Comparisons of Interfacial Phe, Tyr, and Trp Residues as Determinants of Orientation and Dynamics for GWALP Transmembrane Peptides

Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this wo...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 53; no. 22; pp. 3637 - 3645
Main Authors Sparks, Kelsey A, Gleason, Nicholas J, Gist, Renetra, Langston, Rebekah, Greathouse, Denise V, Koeppe, Roger E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW5(LA)6LW19LAGA-[ethanol]­amide). To this end, we have employed 2H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y4,5GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F4,5GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y4,5GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about −60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W18GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.
AbstractList Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW 5 (LA) 6 LW 19 LAGA-[ethanol]amide). To this end, we have employed 2 H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y 4,5 GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F 4,5 GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y 4,5 GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about −60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W 18 GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.
Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW⁵(LA)₆LW¹⁹LAGA-[ethanol]amide). To this end, we have employed ²H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y⁴,⁵GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F⁴,⁵GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y⁴,⁵GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about −60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W¹⁸GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.
Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane-water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW(5)(LA)6LW(19)LAGA-[ethanol]amide). To this end, we have employed (2)H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y(4,5)GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F(4,5)GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y(4,5)GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about -60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W(18)GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.
Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW5(LA)6LW19LAGA-[ethanol]­amide). To this end, we have employed 2H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y4,5GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F4,5GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y4,5GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about −60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W18GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.
Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane-water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW(5)(LA)6LW(19)LAGA-[ethanol]amide). To this end, we have employed (2)H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y(4,5)GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F(4,5)GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y(4,5)GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about -60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W(18)GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane-water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW(5)(LA)6LW(19)LAGA-[ethanol]amide). To this end, we have employed (2)H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y(4,5)GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F(4,5)GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y(4,5)GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or DOPC. The rotational change (Δρ) is more dramatic and more complex when W19 is moved to W18, as Δρ is about +90° in DLPC but about -60° in DOPC. Possible reasons for this curious lipid-dependent helix rotation could include not only the separation distances between flanking aromatic or hydrophobic residues but also the absolute location of the W19 indole ring. For the more usual cases, when the helix azimuthal rotation shows little dependence on the host bilayer identity, excepting W(18)GWALP23, the transmembrane helices adapt to different lipids primarily by changing the magnitude of their tilt. We conclude that, in the absence of other functional groups, interfacial aromatic residues determine the preferred orientations and dynamics of membrane-spanning peptides. The results furthermore suggest possibilities for rotational and dynamic control of membrane protein function.
Author Greathouse, Denise V
Sparks, Kelsey A
Gleason, Nicholas J
Gist, Renetra
Koeppe, Roger E
Langston, Rebekah
AuthorAffiliation Department of Chemistry and Biochemistry
University of Arkansas
AuthorAffiliation_xml – name: University of Arkansas
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Kelsey A
  surname: Sparks
  fullname: Sparks, Kelsey A
– sequence: 2
  givenname: Nicholas J
  surname: Gleason
  fullname: Gleason, Nicholas J
– sequence: 3
  givenname: Renetra
  surname: Gist
  fullname: Gist, Renetra
– sequence: 4
  givenname: Rebekah
  surname: Langston
  fullname: Langston, Rebekah
– sequence: 5
  givenname: Denise V
  surname: Greathouse
  fullname: Greathouse, Denise V
– sequence: 6
  givenname: Roger E
  surname: Koeppe
  fullname: Koeppe, Roger E
  email: rk2@uark.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24829070$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFrFDEUhYNU7Lb64B-QvAgKHXuTSWYmL0LZai0sdJEVH0Nm9samzCRjMivua395Y7cuKn3w6RLy3cM59xyRAx88EvKSwTsGnJ22TgKIUv18QmZMciiEUvKAzACgKriq4JAcpXSTnwJq8YwcctFwBTXMyO08DKOJLgWfaLD00k8Yremc6enyGk_oahtPqPFruooj_YzJrTeYqEn0HDM5OG_8dL95FR36yUwu-Hv-fOvN4LpEbYj04uvZYpkljE8DDm2eSJc4Tm6N6Tl5ak2f8MXDPCZfPn5YzT8Vi6uLy_nZojCibKaiKVsOVmIrJBrWWVk1vDa8bTjLWUBZ5J0UDDrk2T_WYFjT1haVgVK03JbH5P1Od9y0A6677DaaXo_RDSZudTBO__3j3bX-Fn5oAbKESmWBNw8CMXzPV5j04FKHfZ_ThE3SrCmrSjSs_A9UlqJWUsk6o6_-tLX387ujDLzdAV0MKUW0e4SB_tW_3vef2dN_2M7tOsmJXP_oxuvdhumSvgmb6HMHj3B38Qi_bA
CitedBy_id crossref_primary_10_1016_j_bbamem_2015_01_019
crossref_primary_10_1111_aab_12539
crossref_primary_10_1002_1873_3468_13926
crossref_primary_10_1016_j_bpj_2018_03_026
crossref_primary_10_1016_j_bbrc_2018_09_095
crossref_primary_10_3390_ijms251910821
crossref_primary_10_1021_acs_jpcb_6b00611
crossref_primary_10_1016_j_ijbiomac_2022_04_130
crossref_primary_10_1021_acs_jpclett_1c00636
crossref_primary_10_1007_s00232_022_00243_z
crossref_primary_10_1038_s41598_020_74332_1
crossref_primary_10_1021_acsomega_1c02800
crossref_primary_10_1016_j_fsi_2022_07_055
crossref_primary_10_1007_s00726_024_03388_4
crossref_primary_10_1016_j_bbamem_2014_11_017
crossref_primary_10_1016_j_bioadv_2022_212830
crossref_primary_10_1002_prot_25473
crossref_primary_10_1016_j_bbamem_2014_09_007
crossref_primary_10_1016_j_bbamem_2019_183134
crossref_primary_10_1016_j_micpath_2020_104591
crossref_primary_10_1016_j_peptides_2021_170553
crossref_primary_10_3390_pharmaceutics14051089
crossref_primary_10_3390_biom10020273
crossref_primary_10_1016_j_bbamem_2018_02_010
crossref_primary_10_1074_jbc_M116_738583
crossref_primary_10_1021_acs_biochem_8b01119
crossref_primary_10_1038_s41598_020_71585_8
crossref_primary_10_1002_cbic_201900282
crossref_primary_10_1016_j_bpj_2018_04_016
crossref_primary_10_1039_C9CP02996F
crossref_primary_10_1016_j_bbamem_2017_01_006
crossref_primary_10_1039_C6MD00607H
crossref_primary_10_1021_acsomega_1c00276
crossref_primary_10_1016_j_bbamem_2020_183501
crossref_primary_10_1021_acs_jpcb_9b06034
crossref_primary_10_1002_cbic_201500656
crossref_primary_10_1021_acs_biochem_6b00896
crossref_primary_10_1042_BST20190170
Cites_doi 10.1021/bi2006459
10.1016/j.bpj.2013.02.030
10.1021/bi201732e
10.1021/ja073784q
10.1021/jp308182b
10.1021/bi700082v
10.1126/science.1700867
10.1021/ja803734k
10.1021/ja100598e
10.1074/jbc.274.30.20839
10.1021/bi0257686
10.1016/j.bpj.2011.11.008
10.1074/jbc.M110.152470
10.1093/protein/5.3.213
10.1080/00268979300100281
10.1021/jp407542e
10.1529/biophysj.107.113043
10.1529/biophysj.104.056606
10.1073/pnas.1215400110
10.1021/bi9519258
10.1016/S0006-3495(02)73918-0
10.1016/j.bbamem.2012.01.023
10.1016/0009-2614(76)80392-2
10.1529/biophysj.103.035402
10.1016/j.bpj.2009.02.040
10.1529/biophysj.105.070466
10.1103/PhysRevLett.100.018103
10.1006/jmbi.1993.1066
10.1103/PhysRevE.69.040901
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright © 2014 American Chemical Society 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/bi500439x
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 3645
ExternalDocumentID PMC4053069
24829070
10_1021_bi500439x
a910251516
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM103450
– fundername: NIGMS NIH HHS
  grantid: P30 GM103450
– fundername: NIGMS NIH HHS
  grantid: GM103429
GroupedDBID -
.K2
02
23N
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
N~.
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a438t-83b20f5eb45ea1cf56827a2b82129009fe2c5410ce2face70a18b7fe9a034b2f3
IEDL.DBID N~.
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 14:06:52 EDT 2025
Fri Jul 11 06:46:33 EDT 2025
Fri Jul 11 08:02:26 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
Tue Jul 01 03:33:21 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Thu Aug 27 13:44:51 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a438t-83b20f5eb45ea1cf56827a2b82129009fe2c5410ce2face70a18b7fe9a034b2f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://dx.doi.org/10.1021/bi500439x
PMID 24829070
PQID 1534795957
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053069
proquest_miscellaneous_1836648139
proquest_miscellaneous_1534795957
pubmed_primary_24829070
crossref_primary_10_1021_bi500439x
crossref_citationtrail_10_1021_bi500439x
acs_journals_10_1021_bi500439x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-10
PublicationDateYYYYMMDD 2014-06-10
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References O’Connell A. M. (ref1/cit1) 1990; 250
Vostrikov V. V. (ref19/cit19) 2012; 116
Liu Y. (ref25/cit25) 2004; 69
Vostrikov V. V. (ref14/cit14) 2011; 101
Strandberg E. (ref13/cit13) 2009; 96
Gleason N. J. (ref26/cit26) 2013; 117
Strandberg E. (ref8/cit8) 2004; 86
de Planque M. R. (ref5/cit5) 1999; 274
Siegel D. P. (ref21/cit21) 2006; 90
Gleason N. J. (ref20/cit20) 2013; 110
Vostrikov V. V. (ref28/cit28) 2011; 50
Vostrikov V. V. (ref18/cit18) 2010; 132
Sánchez-Munoz O. L. (ref23/cit23) 2013; 104
Gleason N. J. (ref17/cit17) 2012; 51
Lee J. (ref9/cit9) 2008; 100
Vostrikov V. V. (ref15/cit15) 2008; 130
Özdirekcan S. (ref10/cit10) 2007; 129
Esteban-Martín S. (ref11/cit11) 2007; 93
Killian J. A. (ref4/cit4) 1996; 35
Davis J. H. (ref22/cit22) 1976; 42
Vostrikov V. V. (ref12/cit12) 2010; 285
de Planque M. R. (ref6/cit6) 2002; 41
Strandberg E. (ref16/cit16) 2012; 1818
Kučerka N. (ref24/cit24) 2005; 88
van der Wel P. C. (ref7/cit7) 2002; 83
van der Wel P. C. (ref27/cit27) 2007; 46
ref30/cit30
Separovic F. (ref29/cit29) 1993; 78
Landolt-Marticorena C. (ref3/cit3) 1993; 229
Schiffer M. (ref2/cit2) 1992; 5
20667827 - J Biol Chem. 2010 Oct 8;285(41):31723-30
23561527 - Biophys J. 2013 Apr 2;104(7):1508-16
21800919 - Biochemistry. 2011 Sep 6;50(35):7522-35
15665131 - Biophys J. 2005 Apr;88(4):2626-37
23319623 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1692-5
24111589 - J Phys Chem B. 2013 Nov 7;117(44):13786-94
20373735 - J Am Chem Soc. 2010 Apr 28;132(16):5803-11
12202373 - Biophys J. 2002 Sep;83(3):1479-88
15169001 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Apr;69(4 Pt 1):040901
17530863 - Biochemistry. 2007 Jun 26;46(25):7514-24
8547239 - Biochemistry. 1996 Jan 23;35(3):1037-45
16214859 - Biophys J. 2006 Jan 1;90(1):200-11
17720729 - Biophys J. 2007 Dec 15;93(12):4278-88
10409625 - J Biol Chem. 1999 Jul 23;274(30):20839-46
22208192 - Biophys J. 2011 Dec 21;101(12):2939-47
1409540 - Protein Eng. 1992 Apr;5(3):213-4
18232823 - Phys Rev Lett. 2008 Jan 11;100(1):018103
23030363 - J Phys Chem B. 2012 Nov 1;116(43):12980-90
19383466 - Biophys J. 2009 Apr 22;96(8):3223-32
8433362 - J Mol Biol. 1993 Feb 5;229(3):602-8
22364236 - Biochemistry. 2012 Mar 13;51(10):2044-53
18763771 - J Am Chem Soc. 2008 Sep 24;130(38):12584-5
12081488 - Biochemistry. 2002 Jul 2;41(26):8396-404
22326890 - Biochim Biophys Acta. 2012 May;1818(5):1242-9
18001020 - J Am Chem Soc. 2007 Dec 12;129(49):15174-81
15189867 - Biophys J. 2004 Jun;86(6):3709-21
1700867 - Science. 1990 Nov 30;250(4985):1256-9
References_xml – volume: 50
  start-page: 7522
  year: 2011
  ident: ref28/cit28
  publication-title: Biochemistry
  doi: 10.1021/bi2006459
– volume: 104
  start-page: 1508
  year: 2013
  ident: ref23/cit23
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.02.030
– volume: 51
  start-page: 2044
  year: 2012
  ident: ref17/cit17
  publication-title: Biochemistry
  doi: 10.1021/bi201732e
– volume: 129
  start-page: 15174
  year: 2007
  ident: ref10/cit10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073784q
– volume: 116
  start-page: 12980
  year: 2012
  ident: ref19/cit19
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp308182b
– volume: 46
  start-page: 7514
  year: 2007
  ident: ref27/cit27
  publication-title: Biochemistry
  doi: 10.1021/bi700082v
– volume: 250
  start-page: 1256
  year: 1990
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1700867
– volume: 130
  start-page: 12584
  year: 2008
  ident: ref15/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803734k
– volume: 132
  start-page: 5803
  year: 2010
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100598e
– volume: 274
  start-page: 20839
  year: 1999
  ident: ref5/cit5
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.30.20839
– volume: 41
  start-page: 8396
  year: 2002
  ident: ref6/cit6
  publication-title: Biochemistry
  doi: 10.1021/bi0257686
– volume: 101
  start-page: 2939
  year: 2011
  ident: ref14/cit14
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.11.008
– volume: 285
  start-page: 31723
  year: 2010
  ident: ref12/cit12
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.152470
– volume: 5
  start-page: 213
  year: 1992
  ident: ref2/cit2
  publication-title: Protein Eng.
  doi: 10.1093/protein/5.3.213
– volume: 78
  start-page: 357
  year: 1993
  ident: ref29/cit29
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300100281
– volume: 117
  start-page: 13786
  year: 2013
  ident: ref26/cit26
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp407542e
– volume: 93
  start-page: 4278
  year: 2007
  ident: ref11/cit11
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.113043
– volume: 88
  start-page: 2626
  year: 2005
  ident: ref24/cit24
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.056606
– volume: 110
  start-page: 1692
  year: 2013
  ident: ref20/cit20
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1215400110
– volume: 35
  start-page: 1037
  year: 1996
  ident: ref4/cit4
  publication-title: Biochemistry
  doi: 10.1021/bi9519258
– volume: 83
  start-page: 1479
  year: 2002
  ident: ref7/cit7
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)73918-0
– volume: 1818
  start-page: 1242
  year: 2012
  ident: ref16/cit16
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2012.01.023
– volume: 42
  start-page: 390
  year: 1976
  ident: ref22/cit22
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(76)80392-2
– volume: 86
  start-page: 3709
  year: 2004
  ident: ref8/cit8
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.035402
– volume: 96
  start-page: 3223
  year: 2009
  ident: ref13/cit13
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.02.040
– volume: 90
  start-page: 200
  year: 2006
  ident: ref21/cit21
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.070466
– volume: 100
  start-page: 018103
  year: 2008
  ident: ref9/cit9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.018103
– volume: 229
  start-page: 602
  year: 1993
  ident: ref3/cit3
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1066
– volume: 69
  start-page: 040901 (R)
  year: 2004
  ident: ref25/cit25
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.040901
– ident: ref30/cit30
– reference: 8547239 - Biochemistry. 1996 Jan 23;35(3):1037-45
– reference: 16214859 - Biophys J. 2006 Jan 1;90(1):200-11
– reference: 21800919 - Biochemistry. 2011 Sep 6;50(35):7522-35
– reference: 19383466 - Biophys J. 2009 Apr 22;96(8):3223-32
– reference: 22364236 - Biochemistry. 2012 Mar 13;51(10):2044-53
– reference: 1700867 - Science. 1990 Nov 30;250(4985):1256-9
– reference: 20373735 - J Am Chem Soc. 2010 Apr 28;132(16):5803-11
– reference: 18232823 - Phys Rev Lett. 2008 Jan 11;100(1):018103
– reference: 17530863 - Biochemistry. 2007 Jun 26;46(25):7514-24
– reference: 23319623 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1692-5
– reference: 12202373 - Biophys J. 2002 Sep;83(3):1479-88
– reference: 1409540 - Protein Eng. 1992 Apr;5(3):213-4
– reference: 18763771 - J Am Chem Soc. 2008 Sep 24;130(38):12584-5
– reference: 23561527 - Biophys J. 2013 Apr 2;104(7):1508-16
– reference: 15189867 - Biophys J. 2004 Jun;86(6):3709-21
– reference: 18001020 - J Am Chem Soc. 2007 Dec 12;129(49):15174-81
– reference: 24111589 - J Phys Chem B. 2013 Nov 7;117(44):13786-94
– reference: 23030363 - J Phys Chem B. 2012 Nov 1;116(43):12980-90
– reference: 12081488 - Biochemistry. 2002 Jul 2;41(26):8396-404
– reference: 15665131 - Biophys J. 2005 Apr;88(4):2626-37
– reference: 10409625 - J Biol Chem. 1999 Jul 23;274(30):20839-46
– reference: 22208192 - Biophys J. 2011 Dec 21;101(12):2939-47
– reference: 20667827 - J Biol Chem. 2010 Oct 8;285(41):31723-30
– reference: 22326890 - Biochim Biophys Acta. 2012 May;1818(5):1242-9
– reference: 15169001 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Apr;69(4 Pt 1):040901
– reference: 8433362 - J Mol Biol. 1993 Feb 5;229(3):602-8
– reference: 17720729 - Biophys J. 2007 Dec 15;93(12):4278-88
SSID ssj0004074
Score 2.3230436
Snippet Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of...
Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane-water interface of...
Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3637
SubjectTerms amino acids
aromatic compounds
ethanol
hydrogen bonding
hydrophobicity
lipid bilayers
lipids
Mass Spectrometry
membrane proteins
Membrane Proteins - chemical synthesis
Molecular Dynamics Simulation
nuclear magnetic resonance spectroscopy
Peptide Fragments - chemical synthesis
peptides
Peptides - chemical synthesis
Phenylalanine - chemical synthesis
Tryptophan - chemical synthesis
Tyrosine - chemistry
Tyrosine - metabolism
Title Comparisons of Interfacial Phe, Tyr, and Trp Residues as Determinants of Orientation and Dynamics for GWALP Transmembrane Peptides
URI http://dx.doi.org/10.1021/bi500439x
https://www.ncbi.nlm.nih.gov/pubmed/24829070
https://www.proquest.com/docview/1534795957
https://www.proquest.com/docview/1836648139
https://pubmed.ncbi.nlm.nih.gov/PMC4053069
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB5V5VAuqA8eoSVyASEOXfBz1z5G6UsISgWp6G1lb2wRiWyqbHrohQO_nPFmsyRtgbNnZMvj0Xzz8AzA62CYZEzIxKaFT6TLVOKcVckQbb20qUFMHuOQn87S0wv54VJdrsGrv2TwOXvvRiqmqwwCxQc81Tpq39nPd38-P9Km1TK6xhzx-KJ90DJrND1FtWp67uDJ22WRS3bmeBMeNQCR9OYS3YI1X27DTq9E53h8Q96QumSzjoVvw0Z_Ma5tB37124mCFZkEUof6go0RceTxB2RwMz0gthySwfSKfPH4CvFcxFbkcKkiJnJ-no6aD0llTX84H1pfEcS35ORb7-M5qS3c2I_R1S49OY-VMUNfPYaL46NB_zRpBiwkVgo9S7RwnAblnVTesiKoVPPMcqd5jE5REzwvlGS08BzP6zNqmXZZ8MZSIR0P4gmsl5PSPwMihRMmBlSDwKUgDNpGQ23GRWEsC6wDXZRA3ihIlde5b87yVkQdeLsQTl407cnjlIwf95G-bEmv5j057iPaX0g4R0nENAjeyOQat1bx96wyKvsHjRZpKjXC4w48nb-KdisuY_I5ox3IVt5LSxA7dq-ulKPvdeduRMfoopnn_7uMXXiIwEzGkjRG92B9Nr32LxD8zFwXwX__a7dWgd9LxwE6
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6hcigXBC2P0FIMQohDl_q5uz5GKSVAGiqUit5W9sYWkcimyqaHXjjwyxk7m20CFZw9Xls7tubzPL4BeO01k4wJmZi0dIm0mUqsNSoZo62XJtWIyYMf8nSY9s_lpwt10dDkhFoY3ESNX6pjEP-GXYAd2YkKUSuNePEughAVLuHw57ubGkjaMC7jC5kjLF-xCK1PDRaorDct0F-w8s_syDVzc_IA7jc4kXSXin0Id1y1A7vdCt_I02vyhsTMzegS34Ht3qpr2y786rWNBWsy8yR6_LwJjnGc4w7J6Hp-SEw1JqP5Jfnq8DDivoipyfFaYkyY-WU-aeqSqih_vOxdXxOEueTDt-7gjERDN3VTfHFXjpyFBJmxqx_B-cn7Ua-fNH0WEiNFvkhyYTn1ylmpnGGlV2nOM8NtzoOTimrveKkko6XjuF-XUcNym3mnDRXSci8ew1Y1q9xTIFJYoYNf1Qsc8kKjidTUZFyU2jDPOnCAGiiae1IXMQTOWdGqqANvV8opyoalPDTL-HGb6KtW9HJJzXGb0MuVhgvURIiG4B-ZXeHSKhTRKq2yf8jkIk1ljii5A0-Wp6JdissQg85oB7KN89IKBOLuzZFq8j0SeCNIxpeafva_n_ECtvuj00Ex-Dj8vAf3EKvJkKXG6D5sLeZX7jnioYU9iBfhN5t7Bec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6hIgEXBC2P8CgGIcShW_zcXR-jhFCghAiloreVvbFFJLKJsumhFw78csbOZkmggrPHa2vHo_nmDfDSayYZEzIxaekSaTOVWGtUMkFdL02qEZMHP-SnYXpyJj-cq_PGUAy1MHiJGr9UxyB-kOrFxDcdBtgbO1UhcqURM15HGEKDIA5_HP-ug6RN12W0kjlC800noe2tQQuV9a4W-gta_pkhuaVyBnfgdoMVSXfN3LtwzVX7cNCt0E6eXZJXJGZvRrf4PtzsbSa3HcDPXjtcsCZzT6LXz5vgHMc97oiML5dHxFQTMl4uyBeHDxLvRUxN-lvJMWHn5-W0qU2qIn1_Pb--Jgh1ybuv3dMRicpu5mZodVeOjEKSzMTV9-Bs8HbcO0maWQuJkSJfJbmwnHrlrFTOsNKrNOeZ4TbnwVFFtXe8VJLR0nG8r8uoYbnNvNOGCmm5F_dhr5pX7iEQKazQwbfqBS55oVFNamoyLkptmGcdOEQOFI2s1EUMg3NWtCzqwOsNc4qy6VQeBmZ8v4r0RUu6WLfnuIro-YbDBXIiRETwj8wv8GgVCmmVVtk_aHKRpjJHpNyBB-tX0R7FZYhDZ7QD2c57aQlC8-7dlWr6LTbxRqCM1pp-9L-f8QxujPqD4vT98ONjuIVwTYZENUafwN5qeeGeIiRa2cMoB78AXCMG9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+Interfacial+Phe%2C+Tyr%2C+and+Trp+Residues+as+Determinants+of+Orientation+and+Dynamics+for+GWALP+Transmembrane+Peptides&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Sparks%2C+Kelsey+A.&rft.au=Gleason%2C+Nicholas+J.&rft.au=Gist%2C+Renetra&rft.au=Langston%2C+Rebekah&rft.date=2014-06-10&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=53&rft.issue=22&rft.spage=3637&rft.epage=3645&rft_id=info:doi/10.1021%2Fbi500439x&rft_id=info%3Apmid%2F24829070&rft.externalDocID=PMC4053069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon