Sustainable Colloidal-Silver-Impregnated Ceramic Filter for Point-of-Use Water Treatment

Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fi...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 42; no. 3; pp. 927 - 933
Main Authors Oyanedel-Craver, Vinka A, Smith, James A
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 °C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10−5 cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 µm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world’s poorest communities.
AbstractList Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900...C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [...H]H...O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10... cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 ...m. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 mm of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities. (ProQuest: ... denotes formulae/symbols omitted.)
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degree C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [ super(3)H]H sub(2)O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10 super(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 mu m. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 °C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10−5 cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 µm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world’s poorest communities.
Author Oyanedel-Craver, Vinka A
Smith, James A
Author_xml – sequence: 1
  givenname: Vinka A
  surname: Oyanedel-Craver
  fullname: Oyanedel-Craver, Vinka A
– sequence: 2
  givenname: James A
  surname: Smith
  fullname: Smith, James A
  email: jas9e@virginia.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20049914$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18323124$$D View this record in MEDLINE/PubMed
BookMark eNqF0VFrFDEQB_AgFXs9ffALyCIo-BCdJLub5LEeViulFu5Kiy8htzsrqdnNmWRFv7173HEH-uBTIPnNkP_MGTkZwoCEPGfwlgFn7zCBZLxW4yMyYxUHWqmKnZAZABNUi_r-lJyl9AAAXIB6Qk6ZElwwXs7I_XJM2brBrj0Wi-B9cK31dOn8T4z0st9E_DbYjG2xwGh71xQXzmeMRRdicRPckGno6G3C4s5ur1cRbe5xyE_J4876hM_255zcXnxYLT7Rqy8fLxfnV9SWQmeqOReKScCaixqkrLp1yyQ2IHhZd6xWULZSVLrtpEDJOXIhKyUaaxGZKoWYk9e7vpsYfoyYsuldatB7O2AYk5EwFdRM_xcyLbViGib48i_4EMY4TCHMND4mlJjGOCdvdqiJIaWIndlE19v42zAw26WYw1Im-2LfcFz32B7lfgsTeLUHNjXWd9EOjUsHxwFKrdnW0Z1zKeOvw7uN300tp5hmdbM06v3n1fXXa27ujn1tk44h_v3gH3CerrI
CODEN ESTHAG
CitedBy_id crossref_primary_10_2965_jwet_2011_333
crossref_primary_10_1007_s11814_019_0306_y
crossref_primary_10_1016_j_cis_2008_09_002
crossref_primary_10_1061__ASCE_EE_1943_7870_0000684
crossref_primary_10_1061__ASCE_EE_1943_7870_0000330
crossref_primary_10_1016_j_jnoncrysol_2021_121028
crossref_primary_10_1039_D0EN00584C
crossref_primary_10_1007_s11783_020_1254_9
crossref_primary_10_1016_j_aquaeng_2016_05_003
crossref_primary_10_1371_journal_pone_0169502
crossref_primary_10_1021_acs_est_1c00169
crossref_primary_10_1186_s13756_017_0277_x
crossref_primary_10_1016_j_carbpol_2011_11_017
crossref_primary_10_1016_j_desal_2010_07_031
crossref_primary_10_1016_j_apsusc_2016_11_222
crossref_primary_10_1016_j_watres_2017_07_045
crossref_primary_10_4269_ajtmh_20_0228
crossref_primary_10_1039_D1EW00821H
crossref_primary_10_1016_j_matchar_2010_01_006
crossref_primary_10_1039_C5RA08449K
crossref_primary_10_1016_j_jece_2019_103176
crossref_primary_10_3390_ijerph19084736
crossref_primary_10_1021_es401219s
crossref_primary_10_1061__ASCE_EE_1943_7870_0000433
crossref_primary_10_1016_j_watres_2011_11_037
crossref_primary_10_1021_ja9051125
crossref_primary_10_5322_JES_2012_21_8_901
crossref_primary_10_1016_j_watres_2013_11_035
crossref_primary_10_1080_24701556_2020_1852253
crossref_primary_10_3390_antibiotics7040093
crossref_primary_10_1016_j_jcis_2013_10_036
crossref_primary_10_1021_nl5020958
crossref_primary_10_3390_su16020623
crossref_primary_10_3390_w7073599
crossref_primary_10_1002_pc_23684
crossref_primary_10_1016_j_hazadv_2022_100204
crossref_primary_10_1016_j_tifs_2011_01_004
crossref_primary_10_1039_C4NJ02275K
crossref_primary_10_1021_es9022442
crossref_primary_10_2166_washdev_2016_006
crossref_primary_10_1155_2014_734254
crossref_primary_10_1061__ASCE_EE_1943_7870_0000669
crossref_primary_10_1061__ASCE_EE_1943_7870_0001634
crossref_primary_10_1021_es4000752
crossref_primary_10_1021_acssuschemeng_8b06878
crossref_primary_10_1088_1755_1315_81_1_012018
crossref_primary_10_1088_1757_899X_1116_1_012007
crossref_primary_10_1039_D1EW00587A
crossref_primary_10_1016_j_eti_2021_101721
crossref_primary_10_1016_j_heliyon_2023_e18343
crossref_primary_10_1061__ASCE_EE_1943_7870_0001749
crossref_primary_10_1080_19443994_2015_1052569
crossref_primary_10_1021_es302956f
crossref_primary_10_1038_s41598_019_56009_6
crossref_primary_10_1007_s12116_022_09374_9
crossref_primary_10_2166_wh_2018_266
crossref_primary_10_1021_acs_est_5b01428
crossref_primary_10_1088_2043_6262_5_3_035001
crossref_primary_10_1680_jwama_19_00077
crossref_primary_10_1111_ijac_13440
crossref_primary_10_1016_j_micromeso_2008_11_028
crossref_primary_10_1155_2021_8688238
crossref_primary_10_1016_j_heliyon_2023_e13261
crossref_primary_10_1155_2016_1485280
crossref_primary_10_2166_ws_2015_007
crossref_primary_10_1007_s42108_019_00043_7
crossref_primary_10_3390_w13030285
crossref_primary_10_15415_jce_2020_71003
crossref_primary_10_1016_j_cej_2015_10_105
crossref_primary_10_1061__ASCE_EE_1943_7870_0001579
crossref_primary_10_1007_s10311_018_0778_8
crossref_primary_10_1038_s41545_020_00089_9
crossref_primary_10_1021_acsestengg_0c00216
crossref_primary_10_1061__ASCE_EE_1943_7870_0001464
crossref_primary_10_1016_j_envpol_2018_03_008
crossref_primary_10_1039_C8NA00275D
crossref_primary_10_1111_jfpe_13221
crossref_primary_10_1016_j_envadv_2022_100303
crossref_primary_10_1016_j_pce_2011_07_078
crossref_primary_10_2521_jswtb_51_127
crossref_primary_10_1021_acs_est_5b03782
crossref_primary_10_1002_clen_201700193
crossref_primary_10_1061__ASCE_EE_1943_7870_0000914
crossref_primary_10_2166_wpt_2015_044
crossref_primary_10_1007_s10534_014_9761_4
crossref_primary_10_1080_09603120903440665
crossref_primary_10_1007_s12046_022_02048_1
crossref_primary_10_2166_ws_2016_176
crossref_primary_10_1016_j_seppur_2018_01_061
crossref_primary_10_1039_C5PY01333J
crossref_primary_10_1016_j_ceramint_2023_09_160
crossref_primary_10_1038_s41598_020_68192_y
crossref_primary_10_2166_wh_2017_049
crossref_primary_10_1016_j_watres_2012_09_005
crossref_primary_10_1039_D0EN00115E
crossref_primary_10_1080_15533174_2012_749906
crossref_primary_10_1039_C6RA03711A
crossref_primary_10_2166_ws_2015_107
crossref_primary_10_1016_j_colsurfb_2012_12_033
crossref_primary_10_1016_j_chemosphere_2021_129677
crossref_primary_10_1080_19443994_2014_996778
crossref_primary_10_1021_am2012273
crossref_primary_10_1016_j_scitotenv_2023_163317
crossref_primary_10_1016_j_jhazmat_2013_05_025
crossref_primary_10_4236_jwarp_2015_79057
crossref_primary_10_1016_j_matpr_2019_03_109
crossref_primary_10_1016_j_ceramint_2020_09_050
crossref_primary_10_1007_s10499_015_9906_7
crossref_primary_10_1002_wat2_1680
crossref_primary_10_1080_23311916_2022_2119536
crossref_primary_10_1016_j_scitotenv_2021_152633
crossref_primary_10_5194_dwes_9_9_2016
crossref_primary_10_1016_j_cej_2019_03_146
crossref_primary_10_1016_j_sciaf_2019_e00218
crossref_primary_10_1039_C4EN00067F
crossref_primary_10_3390_w11051108
crossref_primary_10_1021_es503534c
crossref_primary_10_1016_j_jenvman_2020_110583
crossref_primary_10_1061__ASCE_EE_1943_7870_0000460
crossref_primary_10_1002_smll_201300761
crossref_primary_10_1016_j_jhazmat_2012_03_004
crossref_primary_10_1080_17458080_2016_1209790
crossref_primary_10_1016_j_jconhyd_2018_03_002
crossref_primary_10_1016_j_pce_2011_07_064
crossref_primary_10_1080_19443994_2014_943064
crossref_primary_10_1186_1471_2334_8_133
crossref_primary_10_1021_acs_estlett_3c00093
crossref_primary_10_1016_j_watres_2018_06_008
crossref_primary_10_1002_slct_201900628
crossref_primary_10_1002_wnan_1940
crossref_primary_10_1007_s13201_016_0423_2
crossref_primary_10_1016_j_jcis_2018_01_007
crossref_primary_10_1016_j_micromeso_2013_12_033
crossref_primary_10_1002_smll_200801202
crossref_primary_10_1039_C5EW00188A
crossref_primary_10_4269_ajtmh_17_0731
crossref_primary_10_1021_sc400068p
crossref_primary_10_1016_j_optmat_2021_111073
crossref_primary_10_1088_1755_1315_999_1_012020
crossref_primary_10_1016_j_colsurfb_2013_08_027
crossref_primary_10_1038_s41598_020_64228_5
crossref_primary_10_1016_j_jhazmat_2016_05_089
crossref_primary_10_1039_C6EW00200E
crossref_primary_10_1021_acsestwater_3c00711
crossref_primary_10_1038_s41598_024_59310_1
crossref_primary_10_1088_0957_4484_19_44_445711
crossref_primary_10_4028_www_scientific_net_AMR_1132_267
crossref_primary_10_1039_C3AN01810E
crossref_primary_10_1002_smll_201601072
crossref_primary_10_1016_j_jes_2019_03_011
crossref_primary_10_1016_j_colsurfa_2011_08_042
crossref_primary_10_1155_2016_5685967
crossref_primary_10_1016_j_clay_2016_04_012
crossref_primary_10_1016_j_mran_2016_06_003
crossref_primary_10_1016_j_ijheh_2019_113438
crossref_primary_10_1021_acs_est_9b01678
crossref_primary_10_56093_ijas_v91i7_115025
crossref_primary_10_1016_j_trac_2018_11_012
crossref_primary_10_1002_slct_201701245
crossref_primary_10_1021_acsestwater_1c00427
crossref_primary_10_1680_jwama_17_00077
crossref_primary_10_1016_j_ifset_2018_05_023
crossref_primary_10_1039_C5EW00152H
crossref_primary_10_1021_es4026084
crossref_primary_10_1038_s41598_017_02452_2
crossref_primary_10_1007_s10853_014_8386_x
crossref_primary_10_1016_j_vacuum_2017_10_039
crossref_primary_10_1016_j_jece_2018_03_044
crossref_primary_10_1016_j_ceramint_2021_06_121
crossref_primary_10_3390_microorganisms10050870
crossref_primary_10_1016_j_wroa_2020_100077
crossref_primary_10_1021_la304708b
crossref_primary_10_1007_s10904_020_01470_4
crossref_primary_10_1039_C7EN00443E
crossref_primary_10_1007_s10565_013_9241_6
crossref_primary_10_1016_j_jmbbm_2017_06_002
crossref_primary_10_3390_nano11030581
crossref_primary_10_1016_j_carbpol_2019_115187
crossref_primary_10_1021_ed100480p
crossref_primary_10_4236_jmmce_2016_41003
crossref_primary_10_2497_jjspm_24_00028
crossref_primary_10_1039_D4NH00056K
crossref_primary_10_1016_j_carbpol_2016_04_084
crossref_primary_10_1016_j_msec_2018_12_102
crossref_primary_10_1016_j_scitotenv_2011_03_020
crossref_primary_10_1061__ASCE_EE_1943_7870_0001471
crossref_primary_10_1002_pc_25120
crossref_primary_10_1021_acssuschemeng_8b06001
crossref_primary_10_1063_1_4722326
crossref_primary_10_1016_j_jece_2014_02_002
crossref_primary_10_1016_j_psep_2017_08_009
crossref_primary_10_1155_2020_3080612
crossref_primary_10_1021_acs_langmuir_5b04675
crossref_primary_10_1021_acsestwater_2c00316
crossref_primary_10_1089_ees_2018_0149
crossref_primary_10_3390_w12061657
crossref_primary_10_1007_s41204_023_00354_5
crossref_primary_10_1016_j_ifset_2019_102228
crossref_primary_10_1021_acs_est_7b01153
crossref_primary_10_4028_www_scientific_net_MSF_798_799_69
crossref_primary_10_1080_15422119_2014_973967
crossref_primary_10_1016_j_jconhyd_2015_05_005
crossref_primary_10_3390_nano8090710
crossref_primary_10_1007_s12403_015_0167_5
crossref_primary_10_1016_j_colsurfb_2012_07_031
crossref_primary_10_1021_acs_est_6b05540
crossref_primary_10_3390_ijerph9010139
crossref_primary_10_3390_microorganisms9030577
crossref_primary_10_3390_ijms22189736
crossref_primary_10_1016_j_ijbiomac_2023_123289
crossref_primary_10_1021_acs_est_5b02183
crossref_primary_10_1021_acs_est_3c01070
crossref_primary_10_3390_membranes13040432
crossref_primary_10_3389_fenvs_2022_1100583
crossref_primary_10_18311_jmmf_2023_35877
crossref_primary_10_1080_10643389_2020_1806685
crossref_primary_10_1016_j_watres_2013_01_058
crossref_primary_10_3390_ijerph13010099
crossref_primary_10_1016_j_memsci_2014_10_042
crossref_primary_10_2166_washdev_2014_121
crossref_primary_10_3390_w8030095
crossref_primary_10_53623_idwm_v1i1_41
crossref_primary_10_1021_acssuschemeng_9b07177
crossref_primary_10_1080_09593330902753461
crossref_primary_10_1115_1_4004158
crossref_primary_10_1039_c1nj20076c
crossref_primary_10_29328_journal_aac_1001044
crossref_primary_10_1039_C6RA22735J
crossref_primary_10_1080_00207233_2010_514107
crossref_primary_10_1016_j_pce_2012_05_001
crossref_primary_10_2166_wh_2016_082
crossref_primary_10_1016_j_watres_2013_11_010
crossref_primary_10_1155_2018_2573015
crossref_primary_10_1016_j_jenvman_2021_112681
crossref_primary_10_1061__ASCE_EE_1943_7870_0000862
crossref_primary_10_1155_2015_409078
crossref_primary_10_1186_s42269_023_00984_4
crossref_primary_10_1155_2016_4964828
crossref_primary_10_1111_risa_13381
crossref_primary_10_1007_s10098_010_0332_2
crossref_primary_10_1016_j_watres_2020_115879
crossref_primary_10_1016_j_jhazmat_2018_07_031
crossref_primary_10_1016_j_apsusc_2012_11_168
crossref_primary_10_1155_2016_7614753
crossref_primary_10_1080_19443994_2015_1040268
crossref_primary_10_1007_s41204_023_00344_7
crossref_primary_10_1061__ASCE_MT_1943_5533_0001596
crossref_primary_10_1016_j_matlet_2021_131636
crossref_primary_10_1016_j_chemosphere_2019_125545
crossref_primary_10_1016_j_envpol_2015_05_017
crossref_primary_10_3390_ijerph9010244
crossref_primary_10_1016_j_scitotenv_2016_05_076
crossref_primary_10_1021_acs_est_1c01886
crossref_primary_10_1016_j_seppur_2022_120999
crossref_primary_10_1016_j_watres_2016_07_076
crossref_primary_10_1186_1743_8977_11_17
Cites_doi 10.1016/S0008-6223(02)00246-4
10.1016/0043-1354(94)00338-8
10.1006/jcis.1999.6419
10.1016/j.jcis.2004.02.012
10.1021/es011210u
10.1080/03608860290051921
10.1001/jama.1995.03520360062040
10.4269/ajtmh.2004.70.651
10.1016/S1201-9712(01)90089-X
10.1002/bit.20368
10.1023/A:1012683008035
10.1103/PhysRevLett.91.243401
10.1016/j.jinorgbio.2004.02.025
10.1128/AEM.68.6.2794-2801.2002
10.1046/j.1365-2672.2000.00977.x
10.1016/S1387-1811(00)00217-1
10.1128/aem.57.9.2473-2481.1991
10.1061/(ASCE)0733-9372(1994)120:6(1646)
10.1080/01919512.1993.10555743
10.4269/ajtmh.2002.66.584
10.1111/j.1551-2916.2005.00390.x
10.1029/97WR00298
10.1016/S0021-9797(03)00617-9
10.1016/S0021-9797(02)00205-9
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
2008 INIST-CNRS
Copyright American Chemical Society Feb 1, 2008
Copyright_xml – notice: Copyright © 2008 American Chemical Society
– notice: 2008 INIST-CNRS
– notice: Copyright American Chemical Society Feb 1, 2008
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QL
7TV
7U6
7UA
7X8
DOI 10.1021/es071268u
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Bacteriology Abstracts (Microbiology B)
Pollution Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Pollution Abstracts
Sustainability Science Abstracts
Bacteriology Abstracts (Microbiology B)
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biotechnology Research Abstracts
Pollution Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 933
ExternalDocumentID 1424019441
10_1021_es071268u
18323124
20049914
ark_67375_TPS_8BJTNZN2_W
a154874000
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID -
.K2
186
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
K78
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAYOK
ABFRP
ABJNI
ABQRX
ADHLV
ADMHC
AGHSJ
AGXLV
AHGAQ
BSCLL
GGK
MS~
MW2
XSW
ZCA
~A~
.HR
08R
1WB
42X
8WZ
A6W
ABHMW
ABTAH
ACKIV
AETEA
AFDAS
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
VJK
VOH
YV5
ZCG
ZY4
AAHBH
ADUKH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7QL
7TV
7U6
7UA
7X8
ID FETCH-LOGICAL-a439t-92238170e62360775fbd17ec03246f16804d7359df73e722e237583caaee18433
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Sat Aug 17 03:22:25 EDT 2024
Fri Aug 16 01:16:20 EDT 2024
Thu Oct 10 18:21:35 EDT 2024
Fri Aug 23 02:45:35 EDT 2024
Sat Sep 28 08:39:18 EDT 2024
Sun Oct 22 16:09:16 EDT 2023
Wed Jan 17 04:58:26 EST 2024
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Water treatment
Escherichia coli
Clay soil
Hydraulic conductivity
Hydrodynamic dispersion
Permeability
Interstitial water
Heavy metal
Painting
Transport process
Pore size
Particle size distribution
Bacteria
Application method
Ceramic materials
Mercury
Enterobacteriaceae
Tracers
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a439t-92238170e62360775fbd17ec03246f16804d7359df73e722e237583caaee18433
Notes ark:/67375/TPS-8BJTNZN2-W
istex:66864A5939C55952DC40470A8FCCBAA3D09A874C
Table S2-S2 shows the particle size, specific surface area, and predominant clay mineral for Guatemalan, Redart, and Mexican soils used to fabricate ceramic filters; Table S3-S3 shows the colloidal silver masses applied to and retained by ceramic filters manufactured using each of three types of soil samples; Figure S4-S4 shows the effluent [3H]H2O concentrations normalized to the influent pulse concentration as a function of time for ceramic filters, without silver impregnation, fabricated with Redart, Guatemalan, and Mexican soils; Figure S5-S5 shows the silver concentrations in effluent water from painted ceramic filters as a function of time. This material is available free of charge via the Internet at http://pubs.acs.org.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18323124
PQID 230138302
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_70375619
proquest_miscellaneous_19798190
proquest_journals_230138302
crossref_primary_10_1021_es071268u
pubmed_primary_18323124
pascalfrancis_primary_20049914
istex_primary_ark_67375_TPS_8BJTNZN2_W
acs_journals_10_1021_es071268u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2008
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References 18323079 - Environ Sci Technol. 2008 Feb 1;42(3):650-1
ref9/cit9
Sondi I. (ref15/cit15) 2004; 275
ref6/cit6
Jewett D. G. (ref24/cit24) 1995; 29
ref18/cit18
Luby S. (ref3/cit3) 2001; 5
Esrey S. A. (ref4/cit4) 1991; 69
Ohtsubo M. (ref10/cit10) 2002; 20
Souza G. P. (ref20/cit20) 2005; 51
Bartelt-Hunt S. L. (ref17/cit17) 2003; 266
ref16/cit16
Murad E. (ref21/cit21) 1988; 117
Quick R. E. (ref1/cit1) 2002; 66
Rivera-Garza M. (ref27/cit27) 2000; 39
Clasen T. F. (ref5/cit5) 2004; 70
LePape H. (ref30/cit30) 2004; 98
Sondi I. (ref14/cit14) 2003; 260
Jain P. (ref26/cit26) 2005; 90
Schmidt M. (ref31/cit31) 2003; 91
Wiesner M. R. (ref19/cit19) 1996
McConville C. J. (ref22/cit22) 2005; 88
Heinig C. F. (ref28/cit28) 1993; 15
Kretzschmar R. (ref23/cit23) 1997; 33
Kulkarni D. N. (ref8/cit8) 1980; 22
Chaudhuri M. (ref7/cit7) 1994; 120
Mintz E. D. (ref2/cit2) 1995; 273
Sherwood J. L. (ref12/cit12) 2003; 37
George I. (ref13/cit13) 2000; 88
Vigeant M. A. (ref11/cit11) 2002; 68
Fontes D. E. (ref25/cit25) 1991; 57
LePape H. (ref29/cit29) 2002; 40
Lui A. (ref32/cit32) 1999; 218
References_xml – volume: 40
  start-page: 2947
  year: 2002
  ident: ref29/cit29
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00246-4
  contributor:
    fullname: LePape H.
– volume: 29
  start-page: 1673
  issue: 7
  year: 1995
  ident: ref24/cit24
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)00338-8
  contributor:
    fullname: Jewett D. G.
– volume: 218
  start-page: 225
  issue: 1
  year: 1999
  ident: ref32/cit32
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6419
  contributor:
    fullname: Lui A.
– ident: ref9/cit9
– volume: 275
  start-page: 177
  year: 2004
  ident: ref15/cit15
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.02.012
  contributor:
    fullname: Sondi I.
– volume: 69
  start-page: 609
  issue: 5
  year: 1991
  ident: ref4/cit4
  publication-title: Bull. WHO
  contributor:
    fullname: Esrey S. A.
– volume: 37
  start-page: 781
  issue: 4
  year: 2003
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011210u
  contributor:
    fullname: Sherwood J. L.
– volume: 20
  start-page: 223
  year: 2002
  ident: ref10/cit10
  publication-title: Mar. Geores. Geotechnol.
  doi: 10.1080/03608860290051921
  contributor:
    fullname: Ohtsubo M.
– volume-title: Water Treatment: Membrane Process
  year: 1996
  ident: ref19/cit19
  contributor:
    fullname: Wiesner M. R.
– volume: 273
  start-page: 948
  issue: 12
  year: 1995
  ident: ref2/cit2
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.1995.03520360062040
  contributor:
    fullname: Mintz E. D.
– volume: 70
  start-page: 651
  issue: 6
  year: 2004
  ident: ref5/cit5
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2004.70.651
  contributor:
    fullname: Clasen T. F.
– ident: ref18/cit18
– ident: ref6/cit6
– volume: 5
  start-page: 144
  issue: 3
  year: 2001
  ident: ref3/cit3
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/S1201-9712(01)90089-X
  contributor:
    fullname: Luby S.
– volume: 51
  start-page: 381
  year: 2005
  ident: ref20/cit20
  publication-title: Ceramica
  contributor:
    fullname: Souza G. P.
– volume: 90
  start-page: 59
  issue: 1
  year: 2005
  ident: ref26/cit26
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20368
  contributor:
    fullname: Jain P.
– volume: 117
  start-page: 337
  year: 1988
  ident: ref21/cit21
  publication-title: Hyperfine Interact.
  doi: 10.1023/A:1012683008035
  contributor:
    fullname: Murad E.
– volume: 91
  start-page: 3401
  issue: 24
  year: 2003
  ident: ref31/cit31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.243401
  contributor:
    fullname: Schmidt M.
– volume: 98
  start-page: 1054
  year: 2004
  ident: ref30/cit30
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2004.02.025
  contributor:
    fullname: LePape H.
– volume: 68
  start-page: 2794
  issue: 8
  year: 2002
  ident: ref11/cit11
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.6.2794-2801.2002
  contributor:
    fullname: Vigeant M. A.
– volume: 88
  start-page: 404
  year: 2000
  ident: ref13/cit13
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2000.00977.x
  contributor:
    fullname: George I.
– volume: 39
  start-page: 431
  year: 2000
  ident: ref27/cit27
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(00)00217-1
  contributor:
    fullname: Rivera-Garza M.
– volume: 57
  start-page: 2473
  issue: 9
  year: 1991
  ident: ref25/cit25
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.57.9.2473-2481.1991
  contributor:
    fullname: Fontes D. E.
– volume: 120
  start-page: 1646
  issue: 6
  year: 1994
  ident: ref7/cit7
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1994)120:6(1646)
  contributor:
    fullname: Chaudhuri M.
– volume: 22
  start-page: 30
  issue: 1
  year: 1980
  ident: ref8/cit8
  publication-title: Indian J. Environ. Health
  contributor:
    fullname: Kulkarni D. N.
– volume: 15
  start-page: 533
  year: 1993
  ident: ref28/cit28
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919512.1993.10555743
  contributor:
    fullname: Heinig C. F.
– volume: 66
  start-page: 584
  issue: 5
  year: 2002
  ident: ref1/cit1
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2002.66.584
  contributor:
    fullname: Quick R. E.
– volume: 88
  start-page: 2267
  issue: 8
  year: 2005
  ident: ref22/cit22
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00390.x
  contributor:
    fullname: McConville C. J.
– ident: ref16/cit16
– volume: 33
  start-page: 1129
  issue: 5
  year: 1997
  ident: ref23/cit23
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR00298
  contributor:
    fullname: Kretzschmar R.
– volume: 266
  start-page: 251
  year: 2003
  ident: ref17/cit17
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00617-9
  contributor:
    fullname: Bartelt-Hunt S. L.
– volume: 260
  start-page: 75
  year: 2003
  ident: ref14/cit14
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(02)00205-9
  contributor:
    fullname: Sondi I.
SSID ssj0002308
Score 2.4546158
Snippet Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 927
SubjectTerms Applied sciences
Bacteria
Ceramics
Ceramics - chemistry
Colloids - chemistry
E coli
Escherichia coli
Escherichia coli - metabolism
Exact sciences and technology
Filters
Filtration - methods
Hydraulics
Permeability
Pollution
Porosity
Silver
Silver - chemistry
Soil
Sustainability Engineering and Green Chemistry
Water Purification - instrumentation
Water treatment
Title Sustainable Colloidal-Silver-Impregnated Ceramic Filter for Point-of-Use Water Treatment
URI http://dx.doi.org/10.1021/es071268u
https://api.istex.fr/ark:/67375/TPS-8BJTNZN2-W/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/18323124
https://www.proquest.com/docview/230138302
https://search.proquest.com/docview/19798190
https://search.proquest.com/docview/70375619
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED6N7QUeGAwG2caIAPHmrbaTOHkcZdW0h2pSW63iJXJiG1VDCWpSCfHrd5c06SYovDq2Yp_vfN_5zncAnwKH7bEJWe6cYQFiepZlRrI81NLpgVLcNQGy4-hqFlzPw_kOfNziwRf83FaoBUUUr57AnkB9SBbWxXDSH7eIoeOuTEEio3mXPujhUFI9efVI9ewRFX9RKKSukBquLWOxHWc2-ma0D1-7VzttmMnd2arOzvLffyZx_NdSXsDzNd70L1oGeQk7tjiAZw-yEB7A4eXmsRt2XUt79Qrmk83rKp9uGMqF0T_YZEHR1IyuI-z3ArGq8Yd2SXXt_dGCnO8-AmH_plwUNSsdm1XWv9XUPO2C2l_DbHQ5HV6xdSUGphGw1CwRosnkZxEsRZQ0z2WGK5sPEI5FjkfxIDBKholxSlolhBUS7RCZa20tFZSRh7BblIV9C36ShcIRDlHaBFznOrTRIOAGOcnkOo49OMWtSteSVKWNk1zwtKedBx-6XUx_thk5_tbpc7O_fQ-9vKMQNhWm05tJGn-5no6_jUV6i797xAD9ANEYgzzw4LjjiM2kkOe4pMxpHrzvv6JckrNFF7Zc4bwTlRDa2t5DUflhtF89eNMy2mY5eMxKBF5H_6PFMTxt41covOYEduvlyr5DkFRnp42Q3AOIJgsg
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagPUAPPAotoaWNEOLmsrGTODnSVVdLKatKm1VXXCInttGqVVJtshLi1zPjvFpEBdfETuzx2PPZM_6GkA--geeRCmhujKI-YHqaZYrTPJDcyJEQnrEBsrNwuvDPl8GypcnBuzDQiAq-VFkn_sAu4H3SFRhDFkabx2Q7EGDlEAaN5_2qC1A66rIVxDxcdixCd6uiBcqrexZoG4X5EyMiZQVCMU02i4fhpjU7k-dN_iLbYBttcn2yqbOT_NcfXI7_16MX5FmLPt3Pjbq8JI90sUt27nAS7pK9s-HqGxRt5371iiznw10rF88bypWSN3S-wthqiocT-kcByFW5Y73GLPfuZIWueBdgsXtZroqaloYuKu1eSXycdCHur8licpaMp7TNy0AlwJeaxoxZXj8N0ClECj2TKU_ofATgLDReGI18JXgQKyO4FoxpxmFXwnMptcb0MnyPbBVlod8QN84CZhCVCKl8T-Yy0OHI9xTolcplFDnkCESXtvOqSq3LnHlpLzuHvO8GM71t-Dn-VuijHea-hFxfY0CbCNLkcp5Gp-fJ7PuMpVfwu3t60Fdgdmvo-Q456BRjaBSonseRR80hx_1bmKXoepGFLjfQ7ljEiL0eLiEwGTHsZh2y3-jb0B1YdDnAsLf_ksUxeTJNvl2kF19mXw_I0yayBQNvDslWvd7odwCf6uzIzpvf-s0Tiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJiF44GMwCIMtQog3j9pO4uRxlFVjoFKprVbxEjmxjaqhZGpSCfHXc5ek6YaY4DWxk_P5zvc7-3wH8DZw-Dw2IcudMyxATM-yzEiWh1o6PVCKuyZAdhydzYPzRbjoHEW6C4NEVPilqjnEJ62-Mq7LMMDf2woNooji9V3YDRUPSBFPhtN-5UU4HW8qFiQyWmwyCV3vSlYor25YoV1i6E-KitQVMsa1FS1uh5yN6Rk9gq890U3EyeXxus6O819_5HP8_1E9hocdCvVPWrF5AndssQcPruUm3IP90-0VOGzarQHVU1hMt3eufNp3KJdG_2DTJcVYM9qksN8LRLDGH9oVVbv3R0s6kvcRHvuTclnUrHRsXln_QtPj2SbU_RnMR6ez4Rnr6jMwjTCmZokQTX4_ixAqolR6LjNc2XyAIC1yPIoHgVEyTIxT0iohrJDonchca2upzIzch52iLOwL8JMsFI7QidIm4DrXoY0GATcoXybXcezBIbIv7fSrSpujc8HTnncevNlMaHrV5un4W6N3zVT3LfTqkgLbVJjOJtM0_nA-G38bi_QCf3dDFvoOonEReeDBwUY4tkSh-HFJ-dQ8OOrforbSEYwubLlGuhOVEAa7vYWiosTo1XrwvJW57XBw8ZUIx17-ixdHcG_ycZR--TT-fAD32wAXir95BTv1am1fI4qqs8NGdX4Dz9IWBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+Colloidal-Silver-Impregnated+Ceramic+Filter+for+Point-of-Use+Water+Treatment&rft.jtitle=Environmental+science+%26+technology&rft.au=Oyanedel-Craver%2C+Vinka+A&rft.au=Smith%2C+James+A&rft.date=2008-02-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=42&rft.issue=3&rft.spage=927&rft_id=info:doi/10.1021%2Fes071268u&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1424019441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon