 2010; 44 Dixit S. (ref5/cit5) 2003; 37 Pappalardo G. C. (ref46/cit46) 1983; 39 Mikutta C. (ref10/cit10) 2011; 45 Martell A. E. (ref43/cit43) 1989 Webb S. M. (ref18/cit18) 2003; 37 Huang J.-H. (ref33/cit33) 2011; 45 Swedlund P. J. (ref3/cit3) 1999; 33 Gans P. (ref58/cit58) 1985 Langner P. (ref51/cit51) 2014; 48 Turner B. F. (ref40/cit40) 2006; 32 Egawa H. (ref22/cit22) 1985; 20 Dzombak D. A. (ref34/cit34) 1990 ref41/cit41 Ma L. Q. (ref19/cit19) 2001; 409 Raab A. (ref29/cit29) 2004; 19 |
References_xml | – volume: 153 start-page: 318 year: 2009 ident: ref60/cit60 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.08.015 – volume: 269 start-page: 364 year: 2010 ident: ref62/cit62 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.10.010 – volume: 46 start-page: 11788 year: 2012 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es302590x – volume-title: Geochemistry, Groundwater and Pollution year: 2005 ident: ref47/cit47 – volume: 70 start-page: 2017 year: 2006 ident: ref49/cit49 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0373 – volume: 7 start-page: 207 year: 1999 ident: ref15/cit15 publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(99)01494-8 – volume: 47 start-page: 12165 year: 2013 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es4023317 – volume: 362 start-page: 1 year: 2006 ident: ref14/cit14 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.07.002 – volume-title: Arsenic Pollution a Global Synthesis year: 2009 ident: ref1/cit1 doi: 10.1002/9781444308785 – volume: 17 start-page: 517 year: 2002 ident: ref2/cit2 publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(02)00018-5 – volume: 13 start-page: 289 year: 2007 ident: ref56/cit56 publication-title: Aquat. Geochem. doi: 10.1007/s10498-007-9021-0 – volume: 377 start-page: 313 year: 2012 ident: ref6/cit6 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.03.025 – volume: 393 start-page: 357 year: 2009 ident: ref30/cit30 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-008-2395-z – volume: 25 start-page: 9119 year: 2009 ident: ref48/cit48 publication-title: Langmuir doi: 10.1021/la900655v – volume: 39 start-page: 1618 year: 1983 ident: ref46/cit46 publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. doi: 10.1107/S010827018300949X – volume: 39 start-page: 895 year: 2005 ident: ref21/cit21 publication-title: Environ. Sci. Technol. doi: 10.1021/es049513m – volume: 45 start-page: 2783 year: 2011 ident: ref54/cit54 publication-title: Environ. Sci. Technol. doi: 10.1021/es103793y – volume: 20 start-page: 653 year: 1985 ident: ref22/cit22 publication-title: Sep. Sci. Technol. doi: 10.1080/01496398508060697 – volume: 53 start-page: 205 year: 2002 ident: ref24/cit24 publication-title: React. Funct. Polym. doi: 10.1016/S1381-5148(02)00174-8 – volume: 44 start-page: 8497 year: 2010 ident: ref9/cit9 publication-title: Environ. Sci. Technol. doi: 10.1021/es101150w – volume: 48 start-page: 2281 year: 2014 ident: ref51/cit51 publication-title: Environ. Sci. Technol. doi: 10.1021/es4049785 – volume: 35 start-page: 2505 year: 2001 ident: ref31/cit31 publication-title: Environ. Sci. Technol. doi: 10.1021/es0002518 – volume: 4 start-page: 213 year: 1986 ident: ref44/cit44 publication-title: React. Polym. – volume: 44 start-page: 5787 year: 2010 ident: ref32/cit32 publication-title: Environ. Sci. Technol. doi: 10.1021/es100594t – volume: 44 start-page: 5416 year: 2010 ident: ref55/cit55 publication-title: Environ. Sci. Technol. doi: 10.1021/es1000616 – volume: 409 start-page: 579 year: 2001 ident: ref19/cit19 publication-title: Nature doi: 10.1038/35054664 – volume: 44 start-page: 2964 year: 2005 ident: ref28/cit28 publication-title: Inorg. Chem. doi: 10.1021/ic048694q – volume-title: Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems year: 1992 ident: ref39/cit39 – volume: 12 start-page: 537 year: 2005 ident: ref36/cit36 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 178 start-page: 1 year: 2013 ident: ref50/cit50 publication-title: Soil Sci. doi: 10.1097/SS.0b013e31828683f8 – volume: 33 start-page: 3413 year: 1999 ident: ref3/cit3 publication-title: Water Res. doi: 10.1016/S0043-1354(99)00055-X – volume: 32 start-page: 1344 year: 2006 ident: ref40/cit40 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.005 – volume: 45 start-page: 6496 year: 2011 ident: ref53/cit53 publication-title: Water Res. doi: 10.1016/j.watres.2011.09.051 – volume: 34 start-page: 25 year: 1996 ident: ref26/cit26 publication-title: Water Sci. Technol. doi: 10.2166/wst.1996.0169 – volume-title: User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations year: 1999 ident: ref42/cit42 – volume: 39 start-page: 248 year: 2005 ident: ref45/cit45 publication-title: Environ. Sci. Technol. doi: 10.1021/es049358b – volume: 31 start-page: 97 year: 2003 ident: ref52/cit52 publication-title: Acta Hydrochim. Hydrobiol. doi: 10.1002/aheh.200300485 – volume: 45 start-page: 9550 year: 2011 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es202300w – volume-title: Surface Complexation Modeling year: 1990 ident: ref34/cit34 – volume: 122 start-page: 1171 year: 2000 ident: ref16/cit16 publication-title: Plant Physiol. doi: 10.1104/pp.122.4.1171 – volume: 58 start-page: 7565 year: 1998 ident: ref37/cit37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.7565 – volume: 5 start-page: 118 year: 1998 ident: ref35/cit35 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049597019298 – volume: 98 start-page: 1151 year: 2004 ident: ref27/cit27 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2004.03.010 – volume: 136 start-page: 48 year: 1972 ident: ref38/cit38 publication-title: Z. Kristallogr. doi: 10.1524/zkri.1972.136.1-2.48 – volume: 40 start-page: 6015 year: 2006 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es061057+ – volume: 63 start-page: 837 year: 1999 ident: ref61/cit61 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00306-8 – volume: 47 start-page: 9706 year: 2013 ident: ref59/cit59 publication-title: Environ. Sci. Technol. doi: 10.1021/es401315e – volume-title: Critical Stability Constants year: 1989 ident: ref43/cit43 – volume: 19 start-page: 183 year: 2004 ident: ref29/cit29 publication-title: J. Anal. At. Spectrom. doi: 10.1039/B307945G – volume: 38 start-page: 3299 year: 2004 ident: ref57/cit57 publication-title: Environ. Sci. Technol. doi: 10.1021/es035006d – volume: 42 start-page: 5342 year: 2008 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es703072d – volume: 66 start-page: 413 year: 2002 ident: ref4/cit4 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.4130 – start-page: 1195 year: 1985 ident: ref58/cit58 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9850001195 – volume-title: The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses year: 2003 ident: ref7/cit7 doi: 10.1002/3527602097 – volume: 31 start-page: 89 year: 1996 ident: ref23/cit23 publication-title: React. Funct. Polym. doi: 10.1016/1381-5148(96)00032-6 – volume: 5 start-page: 66 year: 2012 ident: ref11/cit11 publication-title: Nat. Geosci. doi: 10.1038/ngeo1329 – ident: ref41/cit41 – volume: 37 start-page: 754 year: 2003 ident: ref18/cit18 publication-title: Environ. Sci. Technol. doi: 10.1021/es0258475 – volume: 37 start-page: 4182 year: 2003 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es030309t – volume: 45 start-page: 7701 year: 2011 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es201503g – volume: 124 start-page: 1 year: 2009 ident: ref25/cit25 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2009.03.021 – volume: 38 start-page: 3412 year: 2004 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es0351645 |
SSID | ssj0002308 |
Score | 2.2524512 |
Snippet | Binding of arsenite (As(III)) to sulfhydryl groups (Sorg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation... Binding of arsenite (As(III)) to sulfhydryl groups (S...(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation... Binding of arsenite (As(III)) to sulfhydryl groups (Sₒᵣg(-II)) plays a key role in As detoxification mechanisms of plants and microorganisms, As remediation... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3822 |
SubjectTerms | Acidity Adsorbents Adsorption air Applied sciences arsenic arsenites Arsenites - chemistry Binding sites Biological and physicochemical phenomena Biological and physicochemical properties of pollutants. Interaction in the soil Bioremediation Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environment estuaries Exact sciences and technology Ferric Compounds - chemistry ferrihydrite Hydrogen-Ion Concentration Kinetics Ligands marshes Minerals - chemistry Models, Theoretical Natural water pollution Organic chemistry organic matter Oxidation Oxidation-Reduction peatlands plants (botany) Pollution Pollution, environment geology Protons redox potential remediation Resins, Synthetic - chemistry Soil and sediments pollution Sulfhydryl Compounds - chemistry sulfhydryl groups Water treatment and pollution water vapor X-Ray Absorption Spectroscopy |
Title | Arsenite Binding to Sulfhydryl Groups in the Absence and Presence of Ferrihydrite: A Model Study |
URI | http://dx.doi.org/10.1021/es405221z https://www.ncbi.nlm.nih.gov/pubmed/24564801 https://www.proquest.com/docview/1514850071 https://www.proquest.com/docview/1512229001 https://www.proquest.com/docview/1668257121 https://www.proquest.com/docview/2000205297 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RemlV0ZaWkpau3Mehl9DEdpwNt4WyQj1UlSjS3rZ2YgvUVRZtsgf49Z1xHiwClmOUceLYM57PGc83AF8JcsjUyHAoChFKq2SoOddhFBlaMJ0xuT9t8UudnMmfk2SyAV8eiODz-LutEFNwHl8_gadcofES_jk67ZdbxNDDrkxBJtSkow9abUquJ69uuZ4Xl7rCUXBN-YqH8aX3M-OX8KPL1mmOl_zbX9ZmP7--S9647hNewVaLM9moUYzXsGHLbXi-wj64DTvHN0luKNpaefUG_o4WlSUsyg4vfNILq-fsdDlz51fF4mrG_P-qil2UDNEjG5mK2jFdFuy3T2bCi7ljY-J8pBb4oAM2YlR1Dd9CdLZv4Wx8_OfoJGwrMYQaAUsdaiF1lLkiMej0uNaJM1lhjEhyzU3EjUutMlbpKLVC6HjoeGK1S4kpp6G32YHNcl7aXWCIl5zUIqONlywyxI8yz1MXaaOIW98GMMCpmraWVE19kJzH034MA_jWzeI0b3nMqZzG7D7Rz73oZUPecZ_Q4JYq9JLouIVIVBbAXqcbK91CoDlMCKAF8Km_jaZJ8RZd2vnSy1C1dNTMNTJK4R49jfkaGe7jxQnP0gDeNbp500miA0KU8f6xYfsAzxDrtYeO9mCzXiztR8RTtRl4e_oPCeEX_A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPAotgbIYxIFLSmLnseEWqq4WKBVSW2lvqZ3YouoqW62zh_bXM-Nks1tUCscoY2cyGXs-Z-xvAD4Q5IhSFflDUQk_0knkS86lHwSKJkyjVOl2Wxwm45Po2ySedDQ5dBYGlbDYk3VJ_BW7QPhJW4QWnIdXd-EeghBO3pzvHfWzLkLp4bJaQSaSyZJFaL0pRaDSXotAjy6kRWOYtorF32GmCzejJ23dIqeo22Vyvrto1G559QeH4_-9yVN43KFOlrdu8gzu6HoTHq5xEW7C1v7qyBuKdmPePofTfG41IVP25cwdgWHNjB0tpubXZTW_nDL398qys5ohlmS5stSOybpiP93RJryYGTYiBkhqgR19ZjmjGmz4FCK3fQEno_3jvbHf1WXwJcKXxpcikkFmqlhhCORSxkZllVIiLiVXAVcm1YnSiQxSLYQMh4bHWpqUeHNaspst2KhntX4JDNGTiaTIaBkWVRmiyagsUxNIlRDTvvZggCYsunFlC5cy52HR29CDj8uPWZQdqzkV15jeJPq-F71oqTxuEhpc84heEsO4EHGSebCzdJE1tRB2DmOCax6862_jQKXsi6z1bOFkqHY6OugtMkmCK_Y05LfIcJc9jnmWerDduuhKSSIHQszx6l9mewv3x8c_DoqDr4ffX8MDRIHddqQd2GjmC_0GkVajBm6I_QbT4SBd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiEQ4lEohJbFIA5cUhI7jw23tHRVHiqVSqW9pXZii4pVdrXOHtpfz4yTTbdVKRyjjB3HmfF8zni-AXhPkCNKVeQPRSX8SCeRLzmXfhAoWjCNUqU7bXGYHJxEX8fxuNsoUi4MDsJiT9YF8cmqZ5XpGAbCj9oivOA8vLgDdylcRxqd7x33Ky_C6eGyYkEmkvGSSWi1KXmh0l7xQg9n0uKEmLaSxd-hpnM5o8fwox-sO2nye2fRqJ3y4hqP4_-_zRN41KFPlrfq8hTWdL0BD1Y4CTdgc_8y9Q1FO9u3z-A0n1tNCJXtnrlUGNZM2fFiYn6dV_PzCXN_sSw7qxliSpYrS-2YrCt25FKc8GJq2IiYIKkFdvSJ5YxqseFTiOT2OZyM9n_uHfhdfQZfIoxpfCkiGWSmihW6Qi5lbFRWKSXiUnIVcGVSnSidyCDVQshwaHispUmJP6clvdmE9Xpa65fAEEWZSIqMtmNRlSGqjMoyNYFUCTHuaw8GOI1FZ1-2cKFzHhb9HHrwYflBi7JjN6ciG5ObRN_1orOW0uMmocEVregl0Z0LESeZB9tLNVkZFsLPYUywzYO3_W00WIrCyFpPF06Gaqijkt4ikyS4c09DfosMd1HkmGepBy9aNb0cJJEEIfZ49a9pewP3jj6Piu9fDr9twX0Eg92ppG1Yb-YL_RoBV6MGzsr-ACvtIuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arsenite+Binding+to+Sulfhydryl+Groups+in+the+Absence+and+Presence+of+Ferrihydrite%3A+A+Model+Study&rft.jtitle=Environmental+science+%26+technology&rft.au=Hoffmann%2C+Martin&rft.au=Mikutta%2C+Christian&rft.au=Kretzschmar%2C+Ruben&rft.date=2014-04-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=48&rft.issue=7&rft.spage=3822&rft.epage=3831&rft_id=info:doi/10.1021%2Fes405221z&rft.externalDocID=a323745357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |