Oxidative Stress Contributes to Bacterial Airborne Loss of Viability
While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay o...
Saved in:
Published in | Microbiology spectrum Vol. 11; no. 2; p. e0334722 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
13.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli.
The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease. |
---|---|
AbstractList | While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of
Escherichia coli
in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of
E. coli
.
IMPORTANCE
The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease. The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. ABSTRACT While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli . IMPORTANCE The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease. While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli. The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease. While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli. IMPORTANCE The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease. |
Author | Haddrell, Allen E Hughes, Cordelia Thomas, Richard J Otero-Fernandez, Mara Reid, Jonathan P Oswin, Henry P |
Author_xml | – sequence: 1 givenname: Henry P orcidid: 0000-0002-4183-8593 surname: Oswin fullname: Oswin, Henry P organization: School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom – sequence: 2 givenname: Allen E surname: Haddrell fullname: Haddrell, Allen E organization: School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom – sequence: 3 givenname: Cordelia surname: Hughes fullname: Hughes, Cordelia organization: School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom – sequence: 4 givenname: Mara surname: Otero-Fernandez fullname: Otero-Fernandez, Mara organization: School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom – sequence: 5 givenname: Richard J surname: Thomas fullname: Thomas, Richard J organization: Defence Science Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom – sequence: 6 givenname: Jonathan P orcidid: 0000-0001-6022-1778 surname: Reid fullname: Reid, Jonathan P organization: School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36912675$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOwzAQtFARLaUfwAXlyCXFjzhOTqiUp1SpBx5Xy3YccJXExXYq-vektEXlgvawK-3Mzu7OKeg1ttEAnCM4RghnV36pVXBtPYaEJCzG-AgMMEppDJOc9Q7qPhh5v4AQIgQppvgE9EmaI5wyOgC38y9TiGBWOnoOTnsfTW0TnJFt0D4KNroRKmhnRBVNjJPWNTqa2Q5my-jNCGkqE9Zn4LgUldejXR6C1_u7l-ljPJs_PE0ns1gkJA8xTQtChSCqZAXLc5JogRDKlJYyx3kiqSxVAcsM52WhEpmWCVNSFGmWsA4LBRmC6-3cZStrXSjdbSoqvnSmFm7NrTD8b6cxH_zdrjiCm-geNQSXuwnOfrbaB14br3RViUbb1nPMspSiDCPaQdEWqlx3r9Plrw6CfOMA3zvAfxzgGHec8ZYjfI35wrau6f7xL-Hi8KJfib1B5Bum8Zaj |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2024_123889 crossref_primary_10_1073_pnas_2315940121 crossref_primary_10_1016_j_trac_2024_117557 crossref_primary_10_1039_D3SM01521A crossref_primary_10_1128_jvi_00409_24 crossref_primary_10_1099_mic_0_001421 crossref_primary_10_1016_j_jhazmat_2024_133706 crossref_primary_10_3390_atmos15040511 crossref_primary_10_1038_s41467_024_47777_5 crossref_primary_10_1080_02786826_2023_2299214 |
Cites_doi | 10.1038/s41396-019-0474-0 10.1128/am.13.5.781-787.1965 10.1016/j.mib.2014.06.008 10.1128/JB.01368-07 10.1016/j.msec.2021.112120 10.1128/mr.58.4.755-805.1994 10.1017/s0022172400063671 10.3389/fmicb.2018.01752 10.1007/BF00197534 10.5194/acp-11-4739-2011 10.1099/00221287-72-1-117 10.1183/09031936.05.00029705 10.1128/aem.54.6.1557-1563.1988 10.1128/jb.170.6.2841-2849.1988 10.1034/j.1399-3054.1995.930105.x 10.1017/s0022172400021896 10.3168/jds.S0022-0302(72)85424-9 10.1128/am.19.2.245-249.1970 10.1016/S0378-1119(97)00037-1 10.1183/09031936.03.00038803 10.1021/acscentsci.0c01522 10.1128/JB.187.17.5861-5867.2005 10.1038/nrmicro.2017.16 10.1111/j.1365-2672.1993.tb03404.x 10.1175/1520-0450(1998)037%3C1293:CACOAE%3E2.0.CO;2 10.1164/rccm.201208-1422OC 10.1017/cbo9781139060004.012 10.4315/0362-028x-71.12.2404 10.1021/acs.jpclett.0c03319 10.1099/00221287-43-3-383 10.1098/rsif.2018.0779 10.1039/C4CE00344F 10.3390/ijms10093793 10.1016/j.jfoodeng.2012.06.005 10.1016/j.tplants.2016.08.002 10.1021/jp952903y 10.1017/s1464793104006475 10.1128/am.21.2.363-364.1971 10.1111/mmi.13389 10.1111/j.1365-2958.2011.07917.x 10.1016/j.tim.2016.12.008 10.4236/ojpc.2012.21008 10.1099/00221287-49-1-115 10.1371/journal.pone.0158763 10.1099/00221287-137-4-745 10.1128/AEM.71.7.3761-3769.2005 10.1099/00221287-56-2-241 10.4161/psb.3.3.5536 10.1002/pro.3 10.1007/s00294-019-01036-z 10.1007/s12551-017-0338-7 10.1073/pnas.142314099 10.1034/j.1399-3054.1993.870213.x 10.1016/j.jare.2012.06.003 10.1073/pnas.2109750119 10.1021/acs.jpcb.8b09584 10.1002/j.1460-2075.1986.tb04256.x 10.1080/02786826.2021.1976718 10.3390/antiox7050062 10.1021/jp9095985 10.1084/jem.87.2.87 10.1007/BF00266247 10.1136/thoraxjnl-2018-211567 10.1021/jp802520d 10.5194/bg-4-1059-2007 10.1099/00221287-50-1-139 10.1099/mic.0.000012 10.1016/j.molliq.2021.117149 10.1038/s41564-017-0037-y 10.1117/12.454758 10.1016/S0167-2991(99)80384-X 10.1038/s41579-021-00626-4 10.1128/jb.174.3.889-898.1992 10.1128/AEM.01543-20 10.1073/pnas.2200109119 10.1098/rsif.2009.0407.focus 10.1038/s41612-019-0085-5 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Oswin et al. Copyright © 2023 Oswin et al. 2023 Oswin et al. |
Copyright_xml | – notice: Copyright © 2023 Oswin et al. – notice: Copyright © 2023 Oswin et al. 2023 Oswin et al. |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1128/spectrum.03347-22 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2165-0497 |
Editor | Bazurto, Jannell V. |
Editor_xml | – sequence: 1 givenname: Jannell V. surname: Bazurto fullname: Bazurto, Jannell V. |
EndPage | e0334722 |
ExternalDocumentID | 10_1128_spectrum_03347_22 03347-22 36912675 |
Genre | Journal Article |
GrantInformation_xml | – fundername: UKRI | Engineering and Physical Sciences Research Council (EPSRC) grantid: S139151-187 funderid: https://doi.org/10.13039/501100000266 – fundername: MOD | Defence Science and Technology Laboratory (Dstl) grantid: S100122-101 funderid: https://doi.org/10.13039/100010418 – fundername: ; grantid: S100122-101 – fundername: ; grantid: S139151-187 |
GroupedDBID | 53G AAUOK ADBBV AGVNZ ALMA_UNASSIGNED_HOLDINGS EJD FF~ FRP GROUPED_DOAJ H13 M~E NPM OK1 RPM RSF UCJ EBS AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a439t-56d35aa3cf7d79934ea1118cebb9294b5bfcd0f829fdc4b6f47cbad684734e0a3 |
IEDL.DBID | RPM |
ISSN | 2165-0497 |
IngestDate | Tue Sep 17 21:30:48 EDT 2024 Sat Oct 05 05:39:44 EDT 2024 Thu Sep 12 18:34:22 EDT 2024 Mon Mar 13 19:15:16 EDT 2023 Sat Sep 28 08:12:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | oxidative damage bioaerosols Escherichia coli airborne microorganisms aerobiology |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a439t-56d35aa3cf7d79934ea1118cebb9294b5bfcd0f829fdc4b6f47cbad684734e0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-4183-8593 0000-0001-6022-1778 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101003/ |
PMID | 36912675 |
PQID | 2786518215 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10101003 proquest_miscellaneous_2786518215 crossref_primary_10_1128_spectrum_03347_22 asm2_journals_10_1128_spectrum_03347_22 pubmed_primary_36912675 |
PublicationCentury | 2000 |
PublicationDate | 20230313 |
PublicationDateYYYYMMDD | 2023-03-13 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230313 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology spectrum |
PublicationTitleAbbrev | Microbiol Spectr |
PublicationTitleAlternate | Microbiol Spectr |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Wadhwa, N, Berg, HC (B5) 2021; 20 Walther, BA, Ewald, PW (B12) 2004; 79 Lopez-Cortes, A, Ochoa, JL (B30) 1999; 7 Hong, Y, Li, L, Luan, G, Drlica, K, Zhao, X (B68) 2017; 2 Giaever, HM, Styrvold, OB, Kaasen, I, Strøm, AR (B51) 1988; 170 Ehrlich, R, Miller, S, Walker, RL (B41) 1970; 19 Khvorostyanov, VI, Curry, JA (B31) 2014 Ghandi, A, Powell, IB, Howes, T, Chen, XD, Adhikari, B (B57) 2012; 113 Eames, I, Tang, JW, Li, Y, Wilson, P (B8) 2009; 6 Valsaraj, KT (B60) 2012; 2 Benbough, JE (B56) 1969; 56 Parhad, NM, Rao, NU (B75) 1974; 46 Hargreaves, G, Kwamena, N-OA, Zhang, YH, Butler, JR, Rushworth, S, Clegg, SL, Reid, JP (B24) 2010; 114 Huynh, E, Olinger, A, Woolley, D, Kohli, RK, Choczynski, JM, Davies, JF, Lin, K, Marr, LC, Davis, RD (B27) 2022; 119 Sui, X, Xu, B, Yao, J, Kostko, O, Ahmed, M, Yu, X-Y (B61) 2021; 12 Fernandez, MO, Thomas, RJ, Oswin, H, Haddrell, AE, Reid, JP (B21) 2020; 86 Welsh, DT, Reed, RH, Herbert, RA (B49) 1991; 137 Tong, HJ, Reid, JP, Bones, DL, Luo, BP, Krieger, UK (B25) 2011; 11 Kandror, O, DeLeon, A, Goldberg, AL (B53) 2002; 99 Steinman, HM (B63) 1992; 232 Lebre, PH, De Maayer, P, Cowan, DA (B45) 2017; 15 Suzuki, H, Koyanagi, T, Izuka, S, Onishi, A, Kumagai, H (B70) 2005; 187 Laskowska, E, Kuczyńska-Wiśnik, D (B46) 2020; 66 Sezonov, G, Joseleau-Petit, D, D'Ari, R (B42) 2007; 189 Hess, GE (B19) 1965; 13 Walker, JS, Archer, J, Gregson, FKA, Michel, SES, Bzdek, BR, Reid, JP (B23) 2021; 7 Oswin, HP, Haddrell, AE, Otero-Fernandez, M, Mann, JFS, Cogan, TA, Hilditch, TG, Tian, J, Hardy, DA, Hill, DJ, Finn, A, Davidson, AD, Reid, JP (B33) 2022; 119 Purvis, JE, Yomano, LP, Ingram, LO (B50) 2005; 71 Potts, M (B47) 1994; 58 Cox, CS (B18) 1968; 50 Jain, NK, Roy, I (B55) 2009; 18 Benbough, JE, Hood, AM (B35) 1971; 69 Gaucher, C (B66) 2018; 7 Marshall, BJ, Ohye, DF, Christian, JH (B44) 1971; 21 Darzins, A, Russell, MA (B1) 1997; 192 Lindow, SE, Knudsen, GR, Seidler, RJ, Walter, MV, Lambou, VW, Amy, PS, Schmedding, D, Prince, V, Hern, S (B13) 1988; 54 Wood, ME, Stockwell, RE, Johnson, GR, Ramsay, KA, Sherrard, LJ, Kidd, TJ, Cheney, J, Ballard, EL, O'Rourke, P, Jabbour, N, Wainwright, CE, Knibbs, LD, Sly, PD, Morawska, L, Bell, SC (B6) 2019; 74 Fernandez, MO, Thomas, RJ, Garton, NJ, Hudson, A, Haddrell, A, Reid, JP (B22) 2019; 16 Horváth, I, Hunt, J, Barnes, PJ, Alving, K, Antczak, A, Baraldi, E, Becher, G, van Beurden, WJC, Corradi, M, Dekhuijzen, R, Dweik, RA, Dwyer, T, Effros, R, Erzurum, S, Gaston, B, Gessner, C, Greening, A, Ho, LP, Hohlfeld, J, Jöbsis, Q, Laskowski, D, Loukides, S, Marlin, D, Montuschi, P, Olin, AC, Redington, AE, Reinhold, P, van Rensen, ELJ, Rubinstein, I, Silkoff, P, Toren, K, Vass, G, Vogelberg, C, Wirtz, H (B77) 2005; 26 Zhang, F, Yu, X, Chen, J, Zhu, Z, Yu, XY (B62) 2019; 2 Qian, C, Rui, Y, Wang, C, Wang, X, Xue, B, Yi, H (B29) 2021; 126 Franc, GD, Demott, PJ (B16) 1998; 37 Johnson, GR, Knibbs, LD, Kidd, TJ, Wainwright, CE, Wood, ME, Ramsay, KA, Bell, SC, Morawska, L (B20) 2016; 11 Gregson, FKA, Robinson, JF, Miles, REH, Royall, CP, Reid, JP (B28) 2019; 123 Dunklin, EW, Puck, TT (B40) 1948; 87 Cruz De Carvalho, MH (B73) 2008; 3 Sgherri, CLM, Navari-Izzo, F (B71) 1995; 93 Sear, RP (B43) 2014; 16 Oswin, HP, Haddrell, AE, Otero-Fernandez, M, Cogan, TA, Mann, JFS, Morley, CH, Hill, DJ, Davidson, AD, Finn, A, Thomas, RJ, Reid, JP (B32) 2021; 55 Starliper, CE, Watten, BJ (B76) 2013; 4 Van Acker, H, Coenye, T (B67) 2017; 25 Möhler, O, DeMott, PJ, Vali, G, Levin, Z (B14) 2007; 4 Jones-López, EC, Namugga, O, Mumbowa, F, Ssebidandi, M, Mbabazi, O, Moine, S, Mboowa, G, Fox, MP, Reilly, N, Ayakaka, I, Kim, S, Okwera, A, Joloba, M, Fennelly, KP (B7) 2013; 187 Strange, RE, Benbough, JE, Hambleton, P, Martin, KL (B34) 1972; 72 Patrick, JE, Kearns, DB (B3) 2012; 83 Moran, JF (B74) 1994; 194 Cox, CS (B39) 1966; 43 Kitao, A, Hata, H (B2) 2018; 10 Huong, DQ, Van Bay, M, Nam, PC (B65) 2021; 340 Cox, CS, Baldwin, F (B17) 1967; 49 Wathes, CM, Howard, K, Webster, AJF (B38) 1986; 97 Kreske, AC, Bjornsdottir, K, Breidt, F, Hassan, H (B58) 2008; 71 Zhao, X, Drlica, K (B69) 2014; 21 Vaughan, J, Ngamtrakulpanit, L, Pajewski, TN, Turner, R, Nguyen, TA, Smith, A, Urban, P, Hom, S, Gaston, B, Hunt, J (B78) 2003; 22 Kuczyńska-Wiśnik, D, Stojowska, K, Matuszewska, E, Leszczyńska, D, Algara, MM, Augustynowicz, M, Laskowska, E (B54) 2015; 161 Smith, DJ, Ravichandar, JD, Jain, S, Griffin, DW, Yu, H, Tan, Q, Thissen, J, Lusby, T, Nicoll, P, Shedler, S, Martinez, P, Osorio, A, Lechniak, J, Choi, S, Sabino, K, Iverson, K, Chan, L, Jaing, C, McGrath, J (B11) 2018; 9 Handley, BA, Webster, AJF (B36) 1993; 75 Iturriaga, G, Suárez, R, Nova-Franco, B (B48) 2009; 10 Després, VR, Alex Huffman, J, Burrows, SM, Hoose, C, Safatov, AS, Buryak, G, Fröhlich-Nowoisky, J, Elbert, W, Andreae, MO, Pöschl, U, Jaenicke, R (B15) 2012; 64 Stersky, AK, Heldman, DR, Hedrick, TI (B37) 1972; 55 Sgherri, CLM, Pinzino, C, Navari-Izzo, F (B72) 1993; 87 Mittler, R (B79) 2017; 22 Carlioz, A, Touati, D (B64) 1986; 5 Harris, MJ, Wickramasinghe, NC, Lloyd, D, Narlikar, JV, Rajaratnam, P, Turner, MP, Al-Mufti, S, Wallis, MK, Ramadurai, S, Hoyle, F (B10) 2002 Kaasen, I, Falkenberg, P, Styrvold, OB, Strom, AR (B52) 1992; 174 Han, P, Bartels, DM (B59) 1996; 100 Hanford, KL, Mitchem, L, Reid, JP, Clegg, SL, Topping, DO, McFiggans, GB (B26) 2008; 112 Bryan, NC, Christner, BC, Guzik, TG, Granger, DJ, Stewart, MF (B9) 2019; 13 Nan, B, Zusman, DR (B4) 2016; 101 e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_70_2 Parhad NM (e_1_3_3_76_2) 1974; 46 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 Després VR (e_1_3_3_16_2) 2012; 64 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – volume: 13 start-page: 2789 year: 2019 end-page: 2799 ident: B9 article-title: Abundance and survival of microbial aerosols in the troposphere and stratosphere publication-title: ISME J doi: 10.1038/s41396-019-0474-0 contributor: fullname: Stewart, MF – volume: 13 start-page: 781 year: 1965 end-page: 787 ident: B19 article-title: Effects of oxygen on aerosolized Serratia marcescens publication-title: Appl Microbiol doi: 10.1128/am.13.5.781-787.1965 contributor: fullname: Hess, GE – volume: 21 start-page: 1 year: 2014 end-page: 6 ident: B69 article-title: Reactive oxygen species and the bacterial response to lethal stress publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2014.06.008 contributor: fullname: Drlica, K – volume: 189 start-page: 8746 year: 2007 end-page: 8749 ident: B42 article-title: Escherichia coli physiology in Luria-Bertani broth publication-title: J Bacteriol doi: 10.1128/JB.01368-07 contributor: fullname: D'Ari, R – volume: 126 start-page: 112120 year: 2021 ident: B29 article-title: Bio-mineralization induced by Bacillus mucilaginosus in crack mouth and pore solution of cement-based materials publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2021.112120 contributor: fullname: Yi, H – volume: 58 start-page: 755 year: 1994 end-page: 805 ident: B47 article-title: Desiccation tolerance of prokaryotes publication-title: Microbiol Rev doi: 10.1128/mr.58.4.755-805.1994 contributor: fullname: Potts, M – volume: 97 start-page: 489 year: 1986 end-page: 496 ident: B38 article-title: The survival of Escherichia coli in an aerosol at air temperatures of 15 and 30°C and a range of humidities publication-title: J Hyg (Lond) doi: 10.1017/s0022172400063671 contributor: fullname: Webster, AJF – volume: 9 start-page: 1 year: 2018 end-page: 20 ident: B11 article-title: Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA Aircraft Bioaerosol Collector (ABC) publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01752 contributor: fullname: McGrath, J – volume: 194 start-page: 346 year: 1994 end-page: 352 ident: B74 article-title: Drought induces oxidative stress in pea plants publication-title: Planta doi: 10.1007/BF00197534 contributor: fullname: Moran, JF – volume: 11 start-page: 4739 year: 2011 end-page: 4754 ident: B25 article-title: Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature publication-title: Atmos Chem Phys doi: 10.5194/acp-11-4739-2011 contributor: fullname: Krieger, UK – volume: 72 start-page: 117 year: 1972 end-page: 125 ident: B34 article-title: Methods for the assessment of microbial populations recovered from enclosed aerosols publication-title: J Gen Microbiol doi: 10.1099/00221287-72-1-117 contributor: fullname: Martin, KL – volume: 26 start-page: 523 year: 2005 end-page: 548 ident: B77 article-title: Exhaled breath condensate: methodological recommendations and unresolved questions publication-title: Eur Respir J doi: 10.1183/09031936.05.00029705 contributor: fullname: Wirtz, H – volume: 54 start-page: 1557 year: 1988 end-page: 1563 ident: B13 article-title: Aerial dispersal and epiphytic survival of Pseudomonas syringae during a pretest for the release of genetically engineered strains into the environment publication-title: Appl Environ Microbiol doi: 10.1128/aem.54.6.1557-1563.1988 contributor: fullname: Hern, S – volume: 170 start-page: 2841 year: 1988 end-page: 2849 ident: B51 article-title: Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli publication-title: J Bacteriol doi: 10.1128/jb.170.6.2841-2849.1988 contributor: fullname: Strøm, AR – volume: 93 start-page: 25 year: 1995 end-page: 30 ident: B71 article-title: Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.1995.930105.x contributor: fullname: Navari-Izzo, F – volume: 69 start-page: 619 year: 1971 end-page: 626 ident: B35 article-title: Viricidal activity of open air publication-title: J Hyg (Lond) doi: 10.1017/s0022172400021896 contributor: fullname: Hood, AM – volume: 55 start-page: 14 year: 1972 end-page: 18 ident: B37 article-title: Viability of airborne Salmonella Newbrunswick under various conditions publication-title: J Dairy Sci doi: 10.3168/jds.S0022-0302(72)85424-9 contributor: fullname: Hedrick, TI – volume: 19 start-page: 245 year: 1970 end-page: 249 ident: B41 article-title: Relationship between atmospheric temperature and survival of airborne bacteria publication-title: Appl Microbiol doi: 10.1128/am.19.2.245-249.1970 contributor: fullname: Walker, RL – volume: 192 start-page: 109 year: 1997 end-page: 115 ident: B1 article-title: Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system - a review publication-title: Gene doi: 10.1016/S0378-1119(97)00037-1 contributor: fullname: Russell, MA – volume: 22 start-page: 889 year: 2003 end-page: 894 ident: B78 article-title: Exhaled breath condensate pH is a robust and reproducible assay of airway acidity publication-title: Eur Respir J doi: 10.1183/09031936.03.00038803 contributor: fullname: Hunt, J – volume: 64 year: 2012 ident: B15 article-title: Primary biological aerosol particles in the atmosphere: a review publication-title: Tellus Chem Phys Meteorol contributor: fullname: Jaenicke, R – volume: 7 start-page: 200 year: 2021 end-page: 209 ident: B23 article-title: Accurate representations of the microphysical processes occurring during the transport of exhaled aerosols and droplets publication-title: ACS Cent Sci doi: 10.1021/acscentsci.0c01522 contributor: fullname: Reid, JP – volume: 187 start-page: 5861 year: 2005 end-page: 5867 ident: B70 article-title: The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette publication-title: J Bacteriol doi: 10.1128/JB.187.17.5861-5867.2005 contributor: fullname: Kumagai, H – volume: 15 start-page: 285 year: 2017 end-page: 296 ident: B45 article-title: Xerotolerant bacteria: surviving through a dry spell publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.16 contributor: fullname: Cowan, DA – volume: 46 start-page: 980 year: 1974 end-page: 986 ident: B75 article-title: Effect of pH on survival of Escherichia coli publication-title: J Water Pollut Control Fed contributor: fullname: Rao, NU – volume: 75 start-page: 35 year: 1993 end-page: 42 ident: B36 article-title: Some factors affecting airborne survival of Pseudomonas fluorescens indoors publication-title: J Appl Bacteriol doi: 10.1111/j.1365-2672.1993.tb03404.x contributor: fullname: Webster, AJF – volume: 119 start-page: 1 year: 2022 end-page: 42 ident: B33 article-title: The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment publication-title: Proc Natl Acad Sci USA contributor: fullname: Reid, JP – volume: 174 start-page: 3422 year: 1992 end-page: 3422 ident: B52 article-title: Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR) publication-title: J Bacteriol contributor: fullname: Strom, AR – volume: 20 start-page: 161 year: 2021 end-page: 173 ident: B5 article-title: Bacterial motility: machinery and mechanisms publication-title: Nat Rev Microbiol contributor: fullname: Berg, HC – volume: 37 start-page: 1293 year: 1998 end-page: 1300 ident: B16 article-title: Cloud activation characteristics of airborne Erwinia carotovora cells publication-title: J Appl Meteorol doi: 10.1175/1520-0450(1998)037%3C1293:CACOAE%3E2.0.CO;2 contributor: fullname: Demott, PJ – volume: 187 start-page: 1007 year: 2013 end-page: 1015 ident: B7 article-title: Cough aerosols of Mycobacterium tuberculosis predict new infection: a household contact study publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201208-1422OC contributor: fullname: Fennelly, KP – start-page: 547 year: 2014 end-page: 576 ident: B31 article-title: Deliquescence and efflorescence in atmospheric aerosols publication-title: Thermodyn Kinet Microphys Clouds ;Cambridge University Press, Cambridge, United Kingdom doi: 10.1017/cbo9781139060004.012 contributor: fullname: Curry, JA – volume: 71 start-page: 2404 year: 2008 end-page: 2409 ident: B58 article-title: Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions publication-title: J Food Prot doi: 10.4315/0362-028x-71.12.2404 contributor: fullname: Hassan, H – volume: 12 start-page: 324 year: 2021 end-page: 329 ident: B61 article-title: New insights into secondary organic aerosol formation at the air-liquid interface publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c03319 contributor: fullname: Yu, X-Y – volume: 43 start-page: 383 year: 1966 end-page: 399 ident: B39 article-title: The survival of Escherichia coli sprayed into air and into nitrogen from distilled water and from solutions of protecting agents, as a function of relative humidity publication-title: J Gen Microbiol doi: 10.1099/00221287-43-3-383 contributor: fullname: Cox, CS – volume: 16 start-page: 20180779 year: 2019 ident: B22 article-title: Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology publication-title: J R Soc Interface doi: 10.1098/rsif.2018.0779 contributor: fullname: Reid, JP – volume: 16 start-page: 6506 year: 2014 end-page: 6522 ident: B43 article-title: Quantitative studies of crystal nucleation at constant supersaturation: experimental data and models publication-title: CrystEngComm doi: 10.1039/C4CE00344F contributor: fullname: Sear, RP – volume: 10 start-page: 3793 year: 2009 end-page: 3810 ident: B48 article-title: Trehalose metabolism: from osmoprotection to signaling publication-title: Int J Mol Sci doi: 10.3390/ijms10093793 contributor: fullname: Nova-Franco, B – volume: 113 start-page: 194 year: 2012 end-page: 200 ident: B57 article-title: Effect of shear rate and oxygen stresses on the survival of Lactococcus lactis during the atomization and drying stages of spray drying: a laboratory and pilot scale study publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2012.06.005 contributor: fullname: Adhikari, B – volume: 22 start-page: 11 year: 2017 end-page: 19 ident: B79 article-title: ROS are good publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.08.002 contributor: fullname: Mittler, R – volume: 100 start-page: 5597 year: 1996 end-page: 5602 ident: B59 article-title: Temperature dependence of oxygen diffusion in H 2 O and D 2 O publication-title: J Phys Chem doi: 10.1021/jp952903y contributor: fullname: Bartels, DM – volume: 79 start-page: 849 year: 2004 end-page: 869 ident: B12 article-title: Pathogen survival in the external environment and the evolution of virulence publication-title: Biol Rev Camb Philos Soc doi: 10.1017/s1464793104006475 contributor: fullname: Ewald, PW – volume: 21 start-page: 363 year: 1971 end-page: 364 ident: B44 article-title: Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium publication-title: Appl Microbiol doi: 10.1128/am.21.2.363-364.1971 contributor: fullname: Christian, JH – volume: 101 start-page: 186 year: 2016 end-page: 193 ident: B4 article-title: Novel mechanisms power bacterial gliding motility publication-title: Mol Microbiol doi: 10.1111/mmi.13389 contributor: fullname: Zusman, DR – volume: 83 start-page: 14 year: 2012 end-page: 23 ident: B3 article-title: Swarming motility and the control of master regulators of flagellar biosynthesis publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07917.x contributor: fullname: Kearns, DB – volume: 25 start-page: 456 year: 2017 end-page: 466 ident: B67 article-title: The role of reactive oxygen species in antibiotic-mediated killing of bacteria publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.12.008 contributor: fullname: Coenye, T – volume: 2 start-page: 58 year: 2012 end-page: 66 ident: B60 article-title: A review of the aqueous aerosol surface chemistry in the atmospheric context publication-title: Open J Phys Chem doi: 10.4236/ojpc.2012.21008 contributor: fullname: Valsaraj, KT – volume: 49 start-page: 115 year: 1967 end-page: 117 ident: B17 article-title: The toxic effect of oxygen upon the aerosol survival of Escherichia coli B publication-title: J Gen Microbiol doi: 10.1099/00221287-49-1-115 contributor: fullname: Baldwin, F – volume: 11 start-page: 1 year: 2016 end-page: 20 ident: B20 article-title: A novel method and its application to measuring pathogen decay in bioaerosols from patients with respiratory disease publication-title: PLoS One doi: 10.1371/journal.pone.0158763 contributor: fullname: Morawska, L – volume: 2 start-page: 3 year: 2019 end-page: 10 ident: B62 article-title: Dark air–liquid interfacial chemistry of glyoxal and hydrogen peroxide publication-title: Npj Clim Atmos Sci contributor: fullname: Yu, XY – volume: 137 start-page: 745 year: 1991 end-page: 750 ident: B49 article-title: The role of trehalose in the osmoadaptation of Escherichia coli NCIB 9484: interaction of trehalose, K+ and glutamate during osmoadaptation in continuous culture publication-title: J Gen Microbiol doi: 10.1099/00221287-137-4-745 contributor: fullname: Herbert, RA – volume: 71 start-page: 3761 year: 2005 end-page: 3769 ident: B50 article-title: Enhanced trehalose production improves growth of Escherichia coli under osmotic stress publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.7.3761-3769.2005 contributor: fullname: Ingram, LO – volume: 56 start-page: 241 year: 1969 end-page: 250 ident: B56 article-title: Factors affecting the toxicity of oxygen towards airborne coliform bacteria publication-title: J Gen Microbiol doi: 10.1099/00221287-56-2-241 contributor: fullname: Benbough, JE – start-page: 192 year: 2002 end-page: 198 ident: B10 article-title: The detection of living cells in stratospheric samples publication-title: Instruments, Methods, and Missions for Astrobiology IV contributor: fullname: Hoyle, F – volume: 3 start-page: 156 year: 2008 end-page: 165 ident: B73 article-title: Drought stress and reactive oxygen species: production, scavenging and signaling publication-title: Plant Signal Behav doi: 10.4161/psb.3.3.5536 contributor: fullname: Cruz De Carvalho, MH – volume: 18 start-page: 24 year: 2009 end-page: 36 ident: B55 article-title: Effect of trehalose on protein structure publication-title: Protein Sci doi: 10.1002/pro.3 contributor: fullname: Roy, I – volume: 66 start-page: 313 year: 2020 end-page: 318 ident: B46 article-title: New insight into the mechanisms protecting bacteria during desiccation publication-title: Curr Genet doi: 10.1007/s00294-019-01036-z contributor: fullname: Kuczyńska-Wiśnik, D – volume: 10 start-page: 617 year: 2018 end-page: 629 ident: B2 article-title: Molecular dynamics simulation of bacterial flagella publication-title: Biophys Rev doi: 10.1007/s12551-017-0338-7 contributor: fullname: Hata, H – volume: 99 start-page: 9727 year: 2002 end-page: 9732 ident: B53 article-title: Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.142314099 contributor: fullname: Goldberg, AL – volume: 87 start-page: 211 year: 1993 end-page: 216 ident: B72 article-title: Chemical changes and O2.-production in thylakoid membranes under water stress publication-title: Physiol Plant doi: 10.1034/j.1399-3054.1993.870213.x contributor: fullname: Navari-Izzo, F – volume: 4 start-page: 345 year: 2013 end-page: 353 ident: B76 article-title: Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria publication-title: J Adv Res doi: 10.1016/j.jare.2012.06.003 contributor: fullname: Watten, BJ – volume: 119 year: 2022 ident: B27 article-title: Evidence for a semisolid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2109750119 contributor: fullname: Davis, RD – volume: 123 start-page: 266 year: 2019 end-page: 276 ident: B28 article-title: Drying kinetics of salt solution droplets: water evaporation rates and crystallization publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.8b09584 contributor: fullname: Reid, JP – volume: 6 start-page: S697 year: 2009 end-page: S702 ident: B8 article-title: Airborne transmission of disease in hospitals publication-title: J R Soc Interface contributor: fullname: Wilson, P – volume: 5 start-page: 623 year: 1986 end-page: 630 ident: B64 article-title: Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04256.x contributor: fullname: Touati, D – volume: 55 start-page: 1315 year: 2021 end-page: 1320 ident: B32 article-title: Measuring stability of virus in aerosols under varying environmental conditions publication-title: Aerosol Sci Technol doi: 10.1080/02786826.2021.1976718 contributor: fullname: Reid, JP – volume: 7 start-page: 903 year: 1999 end-page: 923 ident: B30 article-title: The biological significance of Halobacteria on nucleation and sodium chloride crystal growth publication-title: Stud Surf Sci Catal contributor: fullname: Ochoa, JL – volume: 7 year: 2018 ident: B66 article-title: Glutathione: antioxidant properties dedicated to nanotechnologies publication-title: Antioxidants doi: 10.3390/antiox7050062 contributor: fullname: Gaucher, C – volume: 114 start-page: 1806 year: 2010 end-page: 1815 ident: B24 article-title: Measurements of the equilibrium size of supersaturated aqueous sodium chloride droplets at low relative humidity using aerosol optical tweezers and an electrodynamic balance publication-title: J Phys Chem A doi: 10.1021/jp9095985 contributor: fullname: Reid, JP – volume: 87 start-page: 87 year: 1948 end-page: 101 ident: B40 article-title: The lethal effect of relative humidity on airborne bacteria publication-title: J Exp Med doi: 10.1084/jem.87.2.87 contributor: fullname: Puck, TT – volume: 232 start-page: 427 year: 1992 end-page: 430 ident: B63 article-title: Construction of an Escherichia coli K-12 strain deleted for manganese and iron superoxide dismutase genes and its use in cloning the iron superoxide dismutase gene of Legionella pneumophila publication-title: Mol Gen Genet doi: 10.1007/BF00266247 contributor: fullname: Steinman, HM – volume: 74 start-page: 87 year: 2019 end-page: 90 ident: B6 article-title: Cystic fibrosis pathogens survive for extended periods within cough-generated droplet nuclei publication-title: Thorax doi: 10.1136/thoraxjnl-2018-211567 contributor: fullname: Bell, SC – volume: 112 start-page: 9413 year: 2008 end-page: 9422 ident: B26 article-title: Comparative thermodynamic studies of aqueous glutaric acid, ammonium sulfate and sodium chloride aerosol at high humidity publication-title: J Phys Chem A doi: 10.1021/jp802520d contributor: fullname: McFiggans, GB – volume: 4 start-page: 1059 year: 2007 end-page: 1071 ident: B14 article-title: Microbiology and atmospheric processes: the role of biological particles in cloud physics publication-title: Biogeosciences doi: 10.5194/bg-4-1059-2007 contributor: fullname: Levin, Z – volume: 86 year: 2020 ident: B21 article-title: Transformative approach to investigate the microphysical factors influencing airborne transmission of pathogens publication-title: Appl Environ Microbiol contributor: fullname: Reid, JP – volume: 50 start-page: 139 year: 1968 end-page: 147 ident: B18 article-title: The aerosol survival of Escherichia coli B in nitrogen, argon and helium atmospheres and the influence of relative humidity publication-title: J Gen Microbiol doi: 10.1099/00221287-50-1-139 contributor: fullname: Cox, CS – volume: 161 start-page: 786 year: 2015 end-page: 796 ident: B54 article-title: Lack of intracellular trehalose affects formation of Escherichia coli persister cells publication-title: Microbiology (Reading) doi: 10.1099/mic.0.000012 contributor: fullname: Laskowska, E – volume: 340 start-page: 117149 year: 2021 ident: B65 article-title: Antioxidant activity of thiourea derivatives: an experimental and theoretical study publication-title: J Mol Liq doi: 10.1016/j.molliq.2021.117149 contributor: fullname: Nam, PC – volume: 2 start-page: 1667 year: 2017 end-page: 1675 ident: B68 article-title: Contribution of reactive oxygen species to thymineless death in Escherichia coli publication-title: Nat Microbiol doi: 10.1038/s41564-017-0037-y contributor: fullname: Zhao, X – ident: e_1_3_3_71_2 doi: 10.1128/JB.187.17.5861-5867.2005 – ident: e_1_3_3_11_2 doi: 10.1117/12.454758 – ident: e_1_3_3_52_2 doi: 10.1128/jb.170.6.2841-2849.1988 – ident: e_1_3_3_70_2 doi: 10.1016/j.mib.2014.06.008 – ident: e_1_3_3_31_2 doi: 10.1016/S0167-2991(99)80384-X – ident: e_1_3_3_17_2 doi: 10.1175/1520-0450(1998)037%3C1293:CACOAE%3E2.0.CO;2 – ident: e_1_3_3_30_2 doi: 10.1016/j.msec.2021.112120 – ident: e_1_3_3_61_2 doi: 10.4236/ojpc.2012.21008 – ident: e_1_3_3_20_2 doi: 10.1128/am.13.5.781-787.1965 – ident: e_1_3_3_78_2 doi: 10.1183/09031936.05.00029705 – ident: e_1_3_3_47_2 doi: 10.1007/s00294-019-01036-z – ident: e_1_3_3_24_2 doi: 10.1021/acscentsci.0c01522 – ident: e_1_3_3_42_2 doi: 10.1128/am.19.2.245-249.1970 – ident: e_1_3_3_6_2 doi: 10.1038/s41579-021-00626-4 – ident: e_1_3_3_67_2 doi: 10.3390/antiox7050062 – ident: e_1_3_3_32_2 doi: 10.1017/cbo9781139060004.012 – ident: e_1_3_3_56_2 doi: 10.1002/pro.3 – ident: e_1_3_3_79_2 doi: 10.1183/09031936.03.00038803 – volume: 46 start-page: 980 year: 1974 ident: e_1_3_3_76_2 article-title: Effect of pH on survival of Escherichia coli publication-title: J Water Pollut Control Fed contributor: fullname: Parhad NM – ident: e_1_3_3_50_2 doi: 10.1099/00221287-137-4-745 – ident: e_1_3_3_58_2 doi: 10.1016/j.jfoodeng.2012.06.005 – ident: e_1_3_3_65_2 doi: 10.1002/j.1460-2075.1986.tb04256.x – ident: e_1_3_3_29_2 doi: 10.1021/acs.jpcb.8b09584 – ident: e_1_3_3_7_2 doi: 10.1136/thoraxjnl-2018-211567 – ident: e_1_3_3_8_2 doi: 10.1164/rccm.201208-1422OC – ident: e_1_3_3_23_2 doi: 10.1098/rsif.2018.0779 – ident: e_1_3_3_45_2 doi: 10.1128/am.21.2.363-364.1971 – ident: e_1_3_3_77_2 doi: 10.1016/j.jare.2012.06.003 – ident: e_1_3_3_15_2 doi: 10.5194/bg-4-1059-2007 – ident: e_1_3_3_57_2 doi: 10.1099/00221287-56-2-241 – ident: e_1_3_3_62_2 doi: 10.1021/acs.jpclett.0c03319 – ident: e_1_3_3_54_2 doi: 10.1073/pnas.142314099 – ident: e_1_3_3_48_2 doi: 10.1128/mr.58.4.755-805.1994 – ident: e_1_3_3_38_2 doi: 10.3168/jds.S0022-0302(72)85424-9 – ident: e_1_3_3_25_2 doi: 10.1021/jp9095985 – ident: e_1_3_3_53_2 doi: 10.1128/jb.174.3.889-898.1992 – ident: e_1_3_3_37_2 doi: 10.1111/j.1365-2672.1993.tb03404.x – ident: e_1_3_3_74_2 doi: 10.4161/psb.3.3.5536 – ident: e_1_3_3_14_2 doi: 10.1128/aem.54.6.1557-1563.1988 – ident: e_1_3_3_5_2 doi: 10.1111/mmi.13389 – volume: 64 year: 2012 ident: e_1_3_3_16_2 article-title: Primary biological aerosol particles in the atmosphere: a review publication-title: Tellus Chem Phys Meteorol contributor: fullname: Després VR – ident: e_1_3_3_3_2 doi: 10.1007/s12551-017-0338-7 – ident: e_1_3_3_19_2 doi: 10.1099/00221287-50-1-139 – ident: e_1_3_3_44_2 doi: 10.1039/C4CE00344F – ident: e_1_3_3_46_2 doi: 10.1038/nrmicro.2017.16 – ident: e_1_3_3_43_2 doi: 10.1128/JB.01368-07 – ident: e_1_3_3_27_2 doi: 10.1021/jp802520d – ident: e_1_3_3_60_2 doi: 10.1021/jp952903y – ident: e_1_3_3_22_2 doi: 10.1128/AEM.01543-20 – ident: e_1_3_3_41_2 doi: 10.1084/jem.87.2.87 – ident: e_1_3_3_13_2 doi: 10.1017/s1464793104006475 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.2200109119 – ident: e_1_3_3_68_2 doi: 10.1016/j.tim.2016.12.008 – ident: e_1_3_3_39_2 doi: 10.1017/s0022172400063671 – ident: e_1_3_3_36_2 doi: 10.1017/s0022172400021896 – ident: e_1_3_3_40_2 doi: 10.1099/00221287-43-3-383 – ident: e_1_3_3_66_2 doi: 10.1016/j.molliq.2021.117149 – ident: e_1_3_3_73_2 doi: 10.1034/j.1399-3054.1993.870213.x – ident: e_1_3_3_69_2 doi: 10.1038/s41564-017-0037-y – ident: e_1_3_3_55_2 doi: 10.1099/mic.0.000012 – ident: e_1_3_3_9_2 doi: 10.1098/rsif.2009.0407.focus – ident: e_1_3_3_51_2 doi: 10.1128/AEM.71.7.3761-3769.2005 – ident: e_1_3_3_64_2 doi: 10.1007/BF00266247 – ident: e_1_3_3_26_2 doi: 10.5194/acp-11-4739-2011 – ident: e_1_3_3_33_2 doi: 10.1080/02786826.2021.1976718 – ident: e_1_3_3_72_2 doi: 10.1034/j.1399-3054.1995.930105.x – ident: e_1_3_3_75_2 doi: 10.1007/BF00197534 – ident: e_1_3_3_4_2 doi: 10.1111/j.1365-2958.2011.07917.x – ident: e_1_3_3_63_2 doi: 10.1038/s41612-019-0085-5 – ident: e_1_3_3_10_2 doi: 10.1038/s41396-019-0474-0 – ident: e_1_3_3_35_2 doi: 10.1099/00221287-72-1-117 – ident: e_1_3_3_2_2 doi: 10.1016/S0378-1119(97)00037-1 – ident: e_1_3_3_59_2 doi: 10.4315/0362-028x-71.12.2404 – ident: e_1_3_3_21_2 doi: 10.1371/journal.pone.0158763 – ident: e_1_3_3_80_2 doi: 10.1016/j.tplants.2016.08.002 – ident: e_1_3_3_18_2 doi: 10.1099/00221287-49-1-115 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.2109750119 – ident: e_1_3_3_49_2 doi: 10.3390/ijms10093793 – ident: e_1_3_3_12_2 doi: 10.3389/fmicb.2018.01752 |
SSID | ssj0001105252 |
Score | 2.363844 |
Snippet | While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The... The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the... |
SourceID | pubmedcentral proquest crossref asm2 pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e0334722 |
SubjectTerms | Bacteriology Research Article |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA6lRfBFvK0XEQRB2LpJNtn0sR6lePVBK31bks0G-9Ct9AD7753sUa2K-JzZ7O7M7Bw7mW8QOjXc15JYAUkOF17QtNbTMeiy4JpaalSYQ-Y_PIpOL7jt834FibIXpuDgpKEmw6yQv_iyqbzImg_Hs2HDZ8wBDIDprYEOcdDmWqvV6959_l0hbj4bLcqYv14LNhjuQZf90Y8g8_tZyS_Op72O1oqoEbdyMW-gSpJuopV8juR8C1133wcmQ_DGT1nvB3agU9koq2SCpyN8mWMyuy0GY5B6muB7eBo8svhlkCN1z7dRr33zfNXxivEInoIoYupxYRhXisU2NCGEGUGiwHDJONEaYp5Ac21j41tJm9bEgRY2CGOtjAB_BLS-Yjuomo7SZA9hYX1FVGx9pv2AGdOUVhppLAkMkcrIOjpzvIpK6URZ6kBlVHI1yrgaUVpH5yU7o7ccL-Mv4pOS4RFotStVqDQZzSYRDaXgkPoQXke7uQAW2zHRJBTynDqSS6JZEDjE7OWVdPCaIWcTh6gHdmz_3-9zgFbdgHl36oywQ1SFxeQIwpCpPi507gOHOd4N priority: 102 providerName: American Society for Microbiology |
Title | Oxidative Stress Contributes to Bacterial Airborne Loss of Viability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36912675 https://journals.asm.org/doi/10.1128/spectrum.03347-22 https://search.proquest.com/docview/2786518215 https://pubmed.ncbi.nlm.nih.gov/PMC10101003 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_SjMFeyrauW9otaFAYFJxYkiUrj1k_CFs_Bl1K34w-LGpYnNKk0P73O8lxaVbow559FtLdD-lOuvsdwJ4TqVHUSwxyhEyykfeJsYhlKQzzzOm8ocw_PZOTafbjSlx1QLa1MDFp35pqUP-ZDerqOuZW3szssM0TG_46PaCBGC3cwG3ABiL0SYweb1Zo6M3GVk-YuP8OY9Hi7d1skHIeiAlCCxsuR5TJkF7Y1YsZWz-Wnvma_6ZMPjmDjt_C5sp5JONmku-gU9bv4XXTTvJhCw7P7ysXibzJRSwBIYF7Kna0KhdkOSffG2rmMER1i8avS3KCsyFzTy6rhrD74QNMj49-H0ySVZeERKMzsUyEdFxoza3PXY7eRlZq3L-ULY1B1yczwnjrUq_YyDubGemz3BrtJB5LKJtqvg3del6Xn4BIn2qqrU-5STPu3Eh55ZTzNHNUaad68C3oqljBfFHECIKpolVwERVcMNaD_VadxU1Dm_GS8NdW4QWCO7xY6Lqc3y0KlispMAKiogcfGwM8DtcasAdqzTSPAoE4e_0L4ikSaLf42fn_X3fhTWg8H7LRKP8MXVxQ-QXdk6Xpw6vxeHr-sx_D-37E5l8IYum3 |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53159,53172,53185,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5NRRN7QbDBKAzmSUhIkwKxHTvuY8cPFSjwMIp4s-w4FkU0RaRI8N9zTlKg24T2nIuT3F3Od7bv-wC2nIitol5ikSNklHS8j2yGviyFZZ45k9aQ-adnsjdIjq_EVXOqMvTC3ARe3ttyx5Sjah8__NhhIbrhI1S7VQPi_cNoJ-Y8gAxg-J0ToQW4BXPd7uD85HWFhQaONtZsZf7zXozD-CA2Oyf9lWj-eV7yzQR0uAgLTeZIurWpl-BDXnyGjzWX5NMX2D9_HLoKxZv8rvo_SACequis8pJMxuRXjcschhjeo-WLnPTxbcjYk8thjdb9tAyDw4OLvV7UUCREBjOJSSSk48IYnvnUpZhqJLnB4KWy3FrMexIrrM9c7BXreJclVvokzaxxEucklI0NX4FWMS7yVSDSx4aazMfcxgl3rqO8csp5mjiqjFNt2A660o2Pl7oqH5jSU63qSquasTb8nKpT39WYGe8J_5gqXKNnh-0KU-Tjh1KzVEmB5Q8VbfhaG-BlOC47lGGt0wY1Y5oXgYCaPXulGF5X6Nk0oOphLFv77-_5DvO9i9O-7h-dnazDp0A4H06hUf4NWiiYb2BaMrGbjf89A0QU4mc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9NRZv2gmBso3xsRkJCQgqL7dhxHwtdxWdBgk68WXYciz40rdoiwX_POUmBwjTtORcnubuc73x3vwPYdSK2inqJQY6QUdLyPrIZ6rIUlnnmTFpB5l_05HE_Ob0Vt3VVZeiFqTk4PTDTYZnID3_22Pl6HqH6VTYgTu6HBzHnAWQAze8S6lHKGrDUbvcvz15OWGiY0cbqVOZf70U7jM9hi3vSO0fzbb3kqw2ouwLLtedI2pWoV-FDXnyBj9Usycc16Fw-DFyJ4k2uy_4PEoCnynFW-ZTMRuSwwmUOSwwmKPkiJ-f4NmTkyZ9Bhdb9-BX63d83R8dRPSIhMuhJzCIhHRfG8MynLkVXI8kNGi-V5dai35NYYX3mYq9Yy7sssdInaWaNk7gnIW1s-DdoFKMiXwcifWyoyXzMbZxw51rKK6ecp4mjyjjVhL3AKz2XkC7DB6b0nKu65KpmrAn7c3bqcYWZ8S_inTnDNWp2SFeYIh_dTzVLlRQY_lDRhO-VAJ6X47JFGcY6TVALonkmCKjZi1eKwV2Jnk0Dqh7aso3__p6f8Omq09XnJ72zTfgc5s2HIjTKt6CBdPk2eiUz-6NWvydI7eID |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+Stress+Contributes+to+Bacterial+Airborne+Loss+of+Viability&rft.jtitle=Microbiology+spectrum&rft.au=Oswin%2C+Henry+P.&rft.au=Haddrell%2C+Allen+E.&rft.au=Hughes%2C+Cordelia&rft.au=Otero-Fernandez%2C+Mara&rft.date=2023-03-13&rft.issn=2165-0497&rft.eissn=2165-0497&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1128%2Fspectrum.03347-22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_spectrum_03347_22 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon |