Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases
The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)2(A) n−1Pb n X3n+1 (A′ = spacer cation, A = cage cation, an...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 46; pp. 19705 - 19714 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
18.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)2(A) n−1Pb n X3n+1 (A′ = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5) n−1Pb n I3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95) n−1Pb n (I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p–i–n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3). |
---|---|
AbstractList | The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A')2(A)n-1PbnX3n+1 (A' = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5)n-1PbnI3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95)n-1Pbn(I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p-i-n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A')2(A)n-1PbnX3n+1 (A' = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5)n-1PbnI3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95)n-1Pbn(I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p-i-n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3). The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)₂(A)ₙ₋₁PbₙX₃ₙ₊₁ (A′ = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)₂(FA₀.₅MA₀.₅)ₙ₋₁PbₙI₃ₙ₊₁ (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)₂(Cs₀.₀₅(FA₀.₈₈MA₀.₁₂)₀.₉₅)ₙ₋₁Pbₙ(I₀.₈₈Br₀.₁₂)₃ₙ₊₁ analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p–i–n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3). The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A′)2(A) n−1Pb n X3n+1 (A′ = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5) n−1Pb n I3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95) n−1Pb n (I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p–i–n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3). |
Author | Dong, Hua Xi, Jun Xu, Jie Malliakas, Christos D Bang, Kijoon Hoffman, Justin M Wu, Zhaoxin Spanopoulos, Ioannis Kanatzidis, Mercouri G Yang, Yingguo |
AuthorAffiliation | Department of Chemistry Chinese Academy of Sciences Global Frontier Center for Multiscale Energy Systems Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Shanxi University Collaborative Innovation Center of Extreme Optics Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering Zernike Institute for Advanced Materials |
AuthorAffiliation_xml | – name: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering – name: Shanxi University – name: Department of Chemistry – name: Chinese Academy of Sciences – name: Zernike Institute for Advanced Materials – name: Collaborative Innovation Center of Extreme Optics – name: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics – name: Global Frontier Center for Multiscale Energy Systems |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0001-6600-4862 surname: Xi fullname: Xi, Jun organization: Zernike Institute for Advanced Materials – sequence: 2 givenname: Ioannis orcidid: 0000-0003-0861-1407 surname: Spanopoulos fullname: Spanopoulos, Ioannis organization: Department of Chemistry – sequence: 3 givenname: Kijoon orcidid: 0000-0001-6877-9792 surname: Bang fullname: Bang, Kijoon organization: Global Frontier Center for Multiscale Energy Systems – sequence: 4 givenname: Jie orcidid: 0000-0002-9857-2212 surname: Xu fullname: Xu, Jie organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering – sequence: 5 givenname: Hua orcidid: 0000-0001-9362-2236 surname: Dong fullname: Dong, Hua organization: Shanxi University – sequence: 6 givenname: Yingguo orcidid: 0000-0002-1749-2799 surname: Yang fullname: Yang, Yingguo organization: Chinese Academy of Sciences – sequence: 7 givenname: Christos D orcidid: 0000-0003-4416-638X surname: Malliakas fullname: Malliakas, Christos D organization: Department of Chemistry – sequence: 8 givenname: Justin M orcidid: 0000-0003-1400-9180 surname: Hoffman fullname: Hoffman, Justin M organization: Department of Chemistry – sequence: 9 givenname: Mercouri G orcidid: 0000-0003-2037-4168 surname: Kanatzidis fullname: Kanatzidis, Mercouri G email: m-kanatzidis@northwestern.edu organization: Department of Chemistry – sequence: 10 givenname: Zhaoxin surname: Wu fullname: Wu, Zhaoxin email: zhaoxinwu@mail.xjtu.edu.cn organization: Shanxi University |
BookMark | eNqFkU1OwzAQhS1UJNrCjgN4yYIU23GcZllV5UcqouJnHU3tCbgEO9hpJXbcgRtyElLRFQKxGs3T90Yz8wak57xDQo45G3Em-NkKdBwxzQol8z3S55lgScaF6pE-Y0wk-VilB2QQ46prpRjzPnme1C0GB63dIL0Jj-CspncNaAyRVj7Qax-QzqrKaouupQsMfhOfbYv0ztcQ6BTrOtKpdy1YZ90jvV0bU2M06D7fPxa-aTDQxRNEjIdkv4I64tGuDsnD-ex-epnMby6uppN5AjIdt0nBFAKAKHIFKjdgDKuKpdRFZiDLpQHgW5VxEKCXGWgQiEstWcHTIhMmHZKT77lN8K9rjG35YqPu9gSHfh1LkQmZplwK9T8qs7zImVK8Q8U3qoOPMWBVatt2f-suD2DrkrNyG0K5DaHchdCZTn-YmmBfILz9he_W2Yorv-6CqePv6BeD3pun |
CitedBy_id | crossref_primary_10_1021_jacs_3c05974 crossref_primary_10_1002_adfm_202207101 crossref_primary_10_1021_acsmaterialsau_1c00045 crossref_primary_10_1021_acsomega_3c04323 crossref_primary_10_1039_D0NR08799H crossref_primary_10_1021_jacs_3c03997 crossref_primary_10_1016_j_mtelec_2024_100100 crossref_primary_10_1002_smll_202108090 crossref_primary_10_1364_OE_525735 crossref_primary_10_1002_ijch_202100052 crossref_primary_10_1016_j_mser_2023_100756 crossref_primary_10_1021_acs_nanolett_4c00851 crossref_primary_10_1016_j_jpowsour_2021_229909 crossref_primary_10_1002_adfm_202104868 crossref_primary_10_1021_acsnano_4c08018 crossref_primary_10_1002_adfm_202202408 crossref_primary_10_1021_acsnano_3c11642 crossref_primary_10_1002_aenm_202201490 crossref_primary_10_1021_acsaem_1c02812 crossref_primary_10_1002_adma_202302143 crossref_primary_10_1002_asia_202100859 crossref_primary_10_2494_photopolymer_34_263 crossref_primary_10_1063_5_0056106 crossref_primary_10_1002_adts_202300833 crossref_primary_10_1002_solr_202200091 crossref_primary_10_1002_ange_202315943 crossref_primary_10_1002_smtd_202300428 crossref_primary_10_1016_j_mtener_2021_100759 crossref_primary_10_1039_D2TC03985K crossref_primary_10_1002_adma_202108020 crossref_primary_10_1016_j_mser_2023_100727 crossref_primary_10_1088_1361_6528_ac0028 crossref_primary_10_1021_acs_jpclett_1c04137 crossref_primary_10_1021_acs_langmuir_0c03120 crossref_primary_10_1021_acs_chemmater_2c01502 crossref_primary_10_1002_cssc_202300736 crossref_primary_10_1002_adma_202208875 crossref_primary_10_1002_adma_202405470 crossref_primary_10_1063_5_0198695 crossref_primary_10_1002_smll_202104100 crossref_primary_10_1007_s40820_024_01500_7 crossref_primary_10_1021_acs_chemmater_1c01129 crossref_primary_10_1021_acsami_1c18791 crossref_primary_10_1021_acs_chemrev_0c01006 crossref_primary_10_1039_D3EE02507A crossref_primary_10_1039_D3NR01105D crossref_primary_10_1016_j_solmat_2021_111345 crossref_primary_10_1002_adom_202301230 crossref_primary_10_1002_ejic_202200599 crossref_primary_10_1002_solr_202100072 crossref_primary_10_1039_D1EE00984B crossref_primary_10_1021_acs_inorgchem_2c03361 crossref_primary_10_1007_s40684_024_00663_3 crossref_primary_10_1016_j_scib_2022_05_019 crossref_primary_10_1002_adfm_202105734 crossref_primary_10_1016_j_cplett_2023_140842 crossref_primary_10_1039_D1SC00359C crossref_primary_10_1002_adom_202400617 crossref_primary_10_1002_solr_202200221 crossref_primary_10_1039_D2TC01591A crossref_primary_10_1002_anie_202315943 crossref_primary_10_2139_ssrn_4194496 crossref_primary_10_1002_smtd_202300040 crossref_primary_10_1039_D1QM00618E crossref_primary_10_1002_adfm_202112146 crossref_primary_10_1093_nsr_nwab075 crossref_primary_10_1021_acsenergylett_1c02081 crossref_primary_10_1007_s40820_023_01110_9 crossref_primary_10_1002_adma_202404517 crossref_primary_10_1016_j_orgel_2021_106198 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1002_hlca_202200193 crossref_primary_10_1016_j_jallcom_2022_165725 crossref_primary_10_1021_acsenergylett_3c02009 crossref_primary_10_1039_D1TA01447A crossref_primary_10_1021_acs_jpcc_0c11436 crossref_primary_10_1002_anie_202213294 crossref_primary_10_1007_s10853_021_06330_1 crossref_primary_10_1021_acsaem_3c01329 crossref_primary_10_1021_acsenergylett_1c00289 crossref_primary_10_1002_adma_202313056 crossref_primary_10_1002_lpor_202300780 crossref_primary_10_1021_acs_jpclett_4c02567 crossref_primary_10_1002_ente_202201050 crossref_primary_10_1016_j_nanoen_2021_106800 crossref_primary_10_1021_acsaem_2c00931 crossref_primary_10_1002_ange_202213294 crossref_primary_10_3390_ijms23158816 crossref_primary_10_1002_aenm_202401303 crossref_primary_10_1016_j_mtcomm_2022_104368 crossref_primary_10_1126_sciadv_abk2722 crossref_primary_10_1088_2752_5724_acba36 crossref_primary_10_1016_j_nantod_2022_101394 crossref_primary_10_1021_acs_nanolett_3c03058 crossref_primary_10_1002_adma_202106822 crossref_primary_10_1021_acsami_3c13650 |
Cites_doi | 10.1038/nenergy.2015.12 10.1002/smll.201900854 10.1038/nnano.2016.110 10.1038/nature18306 10.1039/C7EE02564E 10.1002/aenm.201803258 10.1016/j.joule.2019.08.023 10.1021/jacs.7b06143 10.1021/acs.nanolett.9b01242 10.1021/jacs.9b00972 10.1021/acs.inorgchem.6b01336 10.1038/ncomms13422 10.1038/s41563-018-0164-8 10.1126/science.aal4211 10.1021/jacs.7b01312 10.1021/jacs.8b00542 10.1021/nn506864k 10.1002/anie.201503153 10.1021/jacs.5b03796 10.1002/adma.201804771 10.1021/acs.nanolett.6b03114 10.1039/C7EE01674C 10.1021/acs.accounts.5b00229 10.1021/acs.jpclett.8b00201 10.1002/aenm.201800185 10.1038/nphoton.2016.185 10.1021/jacs.8b04604 10.1021/acsnano.6b05944 10.1002/aenm.201901787 10.1021/jacs.9b01327 10.1021/acs.nanolett.9b01652 10.1021/acs.chemrev.8b00336 10.1021/acs.nanolett.7b00976 10.1038/s41467-018-04430-2 10.1039/C5EE03874J 10.1021/acs.chemrev.8b00417 10.1002/adfm.201808119 10.1021/jacs.8b10851 10.1038/s41560-017-0067-y 10.1039/C7EE01145H 10.1002/adma.201600265 10.1016/0022-2313(94)90145-7 10.1038/s41560-018-0219-8 10.1021/acs.chemmater.6b00847 10.1021/acs.chemrev.8b00477 10.1021/jacs.5b11740 10.1002/adma.201707166 10.1021/acsmaterialslett.9b00102 10.1021/acs.accounts.5b00455 10.1021/jacs.6b10390 10.1021/jacs.9b02846 10.1002/smtd.201700380 10.1038/s41563-018-0154-x 10.1073/pnas.1811006115 10.1021/jacs.8b03659 10.1016/0921-5107(88)90006-2 10.1038/s41586-019-1357-2 10.1126/science.aam6323 10.1021/jacs.9b06398 10.1002/adma.201703487 |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c09647 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 19714 |
ExternalDocumentID | 10_1021_jacs_0c09647 a45658216 |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 7X8 7S9 AAYWT L.6 |
ID | FETCH-LOGICAL-a438t-906eaaa2976a67dadd0f9b4c95da574daa17dad01a2acb5aca2eebc40913952d3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 10:49:32 EDT 2025 Thu Jul 10 18:56:47 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Tue Jul 01 00:44:33 EDT 2025 Fri Nov 20 15:28:00 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a438t-906eaaa2976a67dadd0f9b4c95da574daa17dad01a2acb5aca2eebc40913952d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6877-9792 0000-0003-0861-1407 0000-0002-9857-2212 0000-0003-1400-9180 0000-0002-1749-2799 0000-0003-4416-638X 0000-0001-9362-2236 0000-0003-2037-4168 0000-0001-6600-4862 |
OpenAccessLink | https://research.rug.nl/en/publications/b3ae15bc-573b-4d6c-9e01-9953ed02cfec |
PQID | 2457970661 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2524331426 proquest_miscellaneous_2457970661 crossref_citationtrail_10_1021_jacs_0c09647 crossref_primary_10_1021_jacs_0c09647 acs_journals_10_1021_jacs_0c09647 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-18 |
PublicationDateYYYYMMDD | 2020-11-18 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1038/nenergy.2015.12 – ident: ref15/cit15 doi: 10.1002/smll.201900854 – ident: ref33/cit33 doi: 10.1038/nnano.2016.110 – ident: ref20/cit20 doi: 10.1038/nature18306 – ident: ref14/cit14 doi: 10.1039/C7EE02564E – ident: ref39/cit39 doi: 10.1002/aenm.201803258 – ident: ref48/cit48 doi: 10.1016/j.joule.2019.08.023 – ident: ref32/cit32 doi: 10.1021/jacs.7b06143 – ident: ref42/cit42 doi: 10.1021/acs.nanolett.9b01242 – ident: ref43/cit43 doi: 10.1021/jacs.9b00972 – ident: ref50/cit50 doi: 10.1021/acs.inorgchem.6b01336 – ident: ref7/cit7 doi: 10.1038/ncomms13422 – ident: ref22/cit22 doi: 10.1038/s41563-018-0164-8 – ident: ref59/cit59 doi: 10.1126/science.aal4211 – ident: ref30/cit30 doi: 10.1021/jacs.7b01312 – ident: ref49/cit49 doi: 10.1021/jacs.8b00542 – ident: ref4/cit4 doi: 10.1021/nn506864k – ident: ref5/cit5 doi: 10.1002/anie.201503153 – ident: ref18/cit18 doi: 10.1021/jacs.5b03796 – ident: ref57/cit57 doi: 10.1002/adma.201804771 – ident: ref56/cit56 doi: 10.1021/acs.nanolett.6b03114 – ident: ref8/cit8 doi: 10.1039/C7EE01674C – ident: ref54/cit54 doi: 10.1021/acs.accounts.5b00229 – ident: ref27/cit27 doi: 10.1021/acs.jpclett.8b00201 – ident: ref38/cit38 doi: 10.1002/aenm.201800185 – ident: ref34/cit34 doi: 10.1038/nphoton.2016.185 – ident: ref44/cit44 doi: 10.1021/jacs.8b04604 – ident: ref26/cit26 doi: 10.1021/acsnano.6b05944 – ident: ref12/cit12 doi: 10.1002/aenm.201901787 – ident: ref25/cit25 doi: 10.1021/jacs.9b01327 – ident: ref46/cit46 doi: 10.1021/acs.nanolett.9b01652 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.8b00336 – ident: ref35/cit35 doi: 10.1021/acs.nanolett.7b00976 – ident: ref60/cit60 doi: 10.1038/s41467-018-04430-2 – ident: ref9/cit9 doi: 10.1039/C5EE03874J – ident: ref28/cit28 doi: 10.1021/acs.chemrev.8b00417 – ident: ref10/cit10 doi: 10.1002/adfm.201808119 – ident: ref24/cit24 doi: 10.1021/jacs.8b10851 – ident: ref13/cit13 doi: 10.1038/s41560-017-0067-y – ident: ref37/cit37 doi: 10.1039/C7EE01145H – ident: ref17/cit17 doi: 10.1002/adma.201600265 – ident: ref52/cit52 doi: 10.1016/0022-2313(94)90145-7 – ident: ref55/cit55 doi: 10.1038/s41560-018-0219-8 – ident: ref19/cit19 doi: 10.1021/acs.chemmater.6b00847 – ident: ref29/cit29 doi: 10.1021/acs.chemrev.8b00477 – ident: ref21/cit21 doi: 10.1021/jacs.5b11740 – ident: ref58/cit58 doi: 10.1002/adma.201707166 – ident: ref45/cit45 doi: 10.1021/acsmaterialslett.9b00102 – ident: ref3/cit3 doi: 10.1021/acs.accounts.5b00455 – ident: ref31/cit31 doi: 10.1021/jacs.6b10390 – ident: ref41/cit41 doi: 10.1021/jacs.9b02846 – ident: ref16/cit16 doi: 10.1002/smtd.201700380 – ident: ref36/cit36 doi: 10.1038/s41563-018-0154-x – ident: ref47/cit47 doi: 10.1073/pnas.1811006115 – ident: ref40/cit40 doi: 10.1021/jacs.8b03659 – ident: ref53/cit53 doi: 10.1016/0921-5107(88)90006-2 – ident: ref11/cit11 doi: 10.1038/s41586-019-1357-2 – ident: ref1/cit1 doi: 10.1126/science.aam6323 – ident: ref51/cit51 doi: 10.1021/jacs.9b06398 – ident: ref23/cit23 doi: 10.1002/adma.201703487 |
SSID | ssj0004281 |
Score | 2.603378 |
Snippet | The halide perovskite Ruddlesden–Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention,... The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention,... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19705 |
SubjectTerms | cages cations encapsulation humidity hydrogen solar energy X-ray diffraction |
Title | Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases |
URI | http://dx.doi.org/10.1021/jacs.0c09647 https://www.proquest.com/docview/2457970661 https://www.proquest.com/docview/2524331426 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiW3yzBT1JSrrdzeNYQqsIlWIVeguTzRahpSlN48GT_8F_6C9xJg9Fxcd1mcBm9jHfzM58w9iZR2ZOgbQQTfiWjBVYMFK2BSY2sY5kS0qqRu7dOFf38nqohh8Jsl9f8AXxA-m0YWubSiaX2Ypw8PwSBAoGH_WPwmtWMNf1nFaZ4P71azJAOv1sgD7fv7lR6W6wy6o0p8glGTeyRdTQT9-ZGv-Y7yZbL3ElbxcbYYstmek2Ww2qdm47bNyelLG_R8OLCkzNB-gxI_7jiFx5L5kb3skZJdAQ8b6ZJ48pxXb5gNxfHpjJJOXEZlU0leC3GcU2Ury4Xp9f-slsZua8_4BWMd1l993OXXBllZ0WLJAtb2H5tmMAQCA2AceN8c6zR34kta9iUK6MAZo0ajdBgI4UaBDGRFrmpKJKxK09VpsmU7PPuIKRju0IYQlIqZVChOfjKTdgj2jt9QGro4LC8qSkYf4ILtAJodFSbQfsolqiUJdU5dQxY_KD9Pm79Kyg6PhBrl6tdoi6p4cRmJokS0Mhleu7CL6av8goQcVlCGgO__EHR2xNkGNO-YLeMast5pk5QfSyiE7zrfsGy8vtKQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3rxbXxbEz2ZNUtp2d0jIRB8QIhAwm0z2y0xkbCEAgdP_gf_ob_EmWXBYILx2sxuuu1s55u23zeM3fgU5hRIB9FE4MhYgQM95TpgYhPrSBakJDZyvVGsdeRjV3UzsjpxYbATFt9k00P8H3UBkgnCRle7xJxcZxuIQwQ5dKnc-qFBCj8_R7ueXyxk99x_P01xSNvlOLS8DKexpbrDGotepVdK3u4n4-hev_8SbPx3t3fZdoYyeWnmFntszQz22WZ5XtztgL2V-tlO4NTwGR9T8xbmz4gGOeJYXk9GhldSfQkMS7xpRsnU0k4vb1EyzMum37ectK1mJSb4y4R2OiwuY18fn81kODQj3nzFGGkPWadaaZdrTlZ3wQFZ8MdO4BYNAAhEKlD0YlwB3V4QSR2oGJQnY4A8tbp5EKAjBRqEMZGWqcSoEnHhiOUGycAcM66gp2M3QpACUmqlEO8F-M8bcHvkCfqEXeMAhdl_Y8P0SFxgSkKt2bCdsLv5TIU6Ey6n-hn9Fda3C-vhTLBjhd31fNJDHHs6JoGBSSY2FFJ5gYdQLP-HjRJENUN4c_qPL7him7V2_Tl8fmg8nbEtQSk73ST0z1luPJqYC8Q14-gy9eZvht71ig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED-xIrG9wMY2jW1sRtqepqDEtZvksSpUMP6ookPiLbrYjpComqpuedjTvgPfkE_CXZqAQCpir84lcuyz73c-3-8AfiRs5jSqgNBEGiirMcBChwE666zJVVspzkY-Oe0cnKvfF_piBaImF4Y64elLvgri86qe2KJmGGCqIHoQmpCzJ1_BKkfsWKm7veFDKqRMogbxxkmnXd91f_o22yLjH9uix1txZV_6G3B237PqWsnV7nyW75q_T0gb_6vrb2G9Rpuiu1CPd7DixpvwutcUeXsPV91RfSJ47cQiL9OIIfnRhAoF4VlxUk6d2K94Jsg8iYGblteeT3zFkJ1i0XOjkRfMcbUoNSHO5nzi4Wk7u_13MygnEzcVg0uylf4DnPf3__QOgrr-QoCqncyCNOw4RJSEWLATW9oJwyLNlUm1RR0rixhxaxihRJNrNCidy42qqEa1tO2P0BqXY_cJhMbC2DAnsIJKGa0J96W09h2GBWuE2YIdGqCsXj8-q0LjklwTbq2HbQt-NbOVmZrAnOtojJZI_7yXniyIO5bI7TQTn9HYc7gEx66c-0wqHacxQbLoGRktOeWMYM7nF_zBd1gb7PWz48PToy_wRrLnzhcKk6_Qmk3nbpvgzSz_Vin0HW0N-A0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+Organic+Spacers+for+More+Efficient+Perovskite+Solar+Cells+Containing+Ruddlesden%E2%80%93Popper+Phases&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xi%2C+Jun&rft.au=Spanopoulos%2C+Ioannis&rft.au=Bang%2C+Kijoon&rft.au=Xu%2C+Jie&rft.date=2020-11-18&rft.issn=1520-5126&rft.volume=142&rft.issue=46+p.19705-19714&rft.spage=19705&rft.epage=19714&rft_id=info:doi/10.1021%2Fjacs.0c09647&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |