Label-Free Colorimetric Assay for Methyltransferase Activity Based on a Novel Methylation-Responsive DNAzyme Strategy

DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-re...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 82; no. 5; pp. 1935 - 1941
Main Authors Li, Wang, Liu, Zhuoliang, Lin, Hui, Nie, Zhou, Chen, Jinhua, Xu, Xiahong, Yao, Shouzhuo
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6−100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.
AbstractList DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MRDNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade. [PUBLICATION ABSTRACT]
DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.
DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6−100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.
DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.
Author Xu, Xiahong
Chen, Jinhua
Liu, Zhuoliang
Li, Wang
Lin, Hui
Nie, Zhou
Yao, Shouzhuo
Author_xml – sequence: 1
  givenname: Wang
  surname: Li
  fullname: Li, Wang
– sequence: 2
  givenname: Zhuoliang
  surname: Liu
  fullname: Liu, Zhuoliang
– sequence: 3
  givenname: Hui
  surname: Lin
  fullname: Lin, Hui
– sequence: 4
  givenname: Zhou
  surname: Nie
  fullname: Nie, Zhou
  email: niezhou.hnu@gmail.com, chenjinhua@hnu.cn
– sequence: 5
  givenname: Jinhua
  surname: Chen
  fullname: Chen, Jinhua
  email: niezhou.hnu@gmail.com, chenjinhua@hnu.cn
– sequence: 6
  givenname: Xiahong
  surname: Xu
  fullname: Xu, Xiahong
– sequence: 7
  givenname: Shouzhuo
  surname: Yao
  fullname: Yao, Shouzhuo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22561272$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20148579$$D View this record in MEDLINE/PubMed
BookMark eNptkd9rFDEQx4NU7LX64D8gQRDxYdsk-yPJ43laK5wVtO9hLjurKXuba5I9WP96U7ttofZhGAY-8-U73zkiB4MfkJDXnJ1wJvgpWM1EI5l9Rha8FqxolBIHZMEYKwshGTskRzFeMcY5480LcigYr1Qt9YKMa9hgX5wFRLryvQ9uiyk4S5cxwkQ7H-g3TL-nPgUYYocBItKlTW7v0kQ_5qmlfqBAL_we-5mF5PxQ_MC480N0e6SfLpZ_pi3Sn1kl4a_pJXneQR_x1dyPyeXZ58vVebH-_uXrarkuoCplKqCVXYVa16IW2Oi2g6blwHKJitcAdYmq3XCwTFu9EV1b5QMbRKWqhqMoj8n7W9ld8NcjxmS2LlrsexjQj9HIshRaCK4y-fYReeXHMGRvRnCpZCOVztCbGRo3W2zNLocFYTJ3aWbg3QxAtNB3OTLr4gMn6oYLeePr9JazwccYsDPWpX-h5XxcbzgzN38193_NGx8ebdyJPsXOLsDGhzP-5_4CeziuJA
CODEN ANCHAM
CitedBy_id crossref_primary_10_1016_j_bios_2012_08_034
crossref_primary_10_3390_s18072179
crossref_primary_10_1016_j_bios_2013_11_055
crossref_primary_10_1016_j_aca_2017_03_017
crossref_primary_10_3724_SP_J_1096_2011_01451
crossref_primary_10_1016_j_jelechem_2018_02_060
crossref_primary_10_1039_c3cc00203a
crossref_primary_10_1016_j_bios_2019_03_051
crossref_primary_10_1039_C1CC15407A
crossref_primary_10_1039_C5AN00304K
crossref_primary_10_1021_ac502845b
crossref_primary_10_1016_j_bios_2011_06_032
crossref_primary_10_2116_analsci_19P387
crossref_primary_10_1016_j_bios_2013_11_062
crossref_primary_10_1016_j_compbiolchem_2018_11_030
crossref_primary_10_1016_j_bios_2012_01_034
crossref_primary_10_1016_j_bios_2013_07_060
crossref_primary_10_1021_am507640g
crossref_primary_10_1039_C4AN02339K
crossref_primary_10_1093_nar_gkw634
crossref_primary_10_1016_j_aca_2017_07_021
crossref_primary_10_1039_C6AN00795C
crossref_primary_10_1016_j_bios_2015_02_005
crossref_primary_10_1016_j_snb_2023_133959
crossref_primary_10_1039_C4RA05088F
crossref_primary_10_1039_C7AN00486A
crossref_primary_10_1016_j_bios_2012_04_012
crossref_primary_10_1016_j_bios_2013_03_034
crossref_primary_10_1021_ac2013114
crossref_primary_10_1016_j_bios_2019_111553
crossref_primary_10_1021_acssensors_7b00168
crossref_primary_10_1016_j_bios_2015_06_009
crossref_primary_10_1016_j_jelechem_2014_08_022
crossref_primary_10_1093_bfgp_elt004
crossref_primary_10_1021_acs_bioconjchem_5b00608
crossref_primary_10_1021_acsami_6b13717
crossref_primary_10_1021_acs_analchem_1c01797
crossref_primary_10_1002_chem_201003765
crossref_primary_10_1016_j_bios_2016_07_103
crossref_primary_10_1039_c3an01447a
crossref_primary_10_1016_j_bios_2014_05_038
crossref_primary_10_1016_j_bios_2011_07_035
crossref_primary_10_1016_j_bios_2014_09_096
crossref_primary_10_1039_c3cc41486h
crossref_primary_10_1016_j_jpba_2014_02_027
crossref_primary_10_1016_j_aca_2017_11_045
crossref_primary_10_1021_ac4033033
crossref_primary_10_1016_j_talanta_2011_03_042
crossref_primary_10_1039_c0cc05153e
crossref_primary_10_1021_ac502496h
crossref_primary_10_1039_C1CC15511C
crossref_primary_10_1016_j_snb_2017_01_013
crossref_primary_10_1016_j_mcp_2016_03_007
crossref_primary_10_1016_S1872_2040_11_60536_7
crossref_primary_10_1016_j_aca_2015_04_023
crossref_primary_10_1039_C5AN01546D
crossref_primary_10_1016_j_bios_2013_01_017
crossref_primary_10_1002_chem_201201479
crossref_primary_10_1021_ac403716g
crossref_primary_10_1007_s00604_019_3309_9
crossref_primary_10_1039_C5AY02831K
crossref_primary_10_1021_ja3037838
crossref_primary_10_1039_C5AN02123E
crossref_primary_10_1039_C5AY01776A
crossref_primary_10_1016_j_bios_2013_10_065
crossref_primary_10_1016_j_snb_2017_01_016
crossref_primary_10_1039_C4CC04428B
crossref_primary_10_1039_C7AY00712D
crossref_primary_10_1021_acsabm_0c01249
crossref_primary_10_1039_D0SC03240A
crossref_primary_10_1039_C5AY02379C
crossref_primary_10_1016_j_snb_2018_08_140
crossref_primary_10_1016_j_talanta_2022_123978
crossref_primary_10_1007_s11426_016_5564_5
crossref_primary_10_1016_j_snb_2018_11_085
crossref_primary_10_1021_ac4013094
crossref_primary_10_1016_j_bios_2016_04_082
crossref_primary_10_1016_j_snb_2017_02_148
crossref_primary_10_1016_S1872_2040_19_61212_0
crossref_primary_10_1016_j_aca_2020_04_061
crossref_primary_10_1016_j_bios_2013_12_001
crossref_primary_10_1039_c2cc35648a
crossref_primary_10_1016_j_talanta_2020_120897
crossref_primary_10_1016_j_mcp_2016_02_001
crossref_primary_10_1016_j_bios_2010_07_058
crossref_primary_10_1007_s00216_016_9914_0
crossref_primary_10_1016_j_bios_2012_09_010
crossref_primary_10_1021_acssensors_8b00738
crossref_primary_10_1039_C3AN02028B
crossref_primary_10_1021_cr400354z
crossref_primary_10_1007_s00216_014_8119_7
crossref_primary_10_1039_C5CC02817E
crossref_primary_10_1016_j_snb_2020_127818
crossref_primary_10_1016_j_cclet_2014_05_002
crossref_primary_10_1038_s44222_023_00050_8
crossref_primary_10_1016_j_snb_2016_12_144
crossref_primary_10_1039_c3nr05954e
crossref_primary_10_1039_C5CC05410A
crossref_primary_10_1016_j_bios_2014_07_079
crossref_primary_10_1016_j_bios_2015_05_066
crossref_primary_10_1021_acs_analchem_7b03490
crossref_primary_10_1039_C6RA16960K
crossref_primary_10_1016_j_snb_2017_06_025
crossref_primary_10_1021_acs_analchem_6b03163
crossref_primary_10_1039_C7CC03736H
crossref_primary_10_1007_s11434_012_5380_z
crossref_primary_10_1016_j_ab_2012_01_013
crossref_primary_10_1016_j_bios_2016_07_083
crossref_primary_10_1039_C5CC05922D
crossref_primary_10_1007_s00216_018_1143_2
crossref_primary_10_1158_0008_5472_CAN_18_2474
crossref_primary_10_1021_acs_analchem_6b00450
crossref_primary_10_1016_j_aca_2016_03_028
crossref_primary_10_1016_j_snb_2022_131758
crossref_primary_10_1002_ange_201005246
crossref_primary_10_3390_bios12060395
crossref_primary_10_1039_c0cc05727d
crossref_primary_10_1016_j_bios_2013_04_036
crossref_primary_10_1016_j_aca_2016_11_003
crossref_primary_10_1016_j_bios_2011_04_032
crossref_primary_10_1016_j_bios_2014_11_031
crossref_primary_10_1021_jp3006475
crossref_primary_10_1016_j_cclet_2017_08_032
crossref_primary_10_1039_c3cc43353f
crossref_primary_10_1016_j_jelechem_2017_12_011
crossref_primary_10_1016_j_bios_2012_05_002
crossref_primary_10_1016_j_bios_2013_04_040
crossref_primary_10_1039_C6RA02711C
crossref_primary_10_1016_j_ymeth_2013_07_013
crossref_primary_10_1002_chem_201101337
crossref_primary_10_1039_c3an02129g
crossref_primary_10_1039_c2an16287c
crossref_primary_10_1039_C8RA06480F
crossref_primary_10_1007_s00604_018_3033_x
crossref_primary_10_1016_j_aca_2011_10_053
crossref_primary_10_1016_j_bios_2015_10_080
crossref_primary_10_1016_j_talanta_2018_09_113
crossref_primary_10_1039_C1CC16049D
crossref_primary_10_1021_ac303440d
crossref_primary_10_1016_j_bios_2012_10_022
crossref_primary_10_1021_ac500195u
crossref_primary_10_1039_C7AN00541E
crossref_primary_10_3390_ijms222111990
crossref_primary_10_1039_C5CC00658A
crossref_primary_10_1021_acs_analchem_6b01579
crossref_primary_10_1039_C8SC05102J
crossref_primary_10_1002_chem_201102290
crossref_primary_10_1039_C5AN00417A
crossref_primary_10_1016_j_bios_2014_11_015
crossref_primary_10_1088_2050_6120_aa6127
crossref_primary_10_1039_C5AN00732A
crossref_primary_10_1002_cbic_201500605
crossref_primary_10_1016_j_aca_2012_12_008
crossref_primary_10_1016_j_bios_2021_113446
crossref_primary_10_1016_j_aca_2010_08_025
crossref_primary_10_1021_ac4011292
crossref_primary_10_1039_C6RA01845A
crossref_primary_10_1007_s00216_010_4137_2
crossref_primary_10_1002_anie_201005246
crossref_primary_10_1002_adfm_201702748
crossref_primary_10_1039_c1cc10325c
crossref_primary_10_1039_C4AN02133A
crossref_primary_10_1016_j_electacta_2014_06_010
crossref_primary_10_1007_s00604_015_1564_y
crossref_primary_10_1039_C8SC02215A
crossref_primary_10_1039_C2AN36329A
crossref_primary_10_1016_j_bios_2015_09_053
crossref_primary_10_1016_j_snb_2014_11_092
crossref_primary_10_1021_acs_analchem_7b03278
crossref_primary_10_1016_j_saa_2019_117731
crossref_primary_10_1016_j_snb_2017_09_181
crossref_primary_10_1016_j_aca_2018_08_059
crossref_primary_10_1039_c2mb05430b
crossref_primary_10_1016_j_bios_2016_07_099
crossref_primary_10_1016_j_talanta_2021_122967
crossref_primary_10_1021_acsami_7b17813
crossref_primary_10_1016_j_aca_2012_12_034
crossref_primary_10_1016_j_bios_2014_02_035
crossref_primary_10_1039_c1mb05132f
crossref_primary_10_1039_C8TB02096E
crossref_primary_10_1039_C9CC03758F
crossref_primary_10_1016_j_electacta_2012_11_093
crossref_primary_10_1039_D0AN02438D
crossref_primary_10_1016_j_aca_2023_341559
crossref_primary_10_48022_mbl_2103_03001
crossref_primary_10_1039_c2cc32397d
crossref_primary_10_1039_c3cc42148a
crossref_primary_10_1021_ac3037443
crossref_primary_10_1021_ac301990f
crossref_primary_10_1002_chem_201802822
crossref_primary_10_1021_acs_chemrev_5b00428
crossref_primary_10_1039_C4AN01373E
crossref_primary_10_1080_10408347_2016_1151767
crossref_primary_10_1039_C3CC49719D
crossref_primary_10_1039_D0AN02362K
crossref_primary_10_1016_j_bios_2012_10_066
crossref_primary_10_1016_j_snb_2025_137298
crossref_primary_10_1016_j_bios_2014_12_017
Cites_doi 10.1016/S0092-8674(88)90911-7
10.1039/b712165b
10.1007/s00018-002-8452-4
10.1021/ac901773b
10.1021/ja803507d
10.1038/nbt0597-427
10.1128/jb.174.5.1682-1685.1992
10.1021/ja031875r
10.1038/nrg816
10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S
10.1016/j.tips.2004.09.004
10.1126/science.284.5416.967
10.1038/sj.onc.1205600
10.1073/pnas.88.15.6394
10.1042/bj1450093
10.1002/anie.199713211
10.1002/anie.200602754
10.1021/ja905854a
10.2174/156652407779940413
10.1021/ja902951b
10.1073/pnas.94.9.4262
10.1021/ja0023534
10.1093/annonc/mdf314
10.1021/ja9062426
10.1021/ja806222e
10.1039/b802015a
10.1039/b716774a
10.1038/375611a0
10.1002/chem.200802004
10.1021/ac900188y
10.1016/j.electacta.2009.08.050
10.1002/chem.200900056
10.1002/anie.200705991
10.1021/ar600053g
10.1039/B615450F
10.1016/j.electacta.2008.01.042
10.1016/S1074-5521(98)90006-0
10.1002/adma.200700165
10.1093/nar/29.18.3784
10.1021/nn800768z
10.1021/cr030183i
10.1021/ac902198v
10.1021/ac061694i
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Mar 1, 2010
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Mar 1, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1021/ac902670c
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 1941
ExternalDocumentID 1983750951
20148579
22561272
10_1021_ac902670c
e07575835
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
02
1AW
23M
3O-
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AETEA
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
.GJ
.HR
186
1WB
2KS
3EH
6TJ
AAUTI
ABDPE
ACKIV
ACPVT
ACQAM
ACRPL
ADNMO
ADXHL
AEYZD
AFFDN
AFFNX
AGQPQ
AIDAL
ANPPW
ANTXH
IQODW
MVM
NHB
OHT
OMK
RNS
UBC
UBX
VOH
XOL
YQI
YQJ
YR5
YXE
YYP
ZCG
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-a437t-ad7f4e995252e69dfa6d1a0d1a2415aa53e8db1ac09c9b2fd41106ee88461e23
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Jul 10 17:18:55 EDT 2025
Mon Jun 30 10:42:53 EDT 2025
Mon Jul 21 05:59:22 EDT 2025
Mon Jul 21 09:15:11 EDT 2025
Tue Jul 01 04:21:06 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Thu Aug 27 13:42:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Catalytic reaction
Chemical analysis
Nucleotide sequence
Enzyme
Color
Activation
Colorimetry
Method
Gene expression
Probe
Gene amplification
Signal
Peroxidases
DNA
Detection limit
Restriction endonuclease
Strategy
Peroxidase
Oxidoreductases
Coupling
Inhibition
Detection
Methylation
Methyl transferases
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a437t-ad7f4e995252e69dfa6d1a0d1a2415aa53e8db1ac09c9b2fd41106ee88461e23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20148579
PQID 217876789
PQPubID 45400
PageCount 7
ParticipantIDs proquest_miscellaneous_733292218
proquest_journals_217876789
pubmed_primary_20148579
pascalfrancis_primary_22561272
crossref_citationtrail_10_1021_ac902670c
crossref_primary_10_1021_ac902670c
acs_journals_10_1021_ac902670c
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Messer W. (ref9/cit9) 1988; 54
Deng M. (ref33/cit33) 2008; 130
Xiao Y. (ref39/cit39) 2004; 126
Thielking V. (ref11/cit11) 1997; 378
Nakayama S. (ref29/cit29) 2009; 131
Feng F. (ref14/cit14) 2007; 19
Zhu X. (ref19/cit19) 2008; 53
Teller C. (ref30/cit30) 2009; 81
Cuenoud B. (ref23/cit23) 1995; 375
Emilsson G. M. (ref17/cit17) 2002; 59
Burmeister J. (ref22/cit22) 1997; 36
Santoro S. W. (ref21/cit21) 1997; 94
Jeltsch A. (ref4/cit4) 2002; 3
Jones P. A. (ref7/cit7) 2002; 3
Brueckner B. (ref6/cit6) 2004; 25
Li T. (ref38/cit38) 2009; 81
Weizmann Y. (ref43/cit43) 2008; 130
Yin B. (ref24/cit24) 2009; 131
Weizmann Y. (ref42/cit42) 2006; 45
Li J. (ref13/cit13) 2007; 79
Li T. (ref32/cit32) 2007
Childs R. E. (ref44/cit44) 1975; 145
Heithoff D. M. (ref1/cit1) 1999; 284
Travascio P. (ref27/cit27) 1998; 5
Esteller M. (ref8/cit8) 2002; 21
Yang Q. (ref18/cit18) 2009; 55
Breaker R. R. (ref16/cit16) 1997; 15
Bergerat A. (ref12/cit12) 1991; 88
Song G. (ref5/cit5) 2009; 3
Boye E. (ref10/cit10) 1992; 174
Cheglakov Z. (ref35/cit35) 2007; 5
Liu J. (ref25/cit25) 2009; 109
Li T. (ref34/cit34) 2009; 3551
Li D. (ref41/cit41) 2008; 47
Li T. (ref31/cit31) 2009; 15
Willner I. (ref40/cit40) 2008; 133
Cheng X. (ref3/cit3) 2001; 29
Travascio P. (ref28/cit28) 2001; 123
Xiang Y. (ref26/cit26) 2009; 131
Shames D. S. (ref2/cit2) 2007; 7
Liu T. (ref15/cit15) 2010; 82
Lu Y. (ref20/cit20) 2007; 40
Elbaz J. (ref36/cit36) 2009; 15
Elbaz J. (ref37/cit37) 2008
Goffin J. (ref45/cit45) 2002; 13
References_xml – volume: 54
  start-page: 735
  year: 1988
  ident: ref9/cit9
  publication-title: Cell
  doi: 10.1016/S0092-8674(88)90911-7
– start-page: 4209
  year: 2007
  ident: ref32/cit32
  publication-title: Chem. Commun.
  doi: 10.1039/b712165b
– volume: 59
  start-page: 596
  year: 2002
  ident: ref17/cit17
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-002-8452-4
– volume: 81
  start-page: 9114
  year: 2009
  ident: ref30/cit30
  publication-title: Anal. Chem.
  doi: 10.1021/ac901773b
– volume: 130
  start-page: 13095
  year: 2008
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803507d
– volume: 15
  start-page: 427
  year: 1997
  ident: ref16/cit16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0597-427
– volume: 174
  start-page: 1682
  year: 1992
  ident: ref10/cit10
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.5.1682-1685.1992
– volume: 126
  start-page: 7430
  year: 2004
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031875r
– volume: 3
  start-page: 415
  year: 2002
  ident: ref7/cit7
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg816
– volume: 3
  start-page: 274
  year: 2002
  ident: ref4/cit4
  publication-title: ChemBioChem
  doi: 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S
– volume: 25
  start-page: 551
  year: 2004
  ident: ref6/cit6
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2004.09.004
– volume: 284
  start-page: 967
  year: 1999
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.284.5416.967
– volume: 21
  start-page: 5427
  year: 2002
  ident: ref8/cit8
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205600
– volume: 88
  start-page: 6394
  year: 1991
  ident: ref12/cit12
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.88.15.6394
– volume: 145
  start-page: 93
  year: 1975
  ident: ref44/cit44
  publication-title: Biochem. J.
  doi: 10.1042/bj1450093
– volume: 36
  start-page: 1321
  year: 1997
  ident: ref22/cit22
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199713211
– volume: 45
  start-page: 7384
  year: 2006
  ident: ref42/cit42
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200602754
– volume: 131
  start-page: 15352
  year: 2009
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905854a
– volume: 7
  start-page: 85
  year: 2007
  ident: ref2/cit2
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652407779940413
– volume: 131
  start-page: 10320
  year: 2009
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902951b
– volume: 94
  start-page: 4262
  year: 1997
  ident: ref21/cit21
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.9.4262
– volume: 123
  start-page: 1337
  year: 2001
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0023534
– volume: 13
  start-page: 1699
  year: 2002
  ident: ref45/cit45
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdf314
– volume: 131
  start-page: 14624
  year: 2009
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9062426
– volume: 130
  start-page: 17224
  year: 2008
  ident: ref43/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806222e
– volume: 133
  start-page: 923
  year: 2008
  ident: ref40/cit40
  publication-title: Analyst
  doi: 10.1039/b802015a
– volume: 378
  start-page: 407
  year: 1997
  ident: ref11/cit11
  publication-title: Biol. Chem.
– start-page: 1569
  year: 2008
  ident: ref37/cit37
  publication-title: Chem. Commun.
  doi: 10.1039/b716774a
– volume: 3551
  start-page: 3553
  year: 2009
  ident: ref34/cit34
  publication-title: Chem. Commun.
– volume: 375
  start-page: 611
  year: 1995
  ident: ref23/cit23
  publication-title: Nature
  doi: 10.1038/375611a0
– volume: 15
  start-page: 3411
  year: 2009
  ident: ref36/cit36
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200802004
– volume: 81
  start-page: 2144
  year: 2009
  ident: ref38/cit38
  publication-title: Anal. Chem.
  doi: 10.1021/ac900188y
– volume: 55
  start-page: 276
  year: 2009
  ident: ref18/cit18
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.08.050
– volume: 15
  start-page: 3347
  year: 2009
  ident: ref31/cit31
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200900056
– volume: 47
  start-page: 3927
  year: 2008
  ident: ref41/cit41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705991
– volume: 40
  start-page: 315
  year: 2007
  ident: ref20/cit20
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar600053g
– volume: 5
  start-page: 223
  year: 2007
  ident: ref35/cit35
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B615450F
– volume: 53
  start-page: 4407
  year: 2008
  ident: ref19/cit19
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.01.042
– volume: 5
  start-page: 505
  year: 1998
  ident: ref27/cit27
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(98)90006-0
– volume: 19
  start-page: 3490
  year: 2007
  ident: ref14/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700165
– volume: 29
  start-page: 3784
  year: 2001
  ident: ref3/cit3
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.18.3784
– volume: 3
  start-page: 1183
  year: 2009
  ident: ref5/cit5
  publication-title: ACS Nano
  doi: 10.1021/nn800768z
– volume: 109
  start-page: 1948
  year: 2009
  ident: ref25/cit25
  publication-title: Chem. Rev.
  doi: 10.1021/cr030183i
– volume: 82
  start-page: 229
  year: 2010
  ident: ref15/cit15
  publication-title: Anal. Chem.
  doi: 10.1021/ac902198v
– volume: 79
  start-page: 1050
  year: 2007
  ident: ref13/cit13
  publication-title: Anal. Chem.
  doi: 10.1021/ac061694i
SSID ssj0011016
Score 2.4310338
Snippet DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1935
SubjectTerms Analytical chemistry
Base Sequence
Chemistry
Colorimetry - methods
Deoxyribonucleic acid
DNA
DNA Methylation
DNA Modification Methylases - metabolism
DNA, Catalytic - metabolism
Electrophoresis, Polyacrylamide Gel
Enzyme kinetics
Exact sciences and technology
Spectrometric and optical methods
Studies
Tissue engineering
Title Label-Free Colorimetric Assay for Methyltransferase Activity Based on a Novel Methylation-Responsive DNAzyme Strategy
URI http://dx.doi.org/10.1021/ac902670c
https://www.ncbi.nlm.nih.gov/pubmed/20148579
https://www.proquest.com/docview/217876789
https://www.proquest.com/docview/733292218
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQI9UF5bGlXVttDL4aN48TxcbuwQlXZQ0slbpHtzF5YErSbRVp-PeO8ABXaQw5RJlHsGWe-yYznA_hKeC0xMpE8FAPHZWyRe9o4rp0NA6ESq5XfKHw2iU__yB8X0cUafHkmgy-CI-O0Z0kauBewIeJE-QhrOPrdpQp8-NnS4vksats-6OGt3vW4xSPXs3VtFjQL05q-4nl8WfmZ8Rs4bnfr1OUll4fL0h6627-bN_5rCG_hdYMz2bA2jHewhvk2vBy19G7bsPmgE-F7WP40Fmd8PEdko8JX5V15qi3HSH1mxQjZsjMknc7KCujinJwfG7qaeoJ9p7OMFTkzbFLc4KyRrZTOfzVVuDfIjifD29UVsqYl7moHzscn56NT3jAycCNDVXKTqalErSMRCYx1NjVxFpgBHR4IGBOFmGQ2MG6gnbZimklST4yYEMoJUIS7sJ4XOe4D0z5UspJAM8VrmSCTMGROhswkQO2k7kGfNJY2C2qRVrlyEaTdVPbgW6vM1DXtzD2rxuwp0c-d6HXdw-Mpof4ji-gk6YNHKFCJHhy0JnL_WhTQkTtRCb0v666SIn3WxeRYLBepCkOhBSGpHuzVhnX_aP87N1L6w_8GewCv6qoFX_v2EdbL-RI_ERgqbb9aDHf_rQJM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BORSEKJRXaAkrxIHLlni9fuwxpEQBkhwgSL1Zu-vJhdSuYqdS-uuZ9SttVQQHHyyPV-udWc83nvF8AB8Ir8VaxpL7YmC5DA1yRxvHlTW-J6LYqMj9KDybh5Nf8ttZcNa0yXH_wtAkChqpqJL4u-4C3idtlSNLGtj78IBAiHCB1nD0s8sYuCi0ZcdzydS2i9D1W50HssUND_T4Qhe0GMuaxeLvMLNyN-ODmreommhVZfL7ZFOaE3t1q4fj_z3JU3jSoE42rM3kGdzD7BD2Ry3Z2yE8utaX8Dlsptrgio_XiGyUuxq9c0e8ZRkpU28Z4Vw2Q9LwqqxgL67JFbKhrYko2Gc6S1meMc3m-SWuGtnKBPiPpib3EtnpfHi1PUfWNMjdvoDF-MtiNOENPwPX0o9KrtNoKVGpQAQCQ5UudZh6ekCHgwVaBz7GqfG0HSirjFimkrQUIsaEeTwU_kvYy_IMXwNTLnAykiA0RW-pIAPRZFyajMZDZaXqQZ9WMmm2V5FUmXPhJd1S9uBjq9PENs3NHcfG6i7R953oRd3R4y6h_g3D6CTp9UeYMBI9OGotZTctCu_IuUQxzZd1V0mRLgejM8w3RRL5vlCCcFUPXtX2tRvafdwNIvXmXw_7DvYni9k0mX6dfz-Ch3U9g6uKO4a9cr3BtwSTStOv9scfUTIKrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BK_EQKtDy2BYWC3Hg4rJxnj5ut6wKtAuCIvUW2c7kwjZZbbKVtr-eceKkLSqCQw5RJpHtGWe-yUzmA3hHeC1RQRJwX4wMDyKN3NLGcWm074k40TK2PwqfzKKjn8Hns_DMBYr2XxgaREVPqpokvt3Viyx3HQa8D8pIS5g0Mndh06brbLA1nvzoswY2Eu0Y8mxCteskdP1W64VMdcMLPVqoihYkb5ks_g41G5czfQxf-8E2lSa_9le13jeXf_Rx_P_ZPIEthz7ZuDWXp3AHi224P-lI37bh4bX-hDuwOlYa53y6RGST0tbqnVsCLsNIqWrNCO-yEyRNz-sG_uKSXCIbm5aQgh3QWcbKgik2Ky9w7mQbU-DfXW3uBbLD2fhyfY7MNcpdP4PT6cfTyRF3PA1cBX5cc5XFeYBShiIUGMksV1HmqREdFh4oFfqYZNpTZiSN1CLPAtJUhJgQ9vFQ-M9hoygLfAlM2gBKBwSlKYrLBBmKIiNTZDweShPIAQxpNVO3zaq0yaALL-2XcgDvO72mxjU5t1wb89tE3_aii7azx21CwxvG0UvSa5CwYSwGsNdZy9WwKMwjJxMnNF7WXyVF2lyMKrBcVWns-0IKwlcDeNHa2NWj7UfeMJa7_5rsG7j37XCaHn-afdmDB21Zgy2OewUb9XKFrwkt1XrYbJHf-toNMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label-Free+Colorimetric+Assay+for+Methyltransferase+Activity+Based+on+a+Novel+Methylation-Responsive+DNAzyme+Strategy&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Li%2C+Wang&rft.au=Liu%2C+Zhuoliang&rft.au=Lin%2C+Hui&rft.au=Nie%2C+Zhou&rft.date=2010-03-01&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=82&rft.issue=5&rft.spage=1935&rft.epage=1941&rft_id=info:doi/10.1021%2Fac902670c&rft.externalDocID=e07575835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon