Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications
Ionic liquids (ILs) have been claimed as “greener” replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of “greenness...
Saved in:
Published in | Environmental science & technology Vol. 42; no. 5; pp. 1724 - 1730 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.03.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 |
DOI | 10.1021/es0713983 |
Cover
Abstract | Ionic liquids (ILs) have been claimed as “greener” replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of “greenness” can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF4]) and its use as a solvent for the manufacture of cyclohexane and in a Diels–Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels–Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies. |
---|---|
AbstractList | Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of "greenness" can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF4]) and its use as a solvent for the manufacture of cyclohexane and in a Diels-Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels-Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies. Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of "greenness" can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF sub(4)]) and its use as a solvent for the manufacture of cyclohexane and in a Diels- Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels-Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies. Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of "greenness" can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF4]) and its use as a solvent for the manufacture of cyclohexane and in a Diels-Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels-Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies.Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of "greenness" can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF4]) and its use as a solvent for the manufacture of cyclohexane and in a Diels-Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels-Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies. Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of "greenness" can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF...]) and its use as a solvent for the manufacture of cyclohexane and in a Diels-Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels-Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Bakshi, Bhavik R Demessie, E. Sahle Zhang, Yi |
Author_xml | – sequence: 1 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Bhavik R surname: Bakshi fullname: Bakshi, Bhavik R email: bakshi.2@osu.edu – sequence: 3 givenname: E. Sahle surname: Demessie fullname: Demessie, E. Sahle |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20181925$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18441827$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctuEzEUBmALFdE0sOAFkIVUJBZDfRln7GUUbkUBKjVIZWV5PLZwccapz0xF3x5DQiIVJFbefP51zn9O0FGfeofQU0peUcLomQPSUK4kf4AmVDBSCSnoEZoQQnml-OzqGJ0AXBNCGCfyETqmsq6pZM0EfV0G7_DizkaH5wAOYO36ASePTY_PUx8sXoabMXT41mUYAX9M0dkxmowvU7wtFors8OqbCxnPN5sYrBlC6uExeuhNBPdk907Rl7dvVov31fLzu_PFfFmZmquhksxTyrvaNKyVQnFqvGItI8xb3zmilLUtlS1vCbNScNZ4Ja3wvutkK5rO8Cl6sc3d5HQzOhj0OoB1MZrepRH0TNF6pmr2X8iIUKSRqsDn9-B1GnNfltClP1rGLr1O0bMdGtu16_Qmh7XJd_pPtQWc7oABa6LPprcB9o4RKqlioriXW2dzAsjOH6KI_nVevT9vsWf3rA3D77qHbEL8549q-yPA4H7so03-rmcNb4ReXVxqfqFeX6nVJ_3hMLWxcFj779yf-Om_ww |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1021_acs_iecr_4c00405 crossref_primary_10_1021_acssuschemeng_1c03034 crossref_primary_10_1039_c2gc16515e crossref_primary_10_1016_j_cogsc_2019_02_004 crossref_primary_10_1021_acs_est_5b04721 crossref_primary_10_2174_1570193X16666190723111746 crossref_primary_10_1039_C6EE02429G crossref_primary_10_1021_acs_chemrev_6b00776 crossref_primary_10_1021_acssuschemeng_8b01685 crossref_primary_10_1016_j_jclepro_2017_02_107 crossref_primary_10_1016_j_jclepro_2024_143283 crossref_primary_10_1016_j_cjche_2015_07_021 crossref_primary_10_1111_j_1530_9290_2009_00170_x crossref_primary_10_1039_c3gc41661e crossref_primary_10_1016_j_molliq_2020_114195 crossref_primary_10_1016_j_molliq_2019_112038 crossref_primary_10_1021_acssuschemeng_3c04718 crossref_primary_10_1039_c1gc15054e crossref_primary_10_1007_s10311_020_01135_1 crossref_primary_10_1002_cite_201100032 crossref_primary_10_1021_acs_chemrev_7b00571 crossref_primary_10_1016_j_rser_2021_112039 crossref_primary_10_1016_j_carbpol_2020_117375 crossref_primary_10_1039_C4RA16683C crossref_primary_10_1002_cssc_202301310 crossref_primary_10_1039_c0gc00797h crossref_primary_10_1016_j_fluid_2013_11_030 crossref_primary_10_1002_cplu_201700514 crossref_primary_10_1039_C4GC00705K crossref_primary_10_1039_C4GC01153H crossref_primary_10_1021_es400085y crossref_primary_10_1016_j_molliq_2020_113093 crossref_primary_10_1021_acsapm_3c02923 crossref_primary_10_1016_j_chemosphere_2016_09_117 crossref_primary_10_1039_D2GC01752K crossref_primary_10_1016_j_molliq_2024_124469 crossref_primary_10_1016_j_jclepro_2021_128456 crossref_primary_10_1021_acssuschemeng_4c02519 crossref_primary_10_1039_D2GC01983C crossref_primary_10_1016_j_crci_2018_03_010 crossref_primary_10_1007_s10532_009_9253_3 crossref_primary_10_1021_acs_jced_5b00996 crossref_primary_10_1016_j_ecoenv_2011_10_006 crossref_primary_10_1021_acssuschemeng_0c05498 crossref_primary_10_1021_acssuschemeng_1c05763 crossref_primary_10_1016_j_cej_2015_03_103 crossref_primary_10_1111_cote_12429 crossref_primary_10_1039_C5NJ02734A crossref_primary_10_1039_C7FD90090B crossref_primary_10_1016_j_jclepro_2018_12_241 crossref_primary_10_1016_j_jclepro_2019_01_133 crossref_primary_10_1039_b909964f crossref_primary_10_1021_cr100194q crossref_primary_10_1002_cite_201100097 crossref_primary_10_1039_c2ee21152a crossref_primary_10_1039_C0GC00647E crossref_primary_10_1016_j_msec_2009_03_015 crossref_primary_10_1021_ie801934s crossref_primary_10_1016_j_molliq_2021_116006 crossref_primary_10_1039_c3gc40875b crossref_primary_10_1002_bbb_1923 crossref_primary_10_1002_ejoc_201800780 crossref_primary_10_1021_acssuschemeng_3c00547 crossref_primary_10_1021_sc5004314 crossref_primary_10_1134_S0040579517060185 crossref_primary_10_1021_acssuschemeng_1c03473 crossref_primary_10_1021_acs_chemrev_3c00223 crossref_primary_10_1021_sc3001383 crossref_primary_10_1080_17518253_2020_1856427 crossref_primary_10_1021_acssuschemeng_1c06188 crossref_primary_10_1016_j_jclepro_2017_05_110 crossref_primary_10_1007_s11356_024_33964_w crossref_primary_10_1016_j_seppur_2024_127252 crossref_primary_10_1016_j_molliq_2024_126276 crossref_primary_10_1016_j_seh_2024_100097 crossref_primary_10_1021_acsagscitech_3c00208 crossref_primary_10_1016_j_jece_2021_105169 crossref_primary_10_1016_j_jclepro_2017_10_145 crossref_primary_10_1016_j_resconrec_2022_106689 crossref_primary_10_1039_C5GC00611B crossref_primary_10_1021_acssuschemeng_6b01635 crossref_primary_10_1007_s10098_018_1590_7 crossref_primary_10_1021_acssuschemeng_7b02116 crossref_primary_10_1039_C3GC41999A crossref_primary_10_1016_j_egyr_2022_01_045 crossref_primary_10_1051_e3sconf_202450304001 crossref_primary_10_1021_es503766e crossref_primary_10_1002_ejoc_201200219 crossref_primary_10_1016_j_rser_2020_110289 crossref_primary_10_1002_cssc_202300142 crossref_primary_10_1021_acssuschemeng_3c02059 crossref_primary_10_1039_C5GC02156A crossref_primary_10_1039_C6GC01259K crossref_primary_10_1002_adma_202100543 crossref_primary_10_1016_j_jhazmat_2016_11_060 crossref_primary_10_1039_C4GC00016A crossref_primary_10_1021_acssuschemeng_0c02473 crossref_primary_10_1007_s10098_021_02188_8 crossref_primary_10_1039_b716534j crossref_primary_10_1016_j_jwpe_2025_107367 crossref_primary_10_1039_D1GC03420K crossref_primary_10_1021_acs_chemrev_0c01265 crossref_primary_10_1039_C9RA04098F crossref_primary_10_1016_j_spc_2023_04_017 crossref_primary_10_1002_cssc_201000022 crossref_primary_10_1016_j_seppur_2014_02_036 crossref_primary_10_1016_j_jeurceramsoc_2018_06_044 crossref_primary_10_1115_1_4024040 crossref_primary_10_3390_met13010172 crossref_primary_10_1007_s10098_016_1118_y crossref_primary_10_1039_C3EE43837F crossref_primary_10_1039_b919154b crossref_primary_10_1002_ange_201915651 crossref_primary_10_1021_jo100914p crossref_primary_10_1007_s10668_012_9365_5 crossref_primary_10_1016_j_ecoenv_2013_10_019 crossref_primary_10_1021_acssuschemeng_3c00249 crossref_primary_10_1039_D0RE00409J crossref_primary_10_1080_17518250903230001 crossref_primary_10_1002_aesr_202400368 crossref_primary_10_1016_j_biotechadv_2018_05_007 crossref_primary_10_1063_5_0007815 crossref_primary_10_1016_j_cogsc_2018_11_013 crossref_primary_10_1007_s11030_012_9413_y crossref_primary_10_1021_acs_jced_4c00259 crossref_primary_10_1039_c3gc40992a crossref_primary_10_1016_j_jclepro_2021_127286 crossref_primary_10_1039_C6GC00501B crossref_primary_10_1038_s43586_022_00129_3 crossref_primary_10_1016_j_cep_2015_07_005 crossref_primary_10_1039_C9GC02553G crossref_primary_10_1007_s00253_020_10839_x crossref_primary_10_1002_anie_201915651 |
Cites_doi | 10.1016/S0022-1139(99)00267-5 10.1002/(SICI)1097-4660(199704)68:4<381::AID-JCTB620>3.0.CO;2-3 10.1039/b417167e 10.1002/adsc.200390000 10.1039/a808052f 10.1351/pac200072071391 10.1016/j.tet.2005.05.064 10.1039/B402348J 10.1021/ja00546a048 10.1039/b103275p 10.1002/anie.199526981 10.1897/03-635.1 10.1039/B205425F 10.1021/es020001m 10.1039/c39920000965 10.1039/b005650m 10.1039/b300071k 10.1021/jo035038j 10.1021/cr00018a006 10.1016/S0040-4039(98)02415-0 10.1021/bk-2002-0819.ch002 10.1039/b418518h 10.1021/bk-2003-0856.ch001 10.1021/cr980032t 10.1002/adsc.200390015 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society 2008 INIST-CNRS Copyright American Chemical Society Mar 1, 2008 |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society – notice: 2008 INIST-CNRS – notice: Copyright American Chemical Society Mar 1, 2008 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7U6 7X8 |
DOI | 10.1021/es0713983 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Sustainability Science Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Sustainability Science Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Environment Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 1730 |
ExternalDocumentID | 1440000661 18441827 20181925 10_1021_es0713983 ark_67375_TPS_3P9DX9TN_J a7951881 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | - .K2 186 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 K78 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 XSW ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO ANPPW CITATION .HR 1WB 42X 8WZ A6W ABHMW ACKIV AETEA AEYZD AGQPQ IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY VJK VOH YV5 ZCG ZY4 CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7U6 7X8 |
ID | FETCH-LOGICAL-a439t-82f113d4a72b85931af92b202fcfde099ccb18b3b02c85327f98c5ffdd8b57da3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Thu Sep 04 20:51:31 EDT 2025 Tue Aug 05 10:51:08 EDT 2025 Fri Jul 25 05:39:21 EDT 2025 Wed Feb 19 02:34:50 EST 2025 Mon Jul 21 09:15:31 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 04:05:02 EDT 2025 Wed Oct 30 09:30:50 EDT 2024 Thu Aug 27 13:42:41 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Sensitivity analysis Life cycle (environment) Modeling Environment impact Environmental protection |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a439t-82f113d4a72b85931af92b202fcfde099ccb18b3b02c85327f98c5ffdd8b57da3 |
Notes | istex:D7AC613D74C673B721535F2F20130AB4FB54E239 Details about the life cycle calculations, assumptions, and missing information (PDF). This information is available free of charge via the Internet at http://pubs.acs.org. ark:/67375/TPS-3P9DX9TN-J SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 18441827 |
PQID | 230143901 |
PQPubID | 45412 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_69146942 proquest_miscellaneous_20590789 proquest_journals_230143901 pubmed_primary_18441827 pascalfrancis_primary_20181925 crossref_primary_10_1021_es0713983 crossref_citationtrail_10_1021_es0713983 istex_primary_ark_67375_TPS_3P9DX9TN_J acs_journals_10_1021_es0713983 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-01 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wasserscheid P. (ref8/cit8) 2002; 4 Wilkes J. S. (ref17/cit17) 1992; 1992 Deetlefs M. (ref7/cit7) 2003; 5 Jastorff B. (ref5/cit5) 2005; 7 Lee S. M. (ref15/cit15) 2005; 22 Rideout D. C. (ref30/cit30) 1980; 102 Holbrey J. D. (ref9/cit9) 2003 Bernot R. J. (ref6/cit6) 2005; 24 Sheldon R. A. (ref26/cit26) 1997; 68 Pindur U. (ref27/cit27) 1993; 93 Kumar A. (ref29/cit29) 2004; 69 Earle M. J. (ref28/cit28) 1999; 1999 Domènech X. (ref12/cit12) 2002; 36 ref20/cit20 Blaser H. U. (ref23/cit23) 2003; 345 Marcell R. L. (ref22/cit22) 1982; 14 Stock F. (ref16/cit16) 2004; 6 Fischer T. (ref31/cit31) 1999; 40 ref19/cit19 Welton T. (ref10/cit10) 1999; 99 Guinée J. B. (ref14/cit14) 2002 Hagiwara R. (ref1/cit1) 2000; 105 Huddleston J. G. (ref3/cit3) 2001; 3 Dyson P. J. (ref25/cit25) 2003; 345 Bradley D. (ref4/cit4) 1999 Tatacchi A. (ref21/cit21) 2002 Silvero G. (ref33/cit33) 2005; 61 Earle M. J. (ref2/cit2) 2000; 72 Earle M. J. (ref32/cit32) 2002 Chauvin Y. (ref18/cit18) 1996; 34 ref24/cit24 Anastas P. T. (ref11/cit11) 2000; 2 Kralisch D. (ref13/cit13) 2005; 7 |
References_xml | – ident: ref20/cit20 – volume: 105 start-page: 221 year: 2000 ident: ref1/cit1 publication-title: J. Fluorine Chem. doi: 10.1016/S0022-1139(99)00267-5 – volume: 68 start-page: 381 year: 1997 ident: ref26/cit26 publication-title: J. Chem. Tech. Biotechnol. doi: 10.1002/(SICI)1097-4660(199704)68:4<381::AID-JCTB620>3.0.CO;2-3 – volume: 7 start-page: 301 year: 2005 ident: ref13/cit13 publication-title: Green Chem. doi: 10.1039/b417167e – volume: 345 start-page: 103 issue: 1 year: 2003 ident: ref23/cit23 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200390000 – volume: 1999 start-page: 23 issue: 1 year: 1999 ident: ref28/cit28 publication-title: Green Chem. doi: 10.1039/a808052f – volume: 72 start-page: 1391 issue: 7 year: 2000 ident: ref2/cit2 publication-title: Pure Appl. Chem. doi: 10.1351/pac200072071391 – volume-title: The Diels−Alder Reaction: Selected Practical Methods year: 2002 ident: ref21/cit21 – volume: 61 start-page: 7105 year: 2005 ident: ref33/cit33 publication-title: Tetrahedron doi: 10.1016/j.tet.2005.05.064 – ident: ref24/cit24 – volume: 6 start-page: 286 issue: 6 year: 2004 ident: ref16/cit16 publication-title: Green Chem. doi: 10.1039/B402348J – volume: 102 start-page: 7816 year: 1980 ident: ref30/cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00546a048 – volume: 3 start-page: 156 year: 2001 ident: ref3/cit3 publication-title: Green Chem. doi: 10.1039/b103275p – volume: 34 start-page: 2698 issue: 23 year: 1996 ident: ref18/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.199526981 – volume: 24 start-page: 87 issue: 1 year: 2005 ident: ref6/cit6 publication-title: Environ. Toxicol. Chem. doi: 10.1897/03-635.1 – volume: 4 start-page: 400 year: 2002 ident: ref8/cit8 publication-title: Green Chemistry doi: 10.1039/B205425F – ident: ref19/cit19 – volume: 36 start-page: 5517 issue: 24 year: 2002 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es020001m – volume: 1992 start-page: 965 issue: 13 year: 1992 ident: ref17/cit17 publication-title: Chem. Commun. doi: 10.1039/c39920000965 – volume: 2 start-page: 289 year: 2000 ident: ref11/cit11 publication-title: Green Chem. doi: 10.1039/b005650m – volume: 5 start-page: 181 issue: 2 year: 2003 ident: ref7/cit7 publication-title: Green Chem. doi: 10.1039/b300071k – volume: 22 start-page: 687 issue: 5 year: 2005 ident: ref15/cit15 publication-title: J. Chem. Eng. – volume: 69 start-page: 1419 year: 2004 ident: ref29/cit29 publication-title: J. Org. Chem. doi: 10.1021/jo035038j – volume: 93 start-page: 741 issue: 2 year: 1993 ident: ref27/cit27 publication-title: Chem. Rev. doi: 10.1021/cr00018a006 – volume: 40 start-page: 793 issue: 4 year: 1999 ident: ref31/cit31 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(98)02415-0 – start-page: 10 volume-title: Clean Solvents: Alternative Media for Chemical Reactions and Processing year: 2002 ident: ref32/cit32 doi: 10.1021/bk-2002-0819.ch002 – volume-title: Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards year: 2002 ident: ref14/cit14 – volume: 7 start-page: 362 issue: 5 year: 2005 ident: ref5/cit5 publication-title: Green Chem. doi: 10.1039/b418518h – start-page: 2 volume-title: Ionic Liquid as Green Solvent: Progress and Prospects year: 2003 ident: ref9/cit9 doi: 10.1021/bk-2003-0856.ch001 – volume: 14 start-page: 61 volume-title: Encyclopedia of Chemical Processing and Design year: 1982 ident: ref22/cit22 – year: 1999 ident: ref4/cit4 publication-title: Technol. Ireland – volume: 99 start-page: 2071 year: 1999 ident: ref10/cit10 publication-title: Chem. Rev. doi: 10.1021/cr980032t – volume: 345 start-page: 216 issue: 1 year: 2003 ident: ref25/cit25 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200390015 |
SSID | ssj0002308 |
Score | 2.3248029 |
Snippet | Ionic liquids (ILs) have been claimed as “greener” replacements to molecular solvents. However, the environmental impacts of the life cycle phases and... Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1724 |
SubjectTerms | Applied sciences Environmental impact Exact sciences and technology Ions Life cycles Pollution Sensitivity analysis Solvents Solvents - chemistry Studies Sustainability Engineering and Green Chemistry |
Title | Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications |
URI | http://dx.doi.org/10.1021/es0713983 https://api.istex.fr/ark:/67375/TPS-3P9DX9TN-J/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/18441827 https://www.proquest.com/docview/230143901 https://www.proquest.com/docview/20590789 https://www.proquest.com/docview/69146942 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gIHHoVCKBQLEOKSduO87ONq26pUpaq0W2k5RbZjS6tWWdpspMKvZyav3YouHKOMJT9mMt9kxt8AfMYYGWGqFr6No8SPMADwpYklPQoZ5EpHuq7yPU9OLqPTaTzdgE9rMvg8OLAlBVJShI9giyeoXoR_RuP-c4sYWnRtCmSYTDv6oNWh5HpMec_1bNEu3lEppCpxN1zTxmI9zqz9zfEzOOxu7TRlJlf71ULvm99_kzj-aynP4WmLN9mwUZAXsGGLbXiywkK4DTtHy8tuKNpae_kSfpzNnGWjXziQDXsGTzZ3TBXsG3HqsrPZTTXLGdV2VCX73vXaZeP5NRVSliiZswklI9hwJVX-Ci6PjyajE79txeArRCwLX3AXBGEeqZRrYkgLlJNc8wF3xuUWUaYxOhA61ANuEADw1ElhYufyXOg4zVW4A5vFvLBvgOXChk45q5RC9GAiJQeW24AbifoUGOfBHp5V1ppSmdVZch5k_eZ58LU7xsy0RObUT-P6IdGPvejPhr3jIaEvtS70Eur2isrd0jibXIyz8EIeTuXkPDvFmd1Tln4AJ9YzyWMPdjvtWc6fU9BKf5Y8-NC_RRumxIwq7LxCEboBnAq5XiKR6NFkxD143SjlcjkCAa3g6dv_bdsuPG5qXah-7h1sLm4r-x4B1ULv1Qb1B8sGGNE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_B9gA88DEYhMFmIYR4ydY4SWM_VmVTN7pqUjupPEW2Y0vVphSWRgL-eu7y1Q5tgsco5-h8uYt_zp1_B_AR98gIU7XwbRz1_Qg3AL40saRLIYNM6UhXVb6T_ugyOpvH84Ymh87CoBIFPqmokvhrdoHgyBa0n5IifAjbCEI4tWkYDKfdVxehtGi7FciwP29ZhDaH0gpkilsr0DYZ8ydVRKoCjeLqbhb3w81q2Tl5VvcvqhSuqk2uDsuVPjS__-Jy_L8ZPYenDfpkg9pdXsADm-_Akw1Owh3YPV4ffUPRJvaLl_BtvHCWDX_hQDbo-DzZ0jGVs1Ni2GXjxY9ykTGq9CgLdt523mXT5TWVVRYombEZpSbYYCNx_gouT45nw5HfNGbwFeKXlS-4C4Iwi1TCNfGlBcpJrnmPO-Myi5jTGB0IHeoeNwgHeOKkMLFzWSZ0nGQq3IWtfJnbN8AyYUOnnFVKIZYwkZI9y23AjUTvCozzYB9tlzaBVaRVzpwHaWc8Dz63bzM1Da05dde4vkv0Qyf6vebyuEvoU-USnYS6uaLityROZxfTNLyQX-ZyNknPULNbPtMN4MSBJnnswV7rRGv9OW1h6T-TBwfdXYxoStOo3C5LFKHzwImQ90v0Ja5vMuIevK59cz0dgfBW8OTtv8x2AI9Gs_NxOj6dfN2Dx3UVDFXWvYOt1U1p3yPUWun9Ksb-AJhfITI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJiF44GMwCIPNQgjxkq1xksZ-rLpV2yilUjupPEW2Y0vVpnQsrQT89dzlqx3aBI9RzpFzubN_lzv_DuAjxsgIU7XwbRx1_QgDAF-aWNKlkEGmdKTLKt9R9_QiOp_FszpQpLMwOIkCn1SUSXzy6uvM1QwDwZEtKKaSInwI25Suo1YNvf6kXXkRToumY4EMu7OGSWhzKO1Cpri1C22TQn9SVaQqUDGu6mhxP-Qst57BM_jWTrqsOLk8XC31ofn9F5_j_7_Vc3hao1DWq8zmBTyw-Q482eAm3IHdk_UROBSt14DiJXwfzp1l_V84kPVaXk-2cEzl7IyYdtlw_mM1zxhVfKwK9rXpwMsmiysqryxQMmNTSlGw3kYC_RVcDE6m_VO_btDgK8QxS19wFwRhFqmEa-JNC5STXPMOd8ZlFrGnMToQOtQdbhAW8MRJYWLnskzoOMlUuAtb-SK3b4BlwoZOOauUQkxhIiU7ltuAG4lWFhjnwT7qL60drEjL3DkP0lZ5Hnxuvmhqanpz6rJxdZfoh1b0uuL0uEvoU2kWrYS6uaQiuCROp-NJGo7l8UxOR-k5zuyW3bQDOHGhSR57sNcY0nr-nEJZ-t_kwUF7Fz2b0jUqt4sVitC54ETI-yW6Evc5GXEPXlf2uX4dgTBX8OTtv9R2AI_Gx4N0eDb6sgePq2IYKrB7B1vLm5V9j4hrqfdLN_sD7KQjtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+Cycle+Assessment+of+an+Ionic+Liquid+versus+Molecular+Solvents+and+Their+Applications&rft.jtitle=Environmental+science+%26+technology&rft.au=ZHANG%2C+Yi&rft.au=BAKSHI%2C+Bhavik+R.&rft.au=DEMESSIE%2C+E.+Sahle&rft.date=2008-03-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=42&rft.issue=5&rft.spage=1724&rft.epage=1730&rft_id=info:doi/10.1021%2Fes0713983&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_3P9DX9TN_J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |