Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR

Controlled, fully-blinded methane releases and ancillary on-site wind measurements were performed during a separate airborne survey of active oil and gas facilities to quantitatively evaluate the capabilities and potential utility of the Bridger Photonics LiDAR-based airborne Gas Mapping LiDAR™ (GML...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 259; p. 112418
Main Authors Johnson, Matthew R., Tyner, David R., Szekeres, Alexander J.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 15.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlled, fully-blinded methane releases and ancillary on-site wind measurements were performed during a separate airborne survey of active oil and gas facilities to quantitatively evaluate the capabilities and potential utility of the Bridger Photonics LiDAR-based airborne Gas Mapping LiDAR™ (GML) methane measurement technology under realistic field conditions. Importantly, although Bridger Photonics knew there was a ground team working in the area to deploy wind sensors as part of the broader survey of facilities, they had no knowledge whatsoever that controlled releases were taking place and were not informed of this until all data processing was complete. Thus, the presented data allow a true, fully-blinded assessment of the airborne technology's ability to both detect and locate unknown methane sources within active oil and gas facilities, as well as to quantify their release rates. Results were used to derive a lower-sensitivity limit threshold as a function of wind speed, which matches well with the broader field survey results. Comparison of measurement results with and without the benefit of on-site wind data reveal that uncertainty in the GML source quantification is a direct linear function of the uncertainty in the wind speed. Quantification uncertainties (1σ) of ±31–68% can be expected for sources near the sensitivity limit. The derived sensitivity limit function was incorporated into exploratory simulations using the Fugitive Emissions Abatement Simulation Toolkit (FEAST), which suggest that the Bridger GML technology has comparable performance to optical gas imaging (OGI) camera surveys both in terms of fraction of total emissions detected and anticipated net mitigation. The relative performance of the Bridger GML technology would be expected to improve or worsen as the assumed underlying distribution of source magnitudes becomes more or less positively skewed (i.e. more or less dominated by larger sources such as tank vents). Overall, the Bridger GML technology is shown to be capable of detecting, locating, and quantifying individual sources at or below the magnitudes of recent regulated venting limits. The presented detection sensitivity function will be useful for modelling potential alternate leak detection and repair strategies and interpreting future airborne measurement data. [Display omitted] •Quantitative in-field assessment of Bridger Photonics Gas Mapping LiDAR™ technology.•Fully-blinded controlled methane releases within active oil and gas facilities.•True test of ability to detect, locate, and quantify unknown sources.•Derived lower sensitivity limit is a linear function of windspeed; modelled in FEAST.•Sensitivity reaches new regulated vent limits; approaches OGI camera effectiveness.
AbstractList Controlled, fully-blinded methane releases and ancillary on-site wind measurements were performed during a separate airborne survey of active oil and gas facilities to quantitatively evaluate the capabilities and potential utility of the Bridger Photonics LiDAR-based airborne Gas Mapping LiDAR™ (GML) methane measurement technology under realistic field conditions. Importantly, although Bridger Photonics knew there was a ground team working in the area to deploy wind sensors as part of the broader survey of facilities, they had no knowledge whatsoever that controlled releases were taking place and were not informed of this until all data processing was complete. Thus, the presented data allow a true, fully-blinded assessment of the airborne technology's ability to both detect and locate unknown methane sources within active oil and gas facilities, as well as to quantify their release rates. Results were used to derive a lower-sensitivity limit threshold as a function of wind speed, which matches well with the broader field survey results. Comparison of measurement results with and without the benefit of on-site wind data reveal that uncertainty in the GML source quantification is a direct linear function of the uncertainty in the wind speed. Quantification uncertainties (1σ) of ±31–68% can be expected for sources near the sensitivity limit. The derived sensitivity limit function was incorporated into exploratory simulations using the Fugitive Emissions Abatement Simulation Toolkit (FEAST), which suggest that the Bridger GML technology has comparable performance to optical gas imaging (OGI) camera surveys both in terms of fraction of total emissions detected and anticipated net mitigation. The relative performance of the Bridger GML technology would be expected to improve or worsen as the assumed underlying distribution of source magnitudes becomes more or less positively skewed (i.e. more or less dominated by larger sources such as tank vents). Overall, the Bridger GML technology is shown to be capable of detecting, locating, and quantifying individual sources at or below the magnitudes of recent regulated venting limits. The presented detection sensitivity function will be useful for modelling potential alternate leak detection and repair strategies and interpreting future airborne measurement data.
Controlled, fully-blinded methane releases and ancillary on-site wind measurements were performed during a separate airborne survey of active oil and gas facilities to quantitatively evaluate the capabilities and potential utility of the Bridger Photonics LiDAR-based airborne Gas Mapping LiDAR™ (GML) methane measurement technology under realistic field conditions. Importantly, although Bridger Photonics knew there was a ground team working in the area to deploy wind sensors as part of the broader survey of facilities, they had no knowledge whatsoever that controlled releases were taking place and were not informed of this until all data processing was complete. Thus, the presented data allow a true, fully-blinded assessment of the airborne technology's ability to both detect and locate unknown methane sources within active oil and gas facilities, as well as to quantify their release rates. Results were used to derive a lower-sensitivity limit threshold as a function of wind speed, which matches well with the broader field survey results. Comparison of measurement results with and without the benefit of on-site wind data reveal that uncertainty in the GML source quantification is a direct linear function of the uncertainty in the wind speed. Quantification uncertainties (1σ) of ±31–68% can be expected for sources near the sensitivity limit. The derived sensitivity limit function was incorporated into exploratory simulations using the Fugitive Emissions Abatement Simulation Toolkit (FEAST), which suggest that the Bridger GML technology has comparable performance to optical gas imaging (OGI) camera surveys both in terms of fraction of total emissions detected and anticipated net mitigation. The relative performance of the Bridger GML technology would be expected to improve or worsen as the assumed underlying distribution of source magnitudes becomes more or less positively skewed (i.e. more or less dominated by larger sources such as tank vents). Overall, the Bridger GML technology is shown to be capable of detecting, locating, and quantifying individual sources at or below the magnitudes of recent regulated venting limits. The presented detection sensitivity function will be useful for modelling potential alternate leak detection and repair strategies and interpreting future airborne measurement data. [Display omitted] •Quantitative in-field assessment of Bridger Photonics Gas Mapping LiDAR™ technology.•Fully-blinded controlled methane releases within active oil and gas facilities.•True test of ability to detect, locate, and quantify unknown sources.•Derived lower sensitivity limit is a linear function of windspeed; modelled in FEAST.•Sensitivity reaches new regulated vent limits; approaches OGI camera effectiveness.
ArticleNumber 112418
Author Johnson, Matthew R.
Szekeres, Alexander J.
Tyner, David R.
Author_xml – sequence: 1
  givenname: Matthew R.
  surname: Johnson
  fullname: Johnson, Matthew R.
  email: Matthew.Johnson@carleton.ca
– sequence: 2
  givenname: David R.
  surname: Tyner
  fullname: Tyner, David R.
– sequence: 3
  givenname: Alexander J.
  surname: Szekeres
  fullname: Szekeres, Alexander J.
BookMark eNp9kMtOwzAQRS1UJErhA9hZYp3gR55i1ZanVAmE6NqynUnrqLWLnVTi73EJa1azuWfmzrlEE-ssIHRDSUoJLe661AdIGWE0pZRltDpDU1qVdUJKkk3QlBCeJRnLywt0GUJHCM2rkk7RerEztoEGw1HuBtkbZ7FrsTReOW8B76HfyjiDG7wG3EAP-jc0BGM3eOFNswGP37eud9bogFfmYf5xhc5buQtw_TdnaP30-Ll8SVZvz6_L-SqRGa_7hNWU56QsM0WzupJQVGWuG1BNy2uQBFRNKMtZqYAWRaYV54pXqlaK6RjRks_Q7bj34N3XAKEXXexp40kRuZozzuPjM0THlPYuBA-tOHizl_5bUCJO9kQnoj1xsidGe5G5HxmI9Y8GvAjagNXQGB8NiMaZf-gfwth5aQ
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_137693
crossref_primary_10_1021_acs_est_2c02854
crossref_primary_10_1021_acs_est_2c02136
crossref_primary_10_1021_acs_estlett_2c00380
crossref_primary_10_1103_PRXEnergy_1_017001
crossref_primary_10_1038_s43247_023_00769_7
crossref_primary_10_1021_acs_est_4c02439
crossref_primary_10_1021_acs_est_1c01572
crossref_primary_10_1071_AJ21116
crossref_primary_10_5194_amt_16_5771_2023
crossref_primary_10_1021_acs_est_3c00229
crossref_primary_10_1021_acs_est_4c02333
crossref_primary_10_3389_fenvc_2022_926233
crossref_primary_10_1021_acs_energyfuels_4c00908
crossref_primary_10_5194_amt_16_3421_2023
crossref_primary_10_1021_acs_est_2c06211
crossref_primary_10_1021_acs_est_2c06255
crossref_primary_10_1021_acs_est_3c08185
crossref_primary_10_1525_elementa_2022_00080
crossref_primary_10_1016_j_rse_2022_113069
crossref_primary_10_3390_s24082419
crossref_primary_10_1021_acs_est_2c07318
crossref_primary_10_1364_OE_464421
crossref_primary_10_1021_acs_est_1c08575
crossref_primary_10_5194_amt_16_5697_2023
crossref_primary_10_1525_elementa_2023_00110
crossref_primary_10_3390_atmos15040447
crossref_primary_10_1021_acs_est_2c08582
crossref_primary_10_1038_s43247_023_01081_0
crossref_primary_10_1109_ACCESS_2023_3345801
crossref_primary_10_1021_acs_est_3c01121
crossref_primary_10_5194_amt_17_1633_2024
crossref_primary_10_1088_1748_9326_ace271
crossref_primary_10_1016_j_rse_2023_113499
crossref_primary_10_1088_2515_7620_ad3129
crossref_primary_10_1525_elementa_2022_00073
crossref_primary_10_3390_s24134044
crossref_primary_10_3390_drones5040117
Cites_doi 10.1021/acs.est.5b06068
10.1021/acs.est.7b03525
10.1002/2015JD024631
10.1088/1748-9326/ab6ae1
10.1038/s41586-020-1991-8
10.1016/j.apenergy.2020.115327
10.1021/acs.est.5b00099
10.1088/2515-7620/ab01f2
10.1016/j.jqsrt.2017.06.038
10.1021/acs.est.5b05059
10.1080/10962247.2018.1436096
10.1021/acs.est.8b06965
10.1021/acs.est.7b04945
10.1126/science.aar7204
10.1021/acs.est.5b00217
10.5194/amt-14-71-2021
10.1080/10962247.2018.1515123
10.1021/acs.est.0c00179
10.1525/elementa.403
10.1021/acs.est.6b06107
10.1088/1748-9326/aa6791
10.5194/acp-17-12405-2017
10.1525/elementa.373
10.1021/acs.est.7b03254
10.1525/elementa.341
10.1088/0957-0233/11/6/302
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright Elsevier BV Jun 15, 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright Elsevier BV Jun 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.rse.2021.112418
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2021_112418
S003442572100136X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABEFU
ABXDB
ADMUD
ADVLN
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FA8
FEDTE
FGOYB
G-2
G8K
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
RIG
SEN
SEP
SEW
VOH
WUQ
XOL
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-a439t-291350774b1498ae6875cdebdf39ea0eb9012527be1664cb33b38b9bb2cdf3ca3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Thu Oct 10 18:08:12 EDT 2024
Thu Sep 26 20:36:04 EDT 2024
Fri Feb 23 02:43:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Methane
Mitigation
Venting
LDAR
Oil and gas
Regulatory policy
Inventory
Fugitive emissions
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a439t-291350774b1498ae6875cdebdf39ea0eb9012527be1664cb33b38b9bb2cdf3ca3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S003442572100136X
PQID 2529323300
PQPubID 2045405
ParticipantIDs proquest_journals_2529323300
crossref_primary_10_1016_j_rse_2021_112418
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112418
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Karion, Sweeney, Kort, Shepson, Brewer, Cambaliza, Conley, Davis, Deng, Hardesty, Herndon, Lauvaux, Lavoie, Lyon, Newberger, Ptron, Rella, Smith, Wolter, Yacovitch, Tans (bb0145) 2015; 49
Peischl, Karion, Sweeney, Kort, Smith, Brandt, Yeskoo, Aikin, Conley, Gvakharia, Trainer, Wolter, Ryerson (bb0175) 2016; 121
Bridger Photonics (bb0045) 2021
Johnson, Tyner (bb0130) 2020; 8
Schwietzke, Harrison, Lauderdale, Branson, Conley, George, Jordan, Jersey, Zhang, Mairs, Pétron, Schnell (bb0215) 2019; 69
AER (bb0005) 2020
Golston, Aubut, Frish, Yang, Talbot, Gretencord, McSpiritt, Zondlo (bb0090) 2018; 9
Caulton, Lu, Lane, Buchholz, Fitts, Golston, Guo, Li, McSpiritt, Pan, Wendt, Bou-Zeid, Zondlo (bb0050) 2019; 53
Kansas (bb0140) 2015
Trudeau, Obama, Nieto (bb0225) 2016
Yang, Talbot, Frish, Golston, Aubut, Zondlo, Gretencord, McSpiritt (bb0245) 2018; 9
Fox, Barchyn, Risk, Ravikumar, Hugenholtz (bb0080) 2019; 14
Ravikumar, Sreedhara, Wang, Englander, Roda-Stuart, Bell, Zimmerle, Lyon, Mogstad, Ratner, Brandt (bb0195) 2019; 7
Oklahoma Register (bb0170) 2020
Gordon, Rothman, Hill, Kochanov, Tan, Bernath, Birk, Boudon, Campargue, Chance, Drouin, Flaud, Gamache, Hodges, Jacquemart, Perevalov, Perrin, Shine, Smith, Tennyson, Toon, Tran, Tyuterev, Barbe, Császár, Devi, Furtenbacher, Harrison, Hartmann, Jolly, Johnson, Karman, Kleiner, Kyuberis, Loos, Lyulin, Massie, Mikhailenko, Moazzen-Ahmadi, Müller, Naumenko, Nikitin, Polyansky, Rey, Rotger, Sharpe, Sung, Starikova, Tashkun, Auwera, Wagner, Wilzewski, Wcisło, Yu, Zak (bb0100) 2017; 203
Smith, Gvakharia, Kort, Sweeney, Conley, Faloona, Newberger, Schnell, Schwietzke, Wolter (bb0220) 2017
Ravikumar, Wang, McGuire, Bell, Zimmerle, Brandt (bb0190) 2018; 52
CER (bb0060) 2020
Gorchov Negron, Kort, Conley, Smith (bb0095) 2020; 54
France, Bateson, Dominutti, Allen, Andrews, Bauguitte, Coleman, Lachlan-Cope, Fisher, Huang, Jones, Lee, Lowry, Pitt, Purvis, Pyle, Shaw, Warwick, Weiss, Wilde, Witherstone, Young (bb0085) 2021; 14
CER (bb0055) 2020
Johnson, Tyner, Conley, Schwietzke, Zavala-Araiza (bb0135) 2017; 51
Kemp, Ravikumar, Brandt (bb0150) 2016; 50
Rashid, Speck, Osedach, Perroni, Pomerantz (bb0180) 2020; 275
WOGCC (bb0240) 2016
ECCC (bb0075) 2018; 152
Roscioli, Herndon, Yacovitch, Knighton, Zavala-Araiza, Johnson, Tyner (bb0210) 2018; 68
AER (bb0010) 2021
Ravikumar, Roda-Stuart, Liu, Bradley, Bergerson, Nie, Zhang, Bi, Brandt (bb0200) 2020; 15
O’Connell, Risk, Atherton, Bourlon, Fougère, Baillie, Lowry, Johnson (bb0165) 2019; 7
US EPA (bb0230) 2016; 81
ECCC (bb0070) 2018
Myhre, Shindell, Bréon, Collins, Fuglestvedt, Huang, Koch, Lamarque, Lee, Mendoza, Nakajima, Robock, Stephens, Takemura, Zhang, IPCC (bb0160) 2013
IEA (bb0115) 2020
Zavala-Araiza, Herndon, Roscioli, Yacovitch, Johnson, Tyner, Omara, Knighton (bb0250) 2018; 6
Hunter, Thorpe (bb0110) 2017
IPCC (bb0120) 2018
Alvarez, Zavala-Araiza, Lyon, Allen, Barkley, Brandt, Davis, Herndon, Jacob, Karion, Kort, Lamb, Lauvaux, Maasakkers, Marchese, Omara, Pacala, Peischl, Robinson, Shepson, Sweeney, Townsend-Small, Wofsy, Hamburg (bb0020) 2018; 361
Hmiel, Petrenko, Dyonisius, Buizert, Smith, Place, Harth, Beaudette, Hua, Yang, Vimont, Michel, Severinghaus, Etheridge, Bromley, Schmitt, Faïn, Weiss, Dlugokencky (bb0105) 2020; 578
Iseki, Hideo, Kimura (bb0125) 2000; 11
Mehrotra, Faloona, Suard, Conley, Fischer (bb0155) 2017; 51
BCOGC (bb0035) 2020
Rella, Tsai, Botkin, Crosson, Steele (bb0205) 2015; 49
Bridger Photonics (bb0040) 2018
Ravikumar, Brandt (bb0185) 2017; 12
Albertson, Harvey, Foderaro, Zhu, Zhou, Ferrari, Amin, Modrak, Brantley, Thoma (bb0015) 2016; 50
Baillie, Risk, Atherton, O’Connell, Fougère, Bourlon, MacKay (bb0030) 2019; 1
Utah (bb0235) 2020
Atherton, Risk, Fougère, Lavoie, Marshall, Werring, Williams, Minions (bb0025) 2017; 17
DPHE (bb0065) 2020
Myhre (10.1016/j.rse.2021.112418_bb0160) 2013
CER (10.1016/j.rse.2021.112418_bb0060)
O’Connell (10.1016/j.rse.2021.112418_bb0165) 2019; 7
Iseki (10.1016/j.rse.2021.112418_bb0125) 2000; 11
Johnson (10.1016/j.rse.2021.112418_bb0135) 2017; 51
Trudeau (10.1016/j.rse.2021.112418_bb0225)
IEA (10.1016/j.rse.2021.112418_bb0115)
Roscioli (10.1016/j.rse.2021.112418_bb0210) 2018; 68
Kemp (10.1016/j.rse.2021.112418_bb0150) 2016; 50
Karion (10.1016/j.rse.2021.112418_bb0145) 2015; 49
Bridger Photonics (10.1016/j.rse.2021.112418_bb0045)
ECCC (10.1016/j.rse.2021.112418_bb0070) 2018
Rashid (10.1016/j.rse.2021.112418_bb0180) 2020; 275
Kansas (10.1016/j.rse.2021.112418_bb0140) 2015
Bridger Photonics (10.1016/j.rse.2021.112418_bb0040) 2018
Ravikumar (10.1016/j.rse.2021.112418_bb0185) 2017; 12
Albertson (10.1016/j.rse.2021.112418_bb0015) 2016; 50
Golston (10.1016/j.rse.2021.112418_bb0090) 2018; 9
France (10.1016/j.rse.2021.112418_bb0085) 2021; 14
Smith (10.1016/j.rse.2021.112418_bb0220) 2017
ECCC (10.1016/j.rse.2021.112418_bb0075) 2018; 152
Peischl (10.1016/j.rse.2021.112418_bb0175) 2016; 121
US EPA (10.1016/j.rse.2021.112418_bb0230) 2016; 81
Zavala-Araiza (10.1016/j.rse.2021.112418_bb0250) 2018; 6
AER (10.1016/j.rse.2021.112418_bb0005) 2020
WOGCC (10.1016/j.rse.2021.112418_bb0240) 2016
Rella (10.1016/j.rse.2021.112418_bb0205) 2015; 49
Caulton (10.1016/j.rse.2021.112418_bb0050) 2019; 53
BCOGC (10.1016/j.rse.2021.112418_bb0035) 2020
Hmiel (10.1016/j.rse.2021.112418_bb0105) 2020; 578
AER (10.1016/j.rse.2021.112418_bb0010)
Fox (10.1016/j.rse.2021.112418_bb0080) 2019; 14
Gordon (10.1016/j.rse.2021.112418_bb0100) 2017; 203
Ravikumar (10.1016/j.rse.2021.112418_bb0190) 2018; 52
Gorchov Negron (10.1016/j.rse.2021.112418_bb0095) 2020; 54
Atherton (10.1016/j.rse.2021.112418_bb0025) 2017; 17
CER (10.1016/j.rse.2021.112418_bb0055)
Ravikumar (10.1016/j.rse.2021.112418_bb0195) 2019; 7
Alvarez (10.1016/j.rse.2021.112418_bb0020) 2018; 361
Mehrotra (10.1016/j.rse.2021.112418_bb0155) 2017; 51
Hunter (10.1016/j.rse.2021.112418_bb0110)
Schwietzke (10.1016/j.rse.2021.112418_bb0215) 2019; 69
Ravikumar (10.1016/j.rse.2021.112418_bb0200) 2020; 15
Utah (10.1016/j.rse.2021.112418_bb0235) 2020
IPCC (10.1016/j.rse.2021.112418_bb0120) 2018
Baillie (10.1016/j.rse.2021.112418_bb0030) 2019; 1
DPHE (10.1016/j.rse.2021.112418_bb0065) 2020
Johnson (10.1016/j.rse.2021.112418_bb0130) 2020; 8
Yang (10.1016/j.rse.2021.112418_bb0245) 2018; 9
Oklahoma Register (10.1016/j.rse.2021.112418_bb0170) 2020
References_xml – volume: 51
  start-page: 13008
  year: 2017
  end-page: 13017
  ident: bb0135
  article-title: Comparisons of airborne measurements and inventory estimates of methane emissions in the Alberta upstream oil and gas sector
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Zavala-Araiza
– volume: 14
  year: 2019
  ident: bb0080
  article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Hugenholtz
– volume: 11
  start-page: 594
  year: 2000
  end-page: 602
  ident: bb0125
  article-title: A portable remote methane sensor using a tunable diode laser
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Kimura
– volume: 8
  start-page: 14
  year: 2020
  ident: bb0130
  article-title: A case study in competing methane regulations: will Canada’s and Alberta’s contrasting regulations achieve equivalent reductions?
  publication-title: Elem. Sci. Anth.
  contributor:
    fullname: Tyner
– year: 2018
  ident: bb0120
  article-title: Summary for policymakers
  publication-title: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change
  contributor:
    fullname: IPCC
– start-page: 659
  year: 2013
  end-page: 740
  ident: bb0160
  article-title: Anthropogenic and natural radiative forcing
  publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  contributor:
    fullname: IPCC
– volume: 49
  start-page: 4742
  year: 2015
  end-page: 4748
  ident: bb0205
  article-title: Measuring Emissions from oil and Natural gas well pads using the mobile Flux plane technique
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Steele
– volume: 68
  start-page: 671
  year: 2018
  end-page: 684
  ident: bb0210
  article-title: Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities
  publication-title: J. Air Waste Manage. Assoc.
  contributor:
    fullname: Tyner
– volume: 6
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0250
  article-title: Methane emissions from oil and gas production sites in Alberta, Canada
  publication-title: Elem. Sci. Anthr.
  contributor:
    fullname: Knighton
– year: 2020
  ident: bb0115
  article-title: Methane Tracker 2020 [WWW Document]
  contributor:
    fullname: IEA
– year: 2020
  ident: bb0035
  article-title: Oil and Gas Activities Act Drilling and Production Regulation
  contributor:
    fullname: BCOGC
– year: 2020
  ident: bb0005
  article-title: Directive 060 (Effective May 2020) [WWW Document]
  contributor:
    fullname: AER
– volume: 81
  start-page: 35824
  year: 2016
  end-page: 35942
  ident: bb0230
  article-title: NSPS OOOOa: oil and natural gas sector: emission standards for new, reconstructed, and modified sources; final rule
  publication-title: Fed. Regist.
  contributor:
    fullname: US EPA
– volume: 17
  start-page: 12405
  year: 2017
  end-page: 12420
  ident: bb0025
  article-title: Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada
  publication-title: Atmos. Chem. Phys.
  contributor:
    fullname: Minions
– volume: 14
  start-page: 71
  year: 2021
  end-page: 88
  ident: bb0085
  article-title: Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions
  publication-title: Atmos. Meas. Tech.
  contributor:
    fullname: Young
– volume: 50
  start-page: 4546
  year: 2016
  end-page: 4553
  ident: bb0150
  article-title: Comparing natural gas leakage detection technologies using an open-source “virtual gas field” simulator
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brandt
– year: 2020
  ident: bb0060
  article-title: 2019 Estimated Production of Canadian Crude Oil and Equivalent [WWW Document]
  contributor:
    fullname: CER
– year: 2015
  ident: bb0140
  article-title: 82–3-208. Venting or flaring of casinghead gas
  contributor:
    fullname: Kansas
– volume: 7
  start-page: 37
  year: 2019
  ident: bb0195
  article-title: Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF mobile monitoring challenge
  publication-title: Elem. Sci. Anth.
  contributor:
    fullname: Brandt
– volume: 1
  year: 2019
  ident: bb0030
  article-title: Methane emissions from conventional and unconventional oil and gas production sites in southeastern Saskatchewan, Canada
  publication-title: Environ. Res. Commun.
  contributor:
    fullname: MacKay
– volume: 53
  start-page: 4747
  year: 2019
  end-page: 4754
  ident: bb0050
  article-title: Importance of Superemitter natural gas well pads in the Marcellus shale
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Zondlo
– year: 2020
  ident: bb0065
  article-title: Regulation no
  publication-title: 7, Control of Ozone Via Ozone Precursors and Control of Hydrocarbons Via Oil and Gas Emissions
  contributor:
    fullname: DPHE
– volume: 578
  start-page: 409
  year: 2020
  end-page: 412
  ident: bb0105
  article-title: Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions
  publication-title: Nature
  contributor:
    fullname: Dlugokencky
– volume: 54
  start-page: 5112
  year: 2020
  end-page: 5120
  ident: bb0095
  article-title: Airborne assessment of methane emissions from offshore platforms in the U.S. Gulf of Mexico
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Smith
– year: 2021
  ident: bb0010
  article-title: Alternative Fugitive Emission Management Program Approvals [WWW Document]. URL
  contributor:
    fullname: AER
– volume: 9
  year: 2018
  ident: bb0245
  article-title: Natural gas fugitive leak detection using an unmanned aerial vehicle: measurement system description and mass balance approach
  publication-title: Atmosphere (Basel)
  contributor:
    fullname: McSpiritt
– volume: 15
  year: 2020
  ident: bb0200
  article-title: Repeated leak detection and repair surveys reduce methane emissions over scale of years
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Brandt
– year: 2020
  ident: bb0235
  article-title: R649-3: Drilling and Operating Practices
  contributor:
    fullname: Utah
– year: 2016
  ident: bb0225
  article-title: Leaders' Statement on a North American Climate, Clean Energy, and Environment Partnership [WWW Document]. URL
  contributor:
    fullname: Nieto
– volume: 50
  start-page: 2487
  year: 2016
  end-page: 2497
  ident: bb0015
  article-title: A mobile sensing approach for regional surveillance of fugitive methane emissions in oil and gas production
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Thoma
– year: 2016
  ident: bb0240
  article-title: Wyoming Oil and Gas Conservation Commission Ch. 3, Sec. 39, Authorization for Flaring and Venting Gas. Wyoming Oil & Gas Conservation Commission (WOGCC)
  contributor:
    fullname: WOGCC
– year: 2021
  ident: bb0045
  article-title: Bridger Photonics FMCW LiDAR [WWW Document]. URL
  contributor:
    fullname: Bridger Photonics
– volume: 9
  year: 2018
  ident: bb0090
  article-title: Natural gas fugitive leak detection using an unmanned aerial vehicle: Localization and quantification of emission rate
  publication-title: Atmosphere (Basel)
  contributor:
    fullname: Zondlo
– volume: 52
  start-page: 2368
  year: 2018
  end-page: 2374
  ident: bb0190
  article-title: “Good versus good enough?” empirical tests of methane leak detection sensitivity of a commercial infrared camera
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brandt
– volume: 121
  start-page: 6101
  year: 2016
  end-page: 6111
  ident: bb0175
  article-title: Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota
  publication-title: J. Geophys. Res. Atmos.
  contributor:
    fullname: Ryerson
– volume: 152
  start-page: 1
  year: 2018
  end-page: 101
  ident: bb0075
  article-title: Regulatory impact analysis statement
  publication-title: Canada Gaz.
  contributor:
    fullname: ECCC
– volume: 69
  start-page: 71
  year: 2019
  end-page: 88
  ident: bb0215
  article-title: Aerially guided leak detection and repair: a pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
  publication-title: J. Air Waste Manage. Assoc.
  contributor:
    fullname: Schnell
– volume: 7
  start-page: 1
  year: 2019
  end-page: 13
  ident: bb0165
  article-title: Methane emissions from contrasting production regions within Alberta, Canada: implications under incoming federal methane regulations
  publication-title: Elem. Sci. Anth.
  contributor:
    fullname: Johnson
– year: 2018
  ident: bb0040
  article-title: Gas mapping LiDAR for airborne methane leak detection, localiziation and quantification
  publication-title: PTAC 2018 Methane Emissions Reduction Forum
  contributor:
    fullname: Bridger Photonics
– year: 2020
  ident: bb0170
  article-title: Title 165: Corporation Commission Chapter 10: Oil and Gas Conservation 165:10–3-15
  contributor:
    fullname: Oklahoma Register
– year: 2017
  ident: bb0110
  article-title: Gas Mapping LiDAR Aerial Verification Program Final Report [WWW Document]. Alberta Upstream Petroleum Research Fund Project 17-ARPC-03, Petroleum Technology Alliance of Canada (PTAC). URL
  contributor:
    fullname: Thorpe
– year: 2018
  ident: bb0070
  article-title: Regulations Respecting Reduction in the Release of Methane and Certain Volatile Organic Compounds (Upstream Oil and Gas Sector)
  contributor:
    fullname: ECCC
– year: 2017
  ident: bb0220
  article-title: Airborne quantification of methane emissions over the Four Corners region
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Wolter
– volume: 49
  start-page: 8124
  year: 2015
  end-page: 8131
  ident: bb0145
  article-title: Aircraft-based estimate of total methane emissions from the Barnett Shale Region
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Tans
– volume: 203
  start-page: 3
  year: 2017
  end-page: 69
  ident: bb0100
  article-title: The HITRAN2016 molecular spectroscopic database
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  contributor:
    fullname: Zak
– volume: 361
  start-page: 186
  year: 2018
  end-page: 188
  ident: bb0020
  article-title: Assessment of methane emissions from the U.S. oil and gas supply chain
  publication-title: Science (80-. )
  contributor:
    fullname: Hamburg
– volume: 51
  start-page: 12981
  year: 2017
  end-page: 12987
  ident: bb0155
  article-title: Airborne methane emission measurements for selected oil and gas facilities across California
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Fischer
– volume: 12
  year: 2017
  ident: bb0185
  article-title: Designing better methane mitigation policies: the challenge of distributed small sources in the natural gas sector
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Brandt
– volume: 275
  start-page: 115327
  year: 2020
  ident: bb0180
  article-title: Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance
  publication-title: Appl. Energy
  contributor:
    fullname: Pomerantz
– year: 2020
  ident: bb0055
  article-title: 2019 Marketable Natural Gas Production in Canada [WWW Document]
  contributor:
    fullname: CER
– volume: 50
  start-page: 4546
  year: 2016
  ident: 10.1016/j.rse.2021.112418_bb0150
  article-title: Comparing natural gas leakage detection technologies using an open-source “virtual gas field” simulator
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b06068
  contributor:
    fullname: Kemp
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0250
  article-title: Methane emissions from oil and gas production sites in Alberta, Canada
  publication-title: Elem. Sci. Anthr.
  contributor:
    fullname: Zavala-Araiza
– year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0035
  contributor:
    fullname: BCOGC
– volume: 51
  start-page: 13008
  year: 2017
  ident: 10.1016/j.rse.2021.112418_bb0135
  article-title: Comparisons of airborne measurements and inventory estimates of methane emissions in the Alberta upstream oil and gas sector
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03525
  contributor:
    fullname: Johnson
– volume: 121
  start-page: 6101
  year: 2016
  ident: 10.1016/j.rse.2021.112418_bb0175
  article-title: Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD024631
  contributor:
    fullname: Peischl
– ident: 10.1016/j.rse.2021.112418_bb0045
  contributor:
    fullname: Bridger Photonics
– volume: 15
  year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0200
  article-title: Repeated leak detection and repair surveys reduce methane emissions over scale of years
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab6ae1
  contributor:
    fullname: Ravikumar
– volume: 578
  start-page: 409
  year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0105
  article-title: Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions
  publication-title: Nature
  doi: 10.1038/s41586-020-1991-8
  contributor:
    fullname: Hmiel
– volume: 14
  year: 2019
  ident: 10.1016/j.rse.2021.112418_bb0080
  article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Fox
– ident: 10.1016/j.rse.2021.112418_bb0225
  contributor:
    fullname: Trudeau
– volume: 275
  start-page: 115327
  year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0180
  article-title: Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115327
  contributor:
    fullname: Rashid
– volume: 49
  start-page: 4742
  year: 2015
  ident: 10.1016/j.rse.2021.112418_bb0205
  article-title: Measuring Emissions from oil and Natural gas well pads using the mobile Flux plane technique
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00099
  contributor:
    fullname: Rella
– year: 2015
  ident: 10.1016/j.rse.2021.112418_bb0140
  contributor:
    fullname: Kansas
– volume: 1
  year: 2019
  ident: 10.1016/j.rse.2021.112418_bb0030
  article-title: Methane emissions from conventional and unconventional oil and gas production sites in southeastern Saskatchewan, Canada
  publication-title: Environ. Res. Commun.
  doi: 10.1088/2515-7620/ab01f2
  contributor:
    fullname: Baillie
– volume: 203
  start-page: 3
  year: 2017
  ident: 10.1016/j.rse.2021.112418_bb0100
  article-title: The HITRAN2016 molecular spectroscopic database
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2017.06.038
  contributor:
    fullname: Gordon
– year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0005
  contributor:
    fullname: AER
– year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0170
  contributor:
    fullname: Oklahoma Register
– volume: 50
  start-page: 2487
  year: 2016
  ident: 10.1016/j.rse.2021.112418_bb0015
  article-title: A mobile sensing approach for regional surveillance of fugitive methane emissions in oil and gas production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05059
  contributor:
    fullname: Albertson
– volume: 68
  start-page: 671
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0210
  article-title: Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2018.1436096
  contributor:
    fullname: Roscioli
– volume: 53
  start-page: 4747
  year: 2019
  ident: 10.1016/j.rse.2021.112418_bb0050
  article-title: Importance of Superemitter natural gas well pads in the Marcellus shale
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b06965
  contributor:
    fullname: Caulton
– year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0235
  contributor:
    fullname: Utah
– volume: 52
  start-page: 2368
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0190
  article-title: “Good versus good enough?” empirical tests of methane leak detection sensitivity of a commercial infrared camera
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04945
  contributor:
    fullname: Ravikumar
– volume: 361
  start-page: 186
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0020
  article-title: Assessment of methane emissions from the U.S. oil and gas supply chain
  publication-title: Science (80-. )
  doi: 10.1126/science.aar7204
  contributor:
    fullname: Alvarez
– ident: 10.1016/j.rse.2021.112418_bb0110
  contributor:
    fullname: Hunter
– ident: 10.1016/j.rse.2021.112418_bb0060
  contributor:
    fullname: CER
– ident: 10.1016/j.rse.2021.112418_bb0115
  contributor:
    fullname: IEA
– volume: 9
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0245
  article-title: Natural gas fugitive leak detection using an unmanned aerial vehicle: measurement system description and mass balance approach
  publication-title: Atmosphere (Basel)
  contributor:
    fullname: Yang
– volume: 49
  start-page: 8124
  year: 2015
  ident: 10.1016/j.rse.2021.112418_bb0145
  article-title: Aircraft-based estimate of total methane emissions from the Barnett Shale Region
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00217
  contributor:
    fullname: Karion
– year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0120
  article-title: Summary for policymakers
  contributor:
    fullname: IPCC
– volume: 14
  start-page: 71
  year: 2021
  ident: 10.1016/j.rse.2021.112418_bb0085
  article-title: Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-71-2021
  contributor:
    fullname: France
– volume: 69
  start-page: 71
  year: 2019
  ident: 10.1016/j.rse.2021.112418_bb0215
  article-title: Aerially guided leak detection and repair: a pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2018.1515123
  contributor:
    fullname: Schwietzke
– volume: 152
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0075
  article-title: Regulatory impact analysis statement
  publication-title: Canada Gaz.
  contributor:
    fullname: ECCC
– volume: 9
  year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0090
  article-title: Natural gas fugitive leak detection using an unmanned aerial vehicle: Localization and quantification of emission rate
  publication-title: Atmosphere (Basel)
  contributor:
    fullname: Golston
– volume: 54
  start-page: 5112
  year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0095
  article-title: Airborne assessment of methane emissions from offshore platforms in the U.S. Gulf of Mexico
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00179
  contributor:
    fullname: Gorchov Negron
– volume: 8
  start-page: 14
  year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0130
  article-title: A case study in competing methane regulations: will Canada’s and Alberta’s contrasting regulations achieve equivalent reductions?
  publication-title: Elem. Sci. Anth.
  doi: 10.1525/elementa.403
  contributor:
    fullname: Johnson
– ident: 10.1016/j.rse.2021.112418_bb0010
  contributor:
    fullname: AER
– year: 2016
  ident: 10.1016/j.rse.2021.112418_bb0240
  contributor:
    fullname: WOGCC
– year: 2017
  ident: 10.1016/j.rse.2021.112418_bb0220
  article-title: Airborne quantification of methane emissions over the Four Corners region
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06107
  contributor:
    fullname: Smith
– ident: 10.1016/j.rse.2021.112418_bb0055
  contributor:
    fullname: CER
– year: 2020
  ident: 10.1016/j.rse.2021.112418_bb0065
  article-title: Regulation no
  contributor:
    fullname: DPHE
– year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0040
  article-title: Gas mapping LiDAR for airborne methane leak detection, localiziation and quantification
  contributor:
    fullname: Bridger Photonics
– year: 2018
  ident: 10.1016/j.rse.2021.112418_bb0070
  contributor:
    fullname: ECCC
– volume: 12
  year: 2017
  ident: 10.1016/j.rse.2021.112418_bb0185
  article-title: Designing better methane mitigation policies: the challenge of distributed small sources in the natural gas sector
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa6791
  contributor:
    fullname: Ravikumar
– volume: 17
  start-page: 12405
  year: 2017
  ident: 10.1016/j.rse.2021.112418_bb0025
  article-title: Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-12405-2017
  contributor:
    fullname: Atherton
– start-page: 659
  year: 2013
  ident: 10.1016/j.rse.2021.112418_bb0160
  article-title: Anthropogenic and natural radiative forcing
  contributor:
    fullname: Myhre
– volume: 7
  start-page: 37
  year: 2019
  ident: 10.1016/j.rse.2021.112418_bb0195
  article-title: Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF mobile monitoring challenge
  publication-title: Elem. Sci. Anth.
  doi: 10.1525/elementa.373
  contributor:
    fullname: Ravikumar
– volume: 51
  start-page: 12981
  year: 2017
  ident: 10.1016/j.rse.2021.112418_bb0155
  article-title: Airborne methane emission measurements for selected oil and gas facilities across California
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03254
  contributor:
    fullname: Mehrotra
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.rse.2021.112418_bb0165
  article-title: Methane emissions from contrasting production regions within Alberta, Canada: implications under incoming federal methane regulations
  publication-title: Elem. Sci. Anth.
  doi: 10.1525/elementa.341
  contributor:
    fullname: O’Connell
– volume: 81
  start-page: 35824
  year: 2016
  ident: 10.1016/j.rse.2021.112418_bb0230
  article-title: NSPS OOOOa: oil and natural gas sector: emission standards for new, reconstructed, and modified sources; final rule
  publication-title: Fed. Regist.
  contributor:
    fullname: US EPA
– volume: 11
  start-page: 594
  year: 2000
  ident: 10.1016/j.rse.2021.112418_bb0125
  article-title: A portable remote methane sensor using a tunable diode laser
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/11/6/302
  contributor:
    fullname: Iseki
SSID ssj0015871
Score 2.5614064
Snippet Controlled, fully-blinded methane releases and ancillary on-site wind measurements were performed during a separate airborne survey of active oil and gas...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 112418
SubjectTerms Airborne sensing
Data processing
Emissions
Fugitive emissions
Inventory
LDAR
Leak detection
Lidar
Lidar measurements
Linear functions
Methane
Methane sources
Mitigation
Oil and gas
Onsite
Photonics
Polls & surveys
Pollution abatement
Regulatory policy
Sensitivity
Technology
Uncertainty
Venting
Vents
Wind measurement
Wind speed
Title Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR
URI https://dx.doi.org/10.1016/j.rse.2021.112418
https://www.proquest.com/docview/2529323300
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEb2IVsVHLXvwJMRms5vXsa3V-ioiFnpbsslWK5KWNh568bc7k4dFEQ-eQpJNWL6dnZ1NvvkG4NQlx-t5tuVzLkhUW1uhl_iWnxhcjF0n5AklJ9_3vd5A3gzd4Qp0qlwYolWWvr_w6bm3Lq80SzSb0_GYcnyFJItzeC48NqQMdlz-0KbPP75oHtwN_KJqnpAWta7-bOYcr9mclDIdTok0kup-_L42_fDS-dJzuQ1bZczIWkW3dmDFpDXY7y5T1PBmOUfnNdgo65q_LGqwfpUX7l3swqD9RsKICVvKe7PJiEXjGRpBahhVko7wWHzMZ4nJco5WyogY_8zaeV7XjD28TDIS052zu_FF63EPBpfdp07PKksqWBFGHpmF2AuMAH2pcWcURMbD7UqcGJ2MRGgi22gMDxzX8bXhnidjLYQWgQ61dmJsEkdiH1bTSWoOgAVRQPJevk6kL-PAhCT8o50wjkf2iEf2IZxVYKppoZyhKkrZq0LkFSGvCuQPQVZwq2_Dr9Cz__VYvRoaVc69ucL-Y1AqhG0f_e-tx7BJZ0QI424dVrPZuznB0CPTjdy2GrDWur7t9T8BQ9HXRg
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BESoLggLiUcADE1Igjp3X2PIq0CKEWqmbFScuFKEUtWFg4bdzlwcVCDEwRYqdyPp8Pp-T774DOHLJ8XqebfmcCxLV1lboJb7lJwY3Y9cJeULJyb07rzOQN0N3uABnVS4M0SpL31_49Nxbl3dOSzRPX8djyvEVkizO4bnw2HARliTFx2jUJx9fPA_uBn5RNk9Ii7pXvzZzktd0RlKZDqdMGkmFP37fnH646XzvuVyD1TJoZK1iXOuwYNIGbF3Mc9SwsVykswbUy8LmT-8NWL7KK_e-b8Cg_ULKiAmb63uzyYhF4ylaQWoYlZKO8Fp8zWeJyXKSVsqIGf_I2nli15TdP00yUtOdse74vPWwCYPLi_5ZxyprKlgRhh6ZheALDAF9qfFoFETGw_NKnBidjERoIttojA8c1_G14Z4nYy2EFoEOtXZi7BJHYgtq6SQ128CCKCB9L18n0pdxYEJS_tFOGMcje8QjeweOKzDVayGdoSpO2bNC5BUhrwrkd0BWcKtv86_Qtf_1WLOaGlUuvpnC8WNUKoRt7_7vrYdQ7_R7XdW9vrvdgxVqIXYYd5tQy6ZvZh_jkEwf5Hb2CW622N8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blinded+evaluation+of+airborne+methane+source+detection+using+Bridger+Photonics+LiDAR&rft.jtitle=Remote+sensing+of+environment&rft.au=Johnson%2C+Matthew+R.&rft.au=Tyner%2C+David+R.&rft.au=Szekeres%2C+Alexander+J.&rft.date=2021-06-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=259&rft_id=info:doi/10.1016%2Fj.rse.2021.112418&rft.externalDocID=S003442572100136X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon