Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases

The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)2(A) n−1Pb n X3n+1 (A′ = spacer cation, A = cage cation, an...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 46; pp. 19705 - 19714
Main Authors Xi, Jun, Spanopoulos, Ioannis, Bang, Kijoon, Xu, Jie, Dong, Hua, Yang, Yingguo, Malliakas, Christos D, Hoffman, Justin M, Kanatzidis, Mercouri G, Wu, Zhaoxin
Format Journal Article
LanguageEnglish
Published American Chemical Society 18.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)2(A) n−1Pb n X3n+1 (A′ = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propen­ammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5) n−1Pb n I3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88­MA0.12)0.95) n−1­Pb n (I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p–i–n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).
AbstractList The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A')2(A)n-1PbnX3n+1 (A' = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5)n-1PbnI3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95)n-1Pbn(I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p-i-n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A')2(A)n-1PbnX3n+1 (A' = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5)n-1PbnI3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95)n-1Pbn(I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p-i-n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).
The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)₂(A)ₙ₋₁PbₙX₃ₙ₊₁ (A′ = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)₂(FA₀.₅MA₀.₅)ₙ₋₁PbₙI₃ₙ₊₁ (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)₂(Cs₀.₀₅(FA₀.₈₈MA₀.₁₂)₀.₉₅)ₙ₋₁Pbₙ(I₀.₈₈Br₀.₁₂)₃ₙ₊₁ analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p–i–n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).
The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)2(A) n−1Pb n X3n+1 (A′ = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propen­ammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5) n−1Pb n I3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88­MA0.12)0.95) n−1­Pb n (I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p–i–n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).
Author Dong, Hua
Xi, Jun
Xu, Jie
Malliakas, Christos D
Bang, Kijoon
Hoffman, Justin M
Wu, Zhaoxin
Spanopoulos, Ioannis
Kanatzidis, Mercouri G
Yang, Yingguo
AuthorAffiliation Department of Chemistry
Chinese Academy of Sciences
Global Frontier Center for Multiscale Energy Systems
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics
Shanxi University
Collaborative Innovation Center of Extreme Optics
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering
Zernike Institute for Advanced Materials
AuthorAffiliation_xml – name: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering
– name: Shanxi University
– name: Department of Chemistry
– name: Chinese Academy of Sciences
– name: Zernike Institute for Advanced Materials
– name: Collaborative Innovation Center of Extreme Optics
– name: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics
– name: Global Frontier Center for Multiscale Energy Systems
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0001-6600-4862
  surname: Xi
  fullname: Xi, Jun
  organization: Zernike Institute for Advanced Materials
– sequence: 2
  givenname: Ioannis
  orcidid: 0000-0003-0861-1407
  surname: Spanopoulos
  fullname: Spanopoulos, Ioannis
  organization: Department of Chemistry
– sequence: 3
  givenname: Kijoon
  orcidid: 0000-0001-6877-9792
  surname: Bang
  fullname: Bang, Kijoon
  organization: Global Frontier Center for Multiscale Energy Systems
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-9857-2212
  surname: Xu
  fullname: Xu, Jie
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering
– sequence: 5
  givenname: Hua
  orcidid: 0000-0001-9362-2236
  surname: Dong
  fullname: Dong, Hua
  organization: Shanxi University
– sequence: 6
  givenname: Yingguo
  orcidid: 0000-0002-1749-2799
  surname: Yang
  fullname: Yang, Yingguo
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Christos D
  orcidid: 0000-0003-4416-638X
  surname: Malliakas
  fullname: Malliakas, Christos D
  organization: Department of Chemistry
– sequence: 8
  givenname: Justin M
  orcidid: 0000-0003-1400-9180
  surname: Hoffman
  fullname: Hoffman, Justin M
  organization: Department of Chemistry
– sequence: 9
  givenname: Mercouri G
  orcidid: 0000-0003-2037-4168
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G
  email: m-kanatzidis@northwestern.edu
  organization: Department of Chemistry
– sequence: 10
  givenname: Zhaoxin
  surname: Wu
  fullname: Wu, Zhaoxin
  email: zhaoxinwu@mail.xjtu.edu.cn
  organization: Shanxi University
BookMark eNqFkU1OwzAQhS1UJNrCjgN4yYIU23GcZllV5UcqouJnHU3tCbgEO9hpJXbcgRtyElLRFQKxGs3T90Yz8wak57xDQo45G3Em-NkKdBwxzQol8z3S55lgScaF6pE-Y0wk-VilB2QQ46prpRjzPnme1C0GB63dIL0Jj-CspncNaAyRVj7Qax-QzqrKaouupQsMfhOfbYv0ztcQ6BTrOtKpdy1YZ90jvV0bU2M06D7fPxa-aTDQxRNEjIdkv4I64tGuDsnD-ex-epnMby6uppN5AjIdt0nBFAKAKHIFKjdgDKuKpdRFZiDLpQHgW5VxEKCXGWgQiEstWcHTIhMmHZKT77lN8K9rjG35YqPu9gSHfh1LkQmZplwK9T8qs7zImVK8Q8U3qoOPMWBVatt2f-suD2DrkrNyG0K5DaHchdCZTn-YmmBfILz9he_W2Yorv-6CqePv6BeD3pun
CitedBy_id crossref_primary_10_1021_jacs_3c05974
crossref_primary_10_1002_adfm_202207101
crossref_primary_10_1021_acsmaterialsau_1c00045
crossref_primary_10_1021_acsomega_3c04323
crossref_primary_10_1039_D0NR08799H
crossref_primary_10_1021_jacs_3c03997
crossref_primary_10_1016_j_mtelec_2024_100100
crossref_primary_10_1002_smll_202108090
crossref_primary_10_1364_OE_525735
crossref_primary_10_1002_ijch_202100052
crossref_primary_10_1016_j_mser_2023_100756
crossref_primary_10_1021_acs_nanolett_4c00851
crossref_primary_10_1016_j_jpowsour_2021_229909
crossref_primary_10_1002_adfm_202104868
crossref_primary_10_1021_acsnano_4c08018
crossref_primary_10_1002_adfm_202202408
crossref_primary_10_1021_acsnano_3c11642
crossref_primary_10_1002_aenm_202201490
crossref_primary_10_1021_acsaem_1c02812
crossref_primary_10_1002_adma_202302143
crossref_primary_10_1002_asia_202100859
crossref_primary_10_2494_photopolymer_34_263
crossref_primary_10_1063_5_0056106
crossref_primary_10_1002_adts_202300833
crossref_primary_10_1002_solr_202200091
crossref_primary_10_1002_ange_202315943
crossref_primary_10_1002_smtd_202300428
crossref_primary_10_1016_j_mtener_2021_100759
crossref_primary_10_1039_D2TC03985K
crossref_primary_10_1002_adma_202108020
crossref_primary_10_1016_j_mser_2023_100727
crossref_primary_10_1088_1361_6528_ac0028
crossref_primary_10_1021_acs_jpclett_1c04137
crossref_primary_10_1021_acs_langmuir_0c03120
crossref_primary_10_1021_acs_chemmater_2c01502
crossref_primary_10_1002_cssc_202300736
crossref_primary_10_1002_adma_202208875
crossref_primary_10_1002_adma_202405470
crossref_primary_10_1063_5_0198695
crossref_primary_10_1002_smll_202104100
crossref_primary_10_1007_s40820_024_01500_7
crossref_primary_10_1021_acs_chemmater_1c01129
crossref_primary_10_1021_acsami_1c18791
crossref_primary_10_1021_acs_chemrev_0c01006
crossref_primary_10_1039_D3EE02507A
crossref_primary_10_1039_D3NR01105D
crossref_primary_10_1016_j_solmat_2021_111345
crossref_primary_10_1002_adom_202301230
crossref_primary_10_1002_ejic_202200599
crossref_primary_10_1002_solr_202100072
crossref_primary_10_1039_D1EE00984B
crossref_primary_10_1021_acs_inorgchem_2c03361
crossref_primary_10_1007_s40684_024_00663_3
crossref_primary_10_1016_j_scib_2022_05_019
crossref_primary_10_1002_adfm_202105734
crossref_primary_10_1016_j_cplett_2023_140842
crossref_primary_10_1039_D1SC00359C
crossref_primary_10_1002_adom_202400617
crossref_primary_10_1002_solr_202200221
crossref_primary_10_1039_D2TC01591A
crossref_primary_10_1002_anie_202315943
crossref_primary_10_2139_ssrn_4194496
crossref_primary_10_1002_smtd_202300040
crossref_primary_10_1039_D1QM00618E
crossref_primary_10_1002_adfm_202112146
crossref_primary_10_1093_nsr_nwab075
crossref_primary_10_1021_acsenergylett_1c02081
crossref_primary_10_1007_s40820_023_01110_9
crossref_primary_10_1002_adma_202404517
crossref_primary_10_1016_j_orgel_2021_106198
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1002_hlca_202200193
crossref_primary_10_1016_j_jallcom_2022_165725
crossref_primary_10_1021_acsenergylett_3c02009
crossref_primary_10_1039_D1TA01447A
crossref_primary_10_1021_acs_jpcc_0c11436
crossref_primary_10_1002_anie_202213294
crossref_primary_10_1007_s10853_021_06330_1
crossref_primary_10_1021_acsaem_3c01329
crossref_primary_10_1021_acsenergylett_1c00289
crossref_primary_10_1002_adma_202313056
crossref_primary_10_1002_lpor_202300780
crossref_primary_10_1021_acs_jpclett_4c02567
crossref_primary_10_1002_ente_202201050
crossref_primary_10_1016_j_nanoen_2021_106800
crossref_primary_10_1021_acsaem_2c00931
crossref_primary_10_1002_ange_202213294
crossref_primary_10_3390_ijms23158816
crossref_primary_10_1002_aenm_202401303
crossref_primary_10_1016_j_mtcomm_2022_104368
crossref_primary_10_1126_sciadv_abk2722
crossref_primary_10_1088_2752_5724_acba36
crossref_primary_10_1016_j_nantod_2022_101394
crossref_primary_10_1021_acs_nanolett_3c03058
crossref_primary_10_1002_adma_202106822
crossref_primary_10_1021_acsami_3c13650
Cites_doi 10.1038/nenergy.2015.12
10.1002/smll.201900854
10.1038/nnano.2016.110
10.1038/nature18306
10.1039/C7EE02564E
10.1002/aenm.201803258
10.1016/j.joule.2019.08.023
10.1021/jacs.7b06143
10.1021/acs.nanolett.9b01242
10.1021/jacs.9b00972
10.1021/acs.inorgchem.6b01336
10.1038/ncomms13422
10.1038/s41563-018-0164-8
10.1126/science.aal4211
10.1021/jacs.7b01312
10.1021/jacs.8b00542
10.1021/nn506864k
10.1002/anie.201503153
10.1021/jacs.5b03796
10.1002/adma.201804771
10.1021/acs.nanolett.6b03114
10.1039/C7EE01674C
10.1021/acs.accounts.5b00229
10.1021/acs.jpclett.8b00201
10.1002/aenm.201800185
10.1038/nphoton.2016.185
10.1021/jacs.8b04604
10.1021/acsnano.6b05944
10.1002/aenm.201901787
10.1021/jacs.9b01327
10.1021/acs.nanolett.9b01652
10.1021/acs.chemrev.8b00336
10.1021/acs.nanolett.7b00976
10.1038/s41467-018-04430-2
10.1039/C5EE03874J
10.1021/acs.chemrev.8b00417
10.1002/adfm.201808119
10.1021/jacs.8b10851
10.1038/s41560-017-0067-y
10.1039/C7EE01145H
10.1002/adma.201600265
10.1016/0022-2313(94)90145-7
10.1038/s41560-018-0219-8
10.1021/acs.chemmater.6b00847
10.1021/acs.chemrev.8b00477
10.1021/jacs.5b11740
10.1002/adma.201707166
10.1021/acsmaterialslett.9b00102
10.1021/acs.accounts.5b00455
10.1021/jacs.6b10390
10.1021/jacs.9b02846
10.1002/smtd.201700380
10.1038/s41563-018-0154-x
10.1073/pnas.1811006115
10.1021/jacs.8b03659
10.1016/0921-5107(88)90006-2
10.1038/s41586-019-1357-2
10.1126/science.aam6323
10.1021/jacs.9b06398
10.1002/adma.201703487
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/jacs.0c09647
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 19714
ExternalDocumentID 10_1021_jacs_0c09647
a45658216
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
7X8
7S9
AAYWT
L.6
ID FETCH-LOGICAL-a438t-906eaaa2976a67dadd0f9b4c95da574daa17dad01a2acb5aca2eebc40913952d3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 10:49:32 EDT 2025
Thu Jul 10 18:56:47 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Fri Nov 20 15:28:00 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a438t-906eaaa2976a67dadd0f9b4c95da574daa17dad01a2acb5aca2eebc40913952d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6877-9792
0000-0003-0861-1407
0000-0002-9857-2212
0000-0003-1400-9180
0000-0002-1749-2799
0000-0003-4416-638X
0000-0001-9362-2236
0000-0003-2037-4168
0000-0001-6600-4862
OpenAccessLink https://research.rug.nl/en/publications/b3ae15bc-573b-4d6c-9e01-9953ed02cfec
PQID 2457970661
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2524331426
proquest_miscellaneous_2457970661
crossref_citationtrail_10_1021_jacs_0c09647
crossref_primary_10_1021_jacs_0c09647
acs_journals_10_1021_jacs_0c09647
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-18
PublicationDateYYYYMMDD 2020-11-18
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-18
  day: 18
PublicationDecade 2020
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1038/nenergy.2015.12
– ident: ref15/cit15
  doi: 10.1002/smll.201900854
– ident: ref33/cit33
  doi: 10.1038/nnano.2016.110
– ident: ref20/cit20
  doi: 10.1038/nature18306
– ident: ref14/cit14
  doi: 10.1039/C7EE02564E
– ident: ref39/cit39
  doi: 10.1002/aenm.201803258
– ident: ref48/cit48
  doi: 10.1016/j.joule.2019.08.023
– ident: ref32/cit32
  doi: 10.1021/jacs.7b06143
– ident: ref42/cit42
  doi: 10.1021/acs.nanolett.9b01242
– ident: ref43/cit43
  doi: 10.1021/jacs.9b00972
– ident: ref50/cit50
  doi: 10.1021/acs.inorgchem.6b01336
– ident: ref7/cit7
  doi: 10.1038/ncomms13422
– ident: ref22/cit22
  doi: 10.1038/s41563-018-0164-8
– ident: ref59/cit59
  doi: 10.1126/science.aal4211
– ident: ref30/cit30
  doi: 10.1021/jacs.7b01312
– ident: ref49/cit49
  doi: 10.1021/jacs.8b00542
– ident: ref4/cit4
  doi: 10.1021/nn506864k
– ident: ref5/cit5
  doi: 10.1002/anie.201503153
– ident: ref18/cit18
  doi: 10.1021/jacs.5b03796
– ident: ref57/cit57
  doi: 10.1002/adma.201804771
– ident: ref56/cit56
  doi: 10.1021/acs.nanolett.6b03114
– ident: ref8/cit8
  doi: 10.1039/C7EE01674C
– ident: ref54/cit54
  doi: 10.1021/acs.accounts.5b00229
– ident: ref27/cit27
  doi: 10.1021/acs.jpclett.8b00201
– ident: ref38/cit38
  doi: 10.1002/aenm.201800185
– ident: ref34/cit34
  doi: 10.1038/nphoton.2016.185
– ident: ref44/cit44
  doi: 10.1021/jacs.8b04604
– ident: ref26/cit26
  doi: 10.1021/acsnano.6b05944
– ident: ref12/cit12
  doi: 10.1002/aenm.201901787
– ident: ref25/cit25
  doi: 10.1021/jacs.9b01327
– ident: ref46/cit46
  doi: 10.1021/acs.nanolett.9b01652
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.8b00336
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.7b00976
– ident: ref60/cit60
  doi: 10.1038/s41467-018-04430-2
– ident: ref9/cit9
  doi: 10.1039/C5EE03874J
– ident: ref28/cit28
  doi: 10.1021/acs.chemrev.8b00417
– ident: ref10/cit10
  doi: 10.1002/adfm.201808119
– ident: ref24/cit24
  doi: 10.1021/jacs.8b10851
– ident: ref13/cit13
  doi: 10.1038/s41560-017-0067-y
– ident: ref37/cit37
  doi: 10.1039/C7EE01145H
– ident: ref17/cit17
  doi: 10.1002/adma.201600265
– ident: ref52/cit52
  doi: 10.1016/0022-2313(94)90145-7
– ident: ref55/cit55
  doi: 10.1038/s41560-018-0219-8
– ident: ref19/cit19
  doi: 10.1021/acs.chemmater.6b00847
– ident: ref29/cit29
  doi: 10.1021/acs.chemrev.8b00477
– ident: ref21/cit21
  doi: 10.1021/jacs.5b11740
– ident: ref58/cit58
  doi: 10.1002/adma.201707166
– ident: ref45/cit45
  doi: 10.1021/acsmaterialslett.9b00102
– ident: ref3/cit3
  doi: 10.1021/acs.accounts.5b00455
– ident: ref31/cit31
  doi: 10.1021/jacs.6b10390
– ident: ref41/cit41
  doi: 10.1021/jacs.9b02846
– ident: ref16/cit16
  doi: 10.1002/smtd.201700380
– ident: ref36/cit36
  doi: 10.1038/s41563-018-0154-x
– ident: ref47/cit47
  doi: 10.1073/pnas.1811006115
– ident: ref40/cit40
  doi: 10.1021/jacs.8b03659
– ident: ref53/cit53
  doi: 10.1016/0921-5107(88)90006-2
– ident: ref11/cit11
  doi: 10.1038/s41586-019-1357-2
– ident: ref1/cit1
  doi: 10.1126/science.aam6323
– ident: ref51/cit51
  doi: 10.1021/jacs.9b06398
– ident: ref23/cit23
  doi: 10.1002/adma.201703487
SSID ssj0004281
Score 2.603378
Snippet The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention,...
The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention,...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19705
SubjectTerms cages
cations
encapsulation
humidity
hydrogen
solar energy
X-ray diffraction
Title Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases
URI http://dx.doi.org/10.1021/jacs.0c09647
https://www.proquest.com/docview/2457970661
https://www.proquest.com/docview/2524331426
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiW3yzBT1JSrrdzeNYQqsIlWIVeguTzRahpSlN48GT_8F_6C9xJg9Fxcd1mcBm9jHfzM58w9iZR2ZOgbQQTfiWjBVYMFK2BSY2sY5kS0qqRu7dOFf38nqohh8Jsl9f8AXxA-m0YWubSiaX2Ypw8PwSBAoGH_WPwmtWMNf1nFaZ4P71azJAOv1sgD7fv7lR6W6wy6o0p8glGTeyRdTQT9-ZGv-Y7yZbL3ElbxcbYYstmek2Ww2qdm47bNyelLG_R8OLCkzNB-gxI_7jiFx5L5kb3skZJdAQ8b6ZJ48pxXb5gNxfHpjJJOXEZlU0leC3GcU2Ury4Xp9f-slsZua8_4BWMd1l993OXXBllZ0WLJAtb2H5tmMAQCA2AceN8c6zR34kta9iUK6MAZo0ajdBgI4UaBDGRFrmpKJKxK09VpsmU7PPuIKRju0IYQlIqZVChOfjKTdgj2jt9QGro4LC8qSkYf4ILtAJodFSbQfsolqiUJdU5dQxY_KD9Pm79Kyg6PhBrl6tdoi6p4cRmJokS0Mhleu7CL6av8goQcVlCGgO__EHR2xNkGNO-YLeMast5pk5QfSyiE7zrfsGy8vtKQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3rxbXxbEz2ZNUtp2d0jIRB8QIhAwm0z2y0xkbCEAgdP_gf_ob_EmWXBYILx2sxuuu1s55u23zeM3fgU5hRIB9FE4MhYgQM95TpgYhPrSBakJDZyvVGsdeRjV3UzsjpxYbATFt9k00P8H3UBkgnCRle7xJxcZxuIQwQ5dKnc-qFBCj8_R7ueXyxk99x_P01xSNvlOLS8DKexpbrDGotepVdK3u4n4-hev_8SbPx3t3fZdoYyeWnmFntszQz22WZ5XtztgL2V-tlO4NTwGR9T8xbmz4gGOeJYXk9GhldSfQkMS7xpRsnU0k4vb1EyzMum37ectK1mJSb4y4R2OiwuY18fn81kODQj3nzFGGkPWadaaZdrTlZ3wQFZ8MdO4BYNAAhEKlD0YlwB3V4QSR2oGJQnY4A8tbp5EKAjBRqEMZGWqcSoEnHhiOUGycAcM66gp2M3QpACUmqlEO8F-M8bcHvkCfqEXeMAhdl_Y8P0SFxgSkKt2bCdsLv5TIU6Ey6n-hn9Fda3C-vhTLBjhd31fNJDHHs6JoGBSSY2FFJ5gYdQLP-HjRJENUN4c_qPL7him7V2_Tl8fmg8nbEtQSk73ST0z1luPJqYC8Q14-gy9eZvht71ig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED-xIrG9wMY2jW1sRtqepqDEtZvksSpUMP6ookPiLbrYjpComqpuedjTvgPfkE_CXZqAQCpir84lcuyz73c-3-8AfiRs5jSqgNBEGiirMcBChwE666zJVVspzkY-Oe0cnKvfF_piBaImF4Y64elLvgri86qe2KJmGGCqIHoQmpCzJ1_BKkfsWKm7veFDKqRMogbxxkmnXd91f_o22yLjH9uix1txZV_6G3B237PqWsnV7nyW75q_T0gb_6vrb2G9Rpuiu1CPd7DixpvwutcUeXsPV91RfSJ47cQiL9OIIfnRhAoF4VlxUk6d2K94Jsg8iYGblteeT3zFkJ1i0XOjkRfMcbUoNSHO5nzi4Wk7u_13MygnEzcVg0uylf4DnPf3__QOgrr-QoCqncyCNOw4RJSEWLATW9oJwyLNlUm1RR0rixhxaxihRJNrNCidy42qqEa1tO2P0BqXY_cJhMbC2DAnsIJKGa0J96W09h2GBWuE2YIdGqCsXj8-q0LjklwTbq2HbQt-NbOVmZrAnOtojJZI_7yXniyIO5bI7TQTn9HYc7gEx66c-0wqHacxQbLoGRktOeWMYM7nF_zBd1gb7PWz48PToy_wRrLnzhcKk6_Qmk3nbpvgzSz_Vin0HW0N-A0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+Organic+Spacers+for+More+Efficient+Perovskite+Solar+Cells+Containing+Ruddlesden%E2%80%93Popper+Phases&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xi%2C+Jun&rft.au=Spanopoulos%2C+Ioannis&rft.au=Bang%2C+Kijoon&rft.au=Xu%2C+Jie&rft.date=2020-11-18&rft.issn=1520-5126&rft.volume=142&rft.issue=46+p.19705-19714&rft.spage=19705&rft.epage=19714&rft_id=info:doi/10.1021%2Fjacs.0c09647&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon