An inventory of glacial lakes in the Third Pole region and their changes in response to global warming

No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram-Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study,...

Full description

Saved in:
Bibliographic Details
Published inGlobal and planetary change Vol. 131; pp. 148 - 157
Main Authors Zhang, Guoqing, Yao, Tandong, Xie, Hongjie, Wang, Weicai, Yang, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram-Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake inventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (>0.003km2) covering areas of 553.9±90, 581.2±97, and 682.4±110km2 in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%), Indus (28%), and Amu Darya (10%) basins. (2) Small lakes (<0.2km2) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly those connected to glacier termini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (>70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwater may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the patterns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole. •The first glacier lake inventory across the Third Pole was developed.•Glacial lakes were primarily located in Brahmaputra (39%), Indus (28%), and Amu Darya (10%) basins.•Glacier-fed lakes showed faster expansion than non-glacier-fed lakes.•Glacier-melt water may play a dominant source for most glacial lake expansion from 1990–2010.
AbstractList No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram-Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake inventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (>0.003km2) covering areas of 553.9 plus or minus 90, 581.2 plus or minus 97, and 682.4 plus or minus 110km2 in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%), Indus (28%), and Amu Darya (10%) basins. (2) Small lakes (<0.2km2) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly those connected to glacier termini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (>70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwater may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the patterns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole.
No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram-Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake inventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (>0.003km²) covering areas of 553.9±90, 581.2±97, and 682.4±110km² in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%), Indus (28%), and Amu Darya (10%) basins. (2) Small lakes (<0.2km²) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly those connected to glacier termini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (>70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwater may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the patterns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole.
No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram-Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake inventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (>0.003km2) covering areas of 553.9±90, 581.2±97, and 682.4±110km2 in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%), Indus (28%), and Amu Darya (10%) basins. (2) Small lakes (<0.2km2) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly those connected to glacier termini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (>70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwater may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the patterns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole. •The first glacier lake inventory across the Third Pole was developed.•Glacial lakes were primarily located in Brahmaputra (39%), Indus (28%), and Amu Darya (10%) basins.•Glacier-fed lakes showed faster expansion than non-glacier-fed lakes.•Glacier-melt water may play a dominant source for most glacial lake expansion from 1990–2010.
Author Wang, Weicai
Yao, Tandong
Zhang, Guoqing
Xie, Hongjie
Yang, Wei
Author_xml – sequence: 1
  givenname: Guoqing
  surname: Zhang
  fullname: Zhang, Guoqing
  email: guoqing.zhang@itpcas.ac.cn
  organization: Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
– sequence: 2
  givenname: Tandong
  surname: Yao
  fullname: Yao, Tandong
  organization: Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
– sequence: 3
  givenname: Hongjie
  surname: Xie
  fullname: Xie, Hongjie
  organization: Laboratory for Remote Sensing and Geoinformatics, University of Texas at San Antonio, San Antonio, TX 78249, USA
– sequence: 4
  givenname: Weicai
  surname: Wang
  fullname: Wang, Weicai
  organization: Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
– sequence: 5
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
BookMark eNqNkU1rGzEQhkVIoU7a31Ade1lHWn360IMJ_QgE2kN6FmPt7FqOLLnSJiX_vjIuOeSSwMAMzPs-A_NekPOUExLyibMlZ1xf7ZZTzIcIfgvLnnG1ZK24OCMLbk3faaHlOVmwVc87yy1_Ty5q3THGDev7BRnXiYb0iGnO5YnmkU6NFCDSCPdY24rOW6R321AG-itHpAWnkBOFNBw3odB2N00nacF6yKkinXPj5E3D_IWyD2n6QN6NECt-_N8vye9vX--uf3S3P7_fXK9vO5DCzJ0YlQHNATcW2iQHufJeDaDQa216P3KUBpUarQHvJWptpVdeqpGtuIaNuCSfT9xDyX8esM5uH6rHGCFhfqiuZ4wJJo3mr0q5MZYJK3r1BqnU1lojbZOak9SXXGvB0R1K2EN5cpy5Y15u557zcse8HGvFRXN-eeH0YYa5PXsuEOIb_OuTH9t_HwMWV33A5HEIBf3shhxeZfwDw4u5iA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2019_01_119
crossref_primary_10_1017_jog_2023_34
crossref_primary_10_1109_JSTARS_2017_2705718
crossref_primary_10_1038_s43247_024_01544_y
crossref_primary_10_3390_w10040455
crossref_primary_10_1002_2017GL074443
crossref_primary_10_3390_rs14061351
crossref_primary_10_3390_rs13132429
crossref_primary_10_1016_j_wasec_2021_100101
crossref_primary_10_5194_piahs_387_59_2024
crossref_primary_10_3390_rs16050762
crossref_primary_10_1016_j_rse_2018_11_038
crossref_primary_10_3390_rs11091058
crossref_primary_10_1016_j_rse_2024_114437
crossref_primary_10_5194_hess_25_5879_2021
crossref_primary_10_1016_j_gloplacha_2018_05_006
crossref_primary_10_1016_j_rse_2020_112011
crossref_primary_10_2166_wcc_2021_285
crossref_primary_10_1016_j_resenv_2021_100031
crossref_primary_10_1093_femsec_fiae018
crossref_primary_10_3390_rs16040725
crossref_primary_10_24057_2071_9388_2024_3717
crossref_primary_10_1007_s10933_020_00158_6
crossref_primary_10_1109_JSTARS_2021_3085397
crossref_primary_10_1016_j_scitotenv_2023_169758
crossref_primary_10_3390_app14188562
crossref_primary_10_1016_j_scitotenv_2020_141586
crossref_primary_10_1007_s41742_025_00769_9
crossref_primary_10_1016_j_jhydrol_2024_132591
crossref_primary_10_1371_journal_pone_0144696
crossref_primary_10_1002_fee_2164
crossref_primary_10_1016_j_gloplacha_2024_104656
crossref_primary_10_1016_j_quascirev_2025_109183
crossref_primary_10_3389_fmicb_2019_03096
crossref_primary_10_1016_j_geomorph_2020_107068
crossref_primary_10_1080_17538947_2022_2131008
crossref_primary_10_1016_j_rse_2022_112910
crossref_primary_10_1016_j_jhydrol_2023_129311
crossref_primary_10_1109_TGRS_2023_3349281
crossref_primary_10_3390_geosciences7030077
crossref_primary_10_11922_csdata_2018_0013_zh
crossref_primary_10_5194_tc_16_297_2022
crossref_primary_10_1017_jog_2017_14
crossref_primary_10_1007_s12594_020_1610_1
crossref_primary_10_1016_j_srs_2020_100008
crossref_primary_10_1038_s43247_022_00531_5
crossref_primary_10_1080_10106049_2021_1886342
crossref_primary_10_1007_s41748_019_00129_6
crossref_primary_10_1016_j_scib_2019_03_011
crossref_primary_10_1007_s12524_024_01829_x
crossref_primary_10_3390_rs12244020
crossref_primary_10_1038_s41597_022_01275_9
crossref_primary_10_1016_j_rse_2022_113215
crossref_primary_10_1016_j_palaeo_2021_110509
crossref_primary_10_1016_j_scitotenv_2024_174701
crossref_primary_10_1080_19475705_2023_2286903
crossref_primary_10_1659_MRD_JOURNAL_D_21_00045_1
crossref_primary_10_3390_rs15040893
crossref_primary_10_1016_j_jhydrol_2018_05_031
crossref_primary_10_1007_s43832_021_00007_1
crossref_primary_10_1016_j_rse_2017_12_025
crossref_primary_10_3390_ijgi9100560
crossref_primary_10_1029_2018GL078601
crossref_primary_10_1109_JSTARS_2017_2767098
crossref_primary_10_3390_rs14194698
crossref_primary_10_1080_2150704X_2017_1362123
crossref_primary_10_3390_w16060822
crossref_primary_10_3390_rs15143604
crossref_primary_10_1007_s12665_016_5498_4
crossref_primary_10_1109_JSTARS_2022_3188788
crossref_primary_10_1038_s41558_020_0855_4
crossref_primary_10_1080_10106049_2018_1469677
crossref_primary_10_1016_j_scitotenv_2019_07_086
crossref_primary_10_1016_j_jhydrol_2022_128438
crossref_primary_10_1016_j_gloplacha_2024_104675
crossref_primary_10_1002_hyp_14330
crossref_primary_10_5194_tc_10_1433_2016
crossref_primary_10_1016_j_scitotenv_2020_139607
crossref_primary_10_1016_j_geomorph_2021_107783
crossref_primary_10_3390_rs15020416
crossref_primary_10_1007_s10113_022_01984_2
crossref_primary_10_1080_10402381_2024_2432876
crossref_primary_10_1029_2018GC007439
crossref_primary_10_17211_tcd_998089
crossref_primary_10_3389_feart_2023_1124425
crossref_primary_10_1007_s11442_023_2076_z
crossref_primary_10_1016_j_nhres_2025_03_007
crossref_primary_10_1590_0001_3765202320211627
crossref_primary_10_1007_s10661_022_09766_3
crossref_primary_10_1109_JSTARS_2019_2900442
crossref_primary_10_1016_j_polar_2023_101008
crossref_primary_10_1007_s11629_023_8538_z
crossref_primary_10_1016_j_scitotenv_2023_161717
crossref_primary_10_3389_fenvs_2018_00081
crossref_primary_10_1016_j_earscirev_2018_06_012
crossref_primary_10_5194_tc_16_3843_2022
crossref_primary_10_1080_10106049_2021_1975831
crossref_primary_10_1016_j_jhydrol_2018_05_040
crossref_primary_10_1016_j_srs_2024_100157
crossref_primary_10_1016_j_ijdrr_2022_102914
crossref_primary_10_3390_rs15225327
crossref_primary_10_1360_TB_2023_1323
crossref_primary_10_33411_IJIST_2021030102
crossref_primary_10_1007_s10346_023_02030_w
crossref_primary_10_3389_feart_2021_723386
crossref_primary_10_3389_feart_2020_500116
crossref_primary_10_1016_j_geomorph_2025_109711
crossref_primary_10_1016_j_watres_2024_122263
crossref_primary_10_5194_nhess_22_3765_2022
crossref_primary_10_1007_s12040_021_01772_2
crossref_primary_10_1016_j_jhydrol_2025_133072
crossref_primary_10_1016_j_rsase_2017_11_002
crossref_primary_10_1080_10106049_2019_1590467
crossref_primary_10_1016_j_ejrh_2023_101403
crossref_primary_10_1002_wat2_1236
crossref_primary_10_1007_s43538_024_00360_4
crossref_primary_10_1016_j_geogeo_2025_100375
crossref_primary_10_58951_dataset_2024_032
crossref_primary_10_1007_s11629_020_6255_4
crossref_primary_10_1016_j_jhydrol_2019_124052
crossref_primary_10_1007_s10113_016_0963_x
crossref_primary_10_1007_s11069_024_07070_6
crossref_primary_10_1016_j_catena_2025_108717
crossref_primary_10_5194_esurf_10_723_2022
crossref_primary_10_1007_s11629_024_8869_4
crossref_primary_10_1080_10106049_2022_2102219
crossref_primary_10_3390_rs13183757
crossref_primary_10_3389_feart_2022_1038777
crossref_primary_10_1016_j_nhres_2023_07_003
crossref_primary_10_1111_1462_2920_15788
crossref_primary_10_1002_esp_5193
crossref_primary_10_1016_j_scitotenv_2021_150442
crossref_primary_10_1080_19475705_2018_1445663
crossref_primary_10_1007_s12665_017_6446_7
crossref_primary_10_5194_essd_13_741_2021
crossref_primary_10_1016_j_rse_2016_11_008
crossref_primary_10_3390_rs10121913
crossref_primary_10_1016_j_gloplacha_2018_01_004
crossref_primary_10_1080_10643389_2020_1733894
crossref_primary_10_1659_MRD_JOURNAL_D_19_00068_1
crossref_primary_10_1080_17538947_2017_1374475
crossref_primary_10_1007_s12524_021_01452_0
crossref_primary_10_1029_2019WR026533
crossref_primary_10_1007_s12145_024_01638_3
crossref_primary_10_1016_j_cosust_2021_02_002
crossref_primary_10_1144_jgs2021_084
crossref_primary_10_1016_j_jhydrol_2016_06_054
crossref_primary_10_1029_2020WR029266
crossref_primary_10_3390_s20051254
crossref_primary_10_1007_s11629_019_5675_5
crossref_primary_10_3390_rs14081927
crossref_primary_10_1016_j_scitotenv_2019_136455
crossref_primary_10_3390_w13243565
crossref_primary_10_1038_s41561_023_01150_1
crossref_primary_10_1016_j_geomorph_2024_109063
crossref_primary_10_1002_met_1877
crossref_primary_10_1038_s41467_023_44123_z
crossref_primary_10_3390_ijgi9050294
crossref_primary_10_1007_s41748_021_00230_9
crossref_primary_10_1016_j_gloplacha_2019_03_004
crossref_primary_10_1038_sdata_2016_39
crossref_primary_10_1080_19475705_2024_2353838
crossref_primary_10_1002_2016GL072033
crossref_primary_10_1007_s11442_018_1467_z
crossref_primary_10_1002_lno_12434
crossref_primary_10_1109_JSTARS_2017_2666787
crossref_primary_10_3389_feart_2022_825482
crossref_primary_10_11922_csdata_2018_0038_zh
crossref_primary_10_1007_s00382_017_3817_4
crossref_primary_10_3390_ijerph17031072
crossref_primary_10_18307_2019_0225
crossref_primary_10_1016_j_jhydrol_2021_126905
crossref_primary_10_1080_27669645_2023_2256034
crossref_primary_10_1590_0001_3765202420240578
crossref_primary_10_1007_s12524_023_01759_0
crossref_primary_10_1016_j_isprsjprs_2022_03_013
crossref_primary_10_1080_01431161_2019_1569789
crossref_primary_10_5194_tc_15_5577_2021
crossref_primary_10_1007_s11629_017_4518_5
crossref_primary_10_1016_j_psep_2024_02_060
crossref_primary_10_1007_s11069_020_04262_8
crossref_primary_10_1016_j_earscirev_2019_102895
crossref_primary_10_1016_j_scitotenv_2021_151289
crossref_primary_10_1002_esp_5266
crossref_primary_10_1016_j_jhydrol_2023_130155
crossref_primary_10_1016_j_geomorph_2015_08_013
crossref_primary_10_1016_j_quaint_2017_08_005
crossref_primary_10_3390_rs16152719
crossref_primary_10_1007_s10113_019_01484_w
crossref_primary_10_1017_jog_2022_114
crossref_primary_10_5194_essd_12_2169_2020
crossref_primary_10_3390_w16223287
crossref_primary_10_1080_10106049_2022_2038693
crossref_primary_10_2139_ssrn_3980483
crossref_primary_10_31857_S207667342304004X
crossref_primary_10_1002_esp_4185
crossref_primary_10_1080_10106049_2020_1869332
crossref_primary_10_1016_j_gloplacha_2018_03_007
crossref_primary_10_17491_jgsi_2024_174012
crossref_primary_10_1016_j_gloplacha_2018_03_003
crossref_primary_10_3389_feart_2021_775195
crossref_primary_10_3390_w13101376
crossref_primary_10_5194_tc_17_5137_2023
crossref_primary_10_1134_S0097807824701380
crossref_primary_10_1111_bor_12291
crossref_primary_10_1007_s12665_018_7457_8
crossref_primary_10_3390_rs15143689
crossref_primary_10_5194_essd_15_3941_2023
crossref_primary_10_1016_j_asr_2020_09_035
crossref_primary_10_1016_j_gloplacha_2016_04_008
crossref_primary_10_5194_tc_16_2643_2022
crossref_primary_10_1029_2022WR032772
crossref_primary_10_1002_2017GL073773
crossref_primary_10_1080_19475705_2024_2356216
crossref_primary_10_1007_s10712_016_9362_6
crossref_primary_10_1080_20964471_2020_1766180
crossref_primary_10_3390_rs16020375
crossref_primary_10_1038_s41558_021_01028_3
crossref_primary_10_1038_s41467_023_41794_6
crossref_primary_10_1016_j_rsase_2020_100308
crossref_primary_10_1038_s41597_024_03290_4
crossref_primary_10_3390_rs16132307
crossref_primary_10_1007_s12524_023_01773_2
crossref_primary_10_1016_j_scitotenv_2021_147249
crossref_primary_10_3390_w12020538
crossref_primary_10_1016_j_scitotenv_2025_179162
crossref_primary_10_1038_s43017_024_00554_w
crossref_primary_10_1002_ldr_4870
crossref_primary_10_1016_j_earscirev_2021_103911
crossref_primary_10_3390_su16010211
crossref_primary_10_3390_rs15215142
crossref_primary_10_3389_feart_2022_881285
crossref_primary_10_1038_s41558_019_0437_5
crossref_primary_10_3389_fevo_2023_1296111
crossref_primary_10_1080_10106049_2022_2134461
crossref_primary_10_1016_j_epsl_2022_117554
crossref_primary_10_1016_j_enggeo_2022_106837
crossref_primary_10_3389_feart_2024_1361889
crossref_primary_10_3390_rs13091794
crossref_primary_10_1109_JSTARS_2024_3391881
crossref_primary_10_18307_2019_0301
crossref_primary_10_1016_j_jhydrol_2016_03_030
crossref_primary_10_1017_jog_2019_13
crossref_primary_10_1038_s41597_025_04809_z
crossref_primary_10_1016_j_coldregions_2024_104315
crossref_primary_10_1038_s41597_023_02285_x
crossref_primary_10_1061_NHREFO_NHENG_1988
crossref_primary_10_5194_tc_15_3159_2021
crossref_primary_10_1016_j_envpol_2024_125418
crossref_primary_10_1038_s41598_019_53733_x
crossref_primary_10_3390_rs12233913
crossref_primary_10_1007_s11629_022_7598_9
crossref_primary_10_1186_s40677_024_00304_6
crossref_primary_10_1007_s11069_021_05029_5
crossref_primary_10_1659_MRD_JOURNAL_D_20_00043_1
crossref_primary_10_1017_jog_2023_5
crossref_primary_10_3390_rs14236011
crossref_primary_10_1016_j_gloplacha_2022_103923
crossref_primary_10_1016_j_pce_2024_103686
crossref_primary_10_1360_TB_2022_0178
crossref_primary_10_1038_s41598_023_28144_8
crossref_primary_10_1021_acs_est_3c06419
crossref_primary_10_3390_rs13245091
crossref_primary_10_1007_s13762_016_1219_5
crossref_primary_10_1038_s41612_024_00755_6
crossref_primary_10_1017_jog_2024_40
crossref_primary_10_1002_hyp_11085
crossref_primary_10_1016_j_catena_2024_108280
crossref_primary_10_1177_09596836231163486
crossref_primary_10_1007_s11629_016_4230_x
crossref_primary_10_3390_rs15071941
crossref_primary_10_1007_s11356_024_33296_9
crossref_primary_10_1093_nsr_nwaf041
crossref_primary_10_1016_j_jhydrol_2025_133016
crossref_primary_10_1016_j_rines_2024_100046
crossref_primary_10_1109_JSTARS_2018_2846551
crossref_primary_10_5194_essd_14_5489_2022
crossref_primary_10_3389_feart_2020_601288
crossref_primary_10_3390_rs13010056
crossref_primary_10_1016_j_scitotenv_2023_161665
crossref_primary_10_1029_2017WR022261
crossref_primary_10_1016_j_rse_2024_114413
crossref_primary_10_1007_s12583_018_1206_5
crossref_primary_10_1016_j_gecco_2019_e00715
crossref_primary_10_34133_2022_9821275
crossref_primary_10_1080_01431161_2016_1271478
crossref_primary_10_1002_esp_4236
crossref_primary_10_1017_jog_2018_38
crossref_primary_10_3389_feart_2022_821798
crossref_primary_10_1007_s10064_024_03706_w
crossref_primary_10_3390_rs13061154
crossref_primary_10_3390_rs14246189
crossref_primary_10_1109_JSTARS_2018_2877390
crossref_primary_10_1016_j_catena_2023_106911
crossref_primary_10_1016_j_gloenvcha_2018_10_012
crossref_primary_10_1016_j_accre_2024_06_003
crossref_primary_10_1016_j_geomorph_2024_109348
crossref_primary_10_1029_2024GL109350
crossref_primary_10_1038_s43017_025_00650_5
crossref_primary_10_1109_JSTARS_2022_3215722
Cites_doi 10.1016/j.geomorph.2006.11.012
10.5194/nhess-8-1329-2008
10.1007/BF02990047
10.5194/tc-9-557-2015
10.1016/S1040-6182(99)00035-X
10.3189/2014AoG66A038
10.1002/2013WR014724
10.1016/j.gloplacha.2013.04.001
10.1016/j.earscirev.2010.07.002
10.1016/j.gloplacha.2013.09.011
10.1002/grl.50462
10.3189/172756507782202829
10.1016/j.geomorph.2011.08.015
10.3189/172756501781831729
10.1126/science.1234532
10.1002/hyp.10199
10.3189/2014JoG13J176
10.5194/tc-7-1385-2013
10.1080/01431161.2012.657370
10.1109/34.506796
10.5194/tc-8-1661-2014
10.3189/2013JoG12J184
10.1016/j.rse.2009.08.015
10.1016/j.gloplacha.2012.04.001
10.1002/2014JD021615
10.1016/j.quaint.2013.11.023
10.1038/nclimate1580
10.1080/19475705.2012.707153
10.1088/1748-9326/8/4/044052
10.1175/JHM-D-13-093.1
10.1371/journal.pone.0083973
10.1007/s11629-009-1016-4
10.1016/j.gloplacha.2009.03.017
10.1016/j.earscirev.2014.03.009
10.1126/science.1215828
10.1088/1748-9326/9/1/014009
10.5194/hess-17-4061-2013
10.1038/454393a
10.5194/nhess-14-3065-2014
10.1016/j.scitotenv.2012.11.043
10.2747/0272-3646.31.6.528
10.1002/hyp.7405
10.1007/s11434-014-0258-x
10.1016/j.envdev.2012.04.002
10.1088/1748-9326/4/4/045205
10.5194/nhess-12-3109-2012
10.1029/2010GL045514
10.1016/j.gloplacha.2010.10.003
10.3189/2015JoG14J209
10.1016/j.gloplacha.2013.12.001
10.1016/j.rse.2011.03.005
10.1029/2012WR011971
10.1016/j.rse.2011.09.022
10.1002/hyp.8342
10.1016/j.rse.2014.02.001
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7ST
7TG
7U6
7UA
C1K
F1W
H97
KL.
L.G
SOI
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.gloplacha.2015.05.013
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-6364
EndPage 157
ExternalDocumentID 10_1016_j_gloplacha_2015_05_013
S0921818115001101
GeographicLocations China, People's Rep., Xizang, Tibetan Plateau
China
GeographicLocations_xml – name: China, People's Rep., Xizang, Tibetan Plateau
– name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VQA
WUQ
XJT
Y6R
ZCA
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TG
7U6
7UA
C1K
F1W
H97
KL.
L.G
SOI
8FD
FR3
H8D
KR7
L7M
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a437t-3f57a61aeb8a57a4d49cc5da5ec6672cf1e47e55f87acc4e6684c5c45f0916ab3
IEDL.DBID .~1
ISSN 0921-8181
IngestDate Tue Aug 05 11:07:58 EDT 2025
Fri Jul 11 03:11:29 EDT 2025
Fri Jul 11 15:22:21 EDT 2025
Tue Jul 01 03:02:12 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Fri Feb 23 02:39:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Global warming
Glacial lake inventory
Third Pole
Glacier-fed lakes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a437t-3f57a61aeb8a57a4d49cc5da5ec6672cf1e47e55f87acc4e6684c5c45f0916ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1746888748
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_2000304761
proquest_miscellaneous_1778038325
proquest_miscellaneous_1746888748
crossref_primary_10_1016_j_gloplacha_2015_05_013
crossref_citationtrail_10_1016_j_gloplacha_2015_05_013
elsevier_sciencedirect_doi_10_1016_j_gloplacha_2015_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
2015-08-00
20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationTitle Global and planetary change
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo (bb0080) 2015; 61
Bhambri (bb0020) 2013; 7
Thompson, Benn, Dennis, Luckman (bb0240) 2012; 145–146
Ives, Shrestha, Mool (bb0100) 2010
Wang (bb0265) 2013; 8
Wang (bb0260) 2012; 12
Ma (bb0140) 2010; 37
Basnett, Kulkarni, Bolch (bb0010) 2013; 59
Kääb, Treichler, Nuth, Berthier (bb0105) 2015; 9
Ye (bb0315) 2009; 6
Phan, Lindenbergh, Menenti (bb0190) 2012; 17
Osti, Egashira (bb0175) 2009; 23
Tweed (bb0245) 2014
Rai (bb0205) 2005
Zhang, Xie, Kang, Yi, Ackley (bb0320) 2011; 115
IPCC (bb0095) 2014
Neckel, Kropáček, Bolch, Hochschild (bb0155) 2014; 9
Roy (bb0220) 2014; 145
Ageta (bb0005) 2000
Phan, Lindenbergh, Menenti (bb0195) 2013; 17
Yang (bb0295) 2014; 112
Yang, Nelson, Shiklomanov, Guo, Wan (bb0300) 2010; 103
Yao (bb0305) 2012; 2
Bolch, Menounos, Wheate (bb0030) 2010; 114
Zhang, Yao, Xie, Kang, Lei (bb0330) 2013; 40
O'Gorman (bb0170) 1996; 18
Fujita, Sakai, Nuimura, Yamaguchi, Sharma (bb0050) 2009; 4
Nie, Liu, Liu (bb0160) 2013; 8
Zhang (bb0335) 2014; 119
Yao (bb0310) 2012; 3
Wu, Zheng, Zhang, Lei (bb0285) 2014; 15
Gardelle, Berthier, Arnaud, Kääb (bb0060) 2013; 7
Mool, Bajracharya, Joshi (bb0150) 2001
Niu, Liu, Wand, Kenneth (bb0165) 2011; 29
Somos-Valenzuela, McKinney, Rounce, Byers (bb0230) 2014; 8
Gardelle, Arnaud, Berthier (bb0055) 2011; 75
Mergili, Müller, Schneider (bb0145) 2013; 107
Randhawa, Sood, Rathore, Kulkarni (bb0210) 2005; 33
Richardson, Reynolds (bb0215) 2000; 65–66
Gardner (bb0065) 2013; 340
Zhang, Yao, Xie, Zhang, Zhu (bb0340) 2014; 59
Worni, Huggel, Stoffel (bb0280) 2013; 468–469
Wang, Xiang, Gao, Lu, Yao (bb0255) 2014; 29
Kang (bb0110) 2015; 9
Liu, Cheng, Su (bb0120) 2013; 321
Guo (bb0075) 2014
Hewitt (bb0085) 2007; 53
Liu, Cheng, Li (bb0125) 2014; 14
Salerno (bb0225) 2012; 92–93
Chalise (bb0040) 2006; 308
Loveland, Dwyer (bb0135) 2012; 122
Westoby (bb0275) 2014; 134
Wei (bb0270) 2014; 55
Liu, Cheng, Yan, Yin (bb0130) 2009; 68
Bolch (bb0035) 2012; 336
Osti, Egashira, Adikari (bb0180) 2013; 27
Hewitt, Liu (bb0090) 2010; 31
Vuichard, Zimmermann (bb0250) 1986; 90–94
Benn, Wiseman, Hands (bb0015) 2001; 47
Qiu (bb0200) 2008; 454
Zhang, Xie, Yao, Liang, Kang (bb0325) 2012; 48
Govindha Raj, Kumar, S.N, R. (bb0070) 2012; 4
Song, Huang, Richards, Ke, Hien (bb0235) 2014; 50
Zhang, He, Ye, Wu (bb0345) 2013; 35
Pfeffer (bb0185) 2014; 60
Xu, Florian, Ai-guo, Jonas (bb0290) 2013; 111
Bolch, Buchroithner, Peters, Baessler, Bajracharya (bb0025) 2008; 8
Li, Sheng (bb0115) 2012; 33
Chen, Cui, Li, Yang, Qi (bb0045) 2007; 88
Bolch (10.1016/j.gloplacha.2015.05.013_bb0025) 2008; 8
Ageta (10.1016/j.gloplacha.2015.05.013_bb0005) 2000
Liu (10.1016/j.gloplacha.2015.05.013_bb0125) 2014; 14
Wang (10.1016/j.gloplacha.2015.05.013_bb0265) 2013; 8
Xu (10.1016/j.gloplacha.2015.05.013_bb0290) 2013; 111
Osti (10.1016/j.gloplacha.2015.05.013_bb0180) 2013; 27
Gardelle (10.1016/j.gloplacha.2015.05.013_bb0055) 2011; 75
Li (10.1016/j.gloplacha.2015.05.013_bb0115) 2012; 33
Tweed (10.1016/j.gloplacha.2015.05.013_bb0245) 2014
Niu (10.1016/j.gloplacha.2015.05.013_bb0165) 2011; 29
Ye (10.1016/j.gloplacha.2015.05.013_bb0315) 2009; 6
Guo (10.1016/j.gloplacha.2015.05.013_bb0080) 2015; 61
Hewitt (10.1016/j.gloplacha.2015.05.013_bb0085) 2007; 53
Zhang (10.1016/j.gloplacha.2015.05.013_bb0320) 2011; 115
Gardner (10.1016/j.gloplacha.2015.05.013_bb0065) 2013; 340
Song (10.1016/j.gloplacha.2015.05.013_bb0235) 2014; 50
Yang (10.1016/j.gloplacha.2015.05.013_bb0295) 2014; 112
Bolch (10.1016/j.gloplacha.2015.05.013_bb0030) 2010; 114
Bolch (10.1016/j.gloplacha.2015.05.013_bb0035) 2012; 336
Zhang (10.1016/j.gloplacha.2015.05.013_bb0325) 2012; 48
Thompson (10.1016/j.gloplacha.2015.05.013_bb0240) 2012; 145–146
Phan (10.1016/j.gloplacha.2015.05.013_bb0195) 2013; 17
Yao (10.1016/j.gloplacha.2015.05.013_bb0305) 2012; 2
Fujita (10.1016/j.gloplacha.2015.05.013_bb0050) 2009; 4
Guo (10.1016/j.gloplacha.2015.05.013_bb0075) 2014
Loveland (10.1016/j.gloplacha.2015.05.013_bb0135) 2012; 122
Wang (10.1016/j.gloplacha.2015.05.013_bb0260) 2012; 12
Chalise (10.1016/j.gloplacha.2015.05.013_bb0040) 2006; 308
Phan (10.1016/j.gloplacha.2015.05.013_bb0190) 2012; 17
Pfeffer (10.1016/j.gloplacha.2015.05.013_bb0185) 2014; 60
Rai (10.1016/j.gloplacha.2015.05.013_bb0205) 2005
Wang (10.1016/j.gloplacha.2015.05.013_bb0255) 2014; 29
O'Gorman (10.1016/j.gloplacha.2015.05.013_bb0170) 1996; 18
Zhang (10.1016/j.gloplacha.2015.05.013_bb0340) 2014; 59
Mergili (10.1016/j.gloplacha.2015.05.013_bb0145) 2013; 107
Yao (10.1016/j.gloplacha.2015.05.013_bb0310) 2012; 3
Richardson (10.1016/j.gloplacha.2015.05.013_bb0215) 2000; 65–66
Neckel (10.1016/j.gloplacha.2015.05.013_bb0155) 2014; 9
Yang (10.1016/j.gloplacha.2015.05.013_bb0300) 2010; 103
Kang (10.1016/j.gloplacha.2015.05.013_bb0110) 2015; 9
Liu (10.1016/j.gloplacha.2015.05.013_bb0130) 2009; 68
Zhang (10.1016/j.gloplacha.2015.05.013_bb0345) 2013; 35
Nie (10.1016/j.gloplacha.2015.05.013_bb0160) 2013; 8
Qiu (10.1016/j.gloplacha.2015.05.013_bb0200) 2008; 454
Somos-Valenzuela (10.1016/j.gloplacha.2015.05.013_bb0230) 2014; 8
Hewitt (10.1016/j.gloplacha.2015.05.013_bb0090) 2010; 31
Ma (10.1016/j.gloplacha.2015.05.013_bb0140) 2010; 37
Bhambri (10.1016/j.gloplacha.2015.05.013_bb0020) 2013; 7
IPCC (10.1016/j.gloplacha.2015.05.013_bb0095) 2014
Westoby (10.1016/j.gloplacha.2015.05.013_bb0275) 2014; 134
Gardelle (10.1016/j.gloplacha.2015.05.013_bb0060) 2013; 7
Govindha Raj (10.1016/j.gloplacha.2015.05.013_bb0070) 2012; 4
Liu (10.1016/j.gloplacha.2015.05.013_bb0120) 2013; 321
Osti (10.1016/j.gloplacha.2015.05.013_bb0175) 2009; 23
Roy (10.1016/j.gloplacha.2015.05.013_bb0220) 2014; 145
Kääb (10.1016/j.gloplacha.2015.05.013_bb0105) 2015; 9
Chen (10.1016/j.gloplacha.2015.05.013_bb0045) 2007; 88
Benn (10.1016/j.gloplacha.2015.05.013_bb0015) 2001; 47
Zhang (10.1016/j.gloplacha.2015.05.013_bb0330) 2013; 40
Salerno (10.1016/j.gloplacha.2015.05.013_bb0225) 2012; 92–93
Wei (10.1016/j.gloplacha.2015.05.013_bb0270) 2014; 55
Worni (10.1016/j.gloplacha.2015.05.013_bb0280) 2013; 468–469
Zhang (10.1016/j.gloplacha.2015.05.013_bb0335) 2014; 119
Vuichard (10.1016/j.gloplacha.2015.05.013_bb0250) 1986; 90–94
Wu (10.1016/j.gloplacha.2015.05.013_bb0285) 2014; 15
Ives (10.1016/j.gloplacha.2015.05.013_bb0100) 2010
Randhawa (10.1016/j.gloplacha.2015.05.013_bb0210) 2005; 33
Basnett (10.1016/j.gloplacha.2015.05.013_bb0010) 2013; 59
Mool (10.1016/j.gloplacha.2015.05.013_bb0150) 2001
References_xml – volume: 14
  start-page: 3065
  year: 2014
  end-page: 3075
  ident: bb0125
  article-title: The 1988 glacial lake outburst flood in Guangxieco Lake, Tibet, China
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 50
  start-page: 3170
  year: 2014
  end-page: 3186
  ident: bb0235
  article-title: Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?
  publication-title: Water Resour. Res.
– year: 2014
  ident: bb0075
  article-title: The Second Glacier Inventory Dataset of China (Version 1.0)
  publication-title: Cold and Arid Regions Science Data Center at Lanzhou
– volume: 75
  start-page: 47
  year: 2011
  end-page: 55
  ident: bb0055
  article-title: Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009
  publication-title: Glob. Planet. Chang.
– volume: 31
  start-page: 528
  year: 2010
  end-page: 551
  ident: bb0090
  article-title: Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats
  publication-title: Phys. Geogr.
– volume: 92–93
  start-page: 30
  year: 2012
  end-page: 39
  ident: bb0225
  article-title: Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation
  publication-title: Glob. Planet. Chang.
– volume: 55
  start-page: 213
  year: 2014
  end-page: 222
  ident: bb0270
  article-title: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps
  publication-title: Ann. Glaciol.
– volume: 7
  start-page: 975
  year: 2013
  end-page: 1028
  ident: bb0060
  article-title: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011
  publication-title: Cryosphere
– volume: 18
  start-page: 746
  year: 1996
  end-page: 751
  ident: bb0170
  article-title: Subpixel precision of straight-edged shapes for registration and measurement
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 285
  year: 2005
  end-page: 290
  ident: bb0210
  article-title: Moraine-Dammed Lakes study in the chenab and The Satluj River Basins using IRS data
  publication-title: J. Indian Soc. Remote Sens.
– volume: 4
  start-page: 045205
  year: 2009
  ident: bb0050
  article-title: Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery
  publication-title: Environ. Res. Lett.
– volume: 23
  start-page: 2943
  year: 2009
  end-page: 2955
  ident: bb0175
  article-title: Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal
  publication-title: Hydrol. Process.
– volume: 9
  start-page: 417
  year: 2015
  end-page: 440
  ident: bb0110
  article-title: Decapitation of high-altitude glaciers on the Tibetan Plateau revealed by ice core tritium and mercury records
  publication-title: Cryosphere Discuss.
– volume: 9
  start-page: 557
  year: 2015
  end-page: 564
  ident: bb0105
  article-title: Brief Communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir–Karakoram–Himalaya
  publication-title: Cryosphere
– volume: 321
  start-page: 78
  year: 2013
  end-page: 87
  ident: bb0120
  article-title: The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China
  publication-title: Quat. Int.
– volume: 2
  start-page: 663
  year: 2012
  end-page: 667
  ident: bb0305
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nat. Clim. Chang.
– volume: 60
  start-page: 537
  year: 2014
  end-page: 552
  ident: bb0185
  article-title: The Randolph Glacier Inventory: a globally complete inventory of glaciers
  publication-title: J. Glaciol.
– volume: 3
  start-page: 52
  year: 2012
  end-page: 64
  ident: bb0310
  article-title: Third Pole Environment (TPE)
  publication-title: J. Environ. Dev.
– volume: 35
  start-page: 263
  year: 2013
  end-page: 271
  ident: bb0345
  article-title: Recent variation of mass balance of the Xiaodongkemadi glacier in the Tanggula Range and its infuencing factors
  publication-title: J. Glaciol. Geocryol.
– volume: 8
  start-page: 1661
  year: 2014
  end-page: 1671
  ident: bb0230
  article-title: Changes in Imja Tsho in the Mount Everest region of Nepal
  publication-title: Cryosphere
– volume: 145–146
  start-page: 1
  year: 2012
  end-page: 11
  ident: bb0240
  article-title: A rapidly growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal
  publication-title: Geomorphology
– volume: 29
  start-page: 859
  year: 2014
  end-page: 874
  ident: bb0255
  article-title: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas
  publication-title: Hydrol. Process.
– year: 2010
  ident: bb0100
  article-title: Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment
– volume: 4
  start-page: 241
  year: 2012
  end-page: 253
  ident: bb0070
  article-title: Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: semi-automated approach using satellite data
  publication-title: Geomatics Nat. Hazards Risk
– volume: 53
  start-page: 181
  year: 2007
  end-page: 188
  ident: bb0085
  article-title: Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya
  publication-title: J. Glaciol.
– start-page: 165
  year: 2000
  end-page: 176
  ident: bb0005
  article-title: Expansion of glacier lakes in recent decades in the Bhutan Himalayas, Debris-covered glaciers
– year: 2005
  ident: bb0205
  article-title: An overview of glaciers, glacier retreat, and subsequent impacts in Nepal, India and China
  publication-title: WWF Nepal Program
– volume: 7
  start-page: 1385
  year: 2013
  end-page: 1398
  ident: bb0020
  article-title: Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram
  publication-title: Cryosphere
– volume: 40
  start-page: 2125
  year: 2013
  end-page: 2130
  ident: bb0330
  article-title: Increased mass over the Tibetan Plateau: From lakes or glaciers?
  publication-title: Geophys. Res. Lett.
– year: 2001
  ident: bb0150
  article-title: Inventory of glaciers, glacial lakes and glacial lake outburst floods
  publication-title: Monitoring and early warning systems in the Hindu Kush-Himalayan Region: Nepal
– volume: 111
  start-page: 246
  year: 2013
  end-page: 257
  ident: bb0290
  article-title: Glacier and glacial lakes changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010
  publication-title: Glob. Planet. Chang.
– volume: 8
  start-page: 1329
  year: 2008
  end-page: 1340
  ident: bb0025
  article-title: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 115
  start-page: 1733
  year: 2011
  end-page: 1742
  ident: bb0320
  article-title: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)
  publication-title: Remote Sens. Environ.
– volume: 88
  start-page: 298
  year: 2007
  end-page: 311
  ident: bb0045
  article-title: Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet)
  publication-title: Geomorphology
– volume: 47
  start-page: 626
  year: 2001
  end-page: 638
  ident: bb0015
  article-title: Growth and drainage of supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal
  publication-title: J. Glaciol.
– volume: 112
  start-page: 79
  year: 2014
  end-page: 91
  ident: bb0295
  article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review
  publication-title: Glob. Planet. Chang.
– volume: 17
  start-page: 4061
  year: 2013
  end-page: 4077
  ident: bb0195
  article-title: Geometric dependency of Tibetan lakes on glacial runoff
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2014
  ident: bb0095
  article-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects
  publication-title: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 29
  start-page: 276
  year: 2011
  end-page: 282
  ident: bb0165
  article-title: Monitoring on ice-dammed lake and related surging glaciers in Yankant River, Karakorum in 2009
  publication-title: J. Mt. Sci.
– volume: 65–66
  start-page: 31
  year: 2000
  end-page: 47
  ident: bb0215
  article-title: An overview of glacial hazards in the Himalayas
  publication-title: Quat. Int.
– volume: 12
  start-page: 3109
  year: 2012
  end-page: 3122
  ident: bb0260
  article-title: An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 340
  start-page: 852
  year: 2013
  end-page: 857
  ident: bb0065
  article-title: A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009
  publication-title: Science
– volume: 8
  start-page: 044052
  year: 2013
  ident: bb0265
  article-title: Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010
  publication-title: Environ. Res. Lett.
– volume: 103
  start-page: 31
  year: 2010
  end-page: 44
  ident: bb0300
  article-title: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research
  publication-title: Earth Sci. Rev.
– volume: 468–469
  start-page: S71
  year: 2013
  end-page: S84
  ident: bb0280
  article-title: Glacial lakes in the Indian Himalayas — From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes
  publication-title: Sci. Total Environ.
– volume: 33
  start-page: 5194
  year: 2012
  end-page: 5213
  ident: bb0115
  article-title: An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas
  publication-title: Int. J. Remote Sens.
– volume: 119
  start-page: 8552
  year: 2014
  end-page: 8567
  ident: bb0335
  article-title: Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data
  publication-title: J. Geophys. Res.-Atmos.
– volume: 308
  start-page: 460
  year: 2006
  end-page: 465
  ident: bb0040
  article-title: Climate change impacts on glacial lakes and glacierized basins in Nepal and implications for water resources
  publication-title: IAHS Publ.
– start-page: 619
  year: 2014
  end-page: 621
  ident: bb0245
  article-title: Ice-Dammed Lakes
  publication-title: Encyclopedia of Snow, Ice and Glaciers
– volume: 48
  start-page: W10529
  year: 2012
  ident: bb0325
  article-title: Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010)
  publication-title: Water Resour. Res.
– volume: 134
  start-page: 137
  year: 2014
  end-page: 159
  ident: bb0275
  article-title: Modelling outburst floods from moraine-dammed glacial lakes
  publication-title: Earth Sci. Rev.
– volume: 59
  start-page: 1035
  year: 2013
  end-page: 1046
  ident: bb0010
  article-title: The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India
  publication-title: J. Glaciol.
– volume: 8
  start-page: e83973
  year: 2013
  ident: bb0160
  article-title: Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010
  publication-title: PLoS One
– volume: 61
  start-page: 357
  year: 2015
  end-page: 372
  ident: bb0080
  article-title: The second Chinese glacier inventory: data, methods and results
  publication-title: J. Glaciol.
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bb0220
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
– volume: 107
  start-page: 13
  year: 2013
  end-page: 24
  ident: bb0145
  article-title: Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia)
  publication-title: Glob. Planet. Chang.
– volume: 15
  start-page: 1312
  year: 2014
  end-page: 1322
  ident: bb0285
  article-title: Long-Term Changes of Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan Plateau
  publication-title: J. Hydrometeorol.
– volume: 37
  start-page: L24106
  year: 2010
  ident: bb0140
  article-title: A half-century of changes in China's lakes: Global warming or human influence?
  publication-title: Geophys. Res. Lett.
– volume: 454
  start-page: 393
  year: 2008
  end-page: 396
  ident: bb0200
  article-title: The third pole
  publication-title: Nature
– volume: 90–94
  year: 1986
  ident: bb0250
  article-title: The Langmoche flash-flood, Khumbu Himal, Nepal
  publication-title: Mt. Res. Dev.
– volume: 122
  start-page: 22
  year: 2012
  end-page: 29
  ident: bb0135
  article-title: Landsat: Building a strong future
  publication-title: Remote Sens. Environ.
– volume: 336
  start-page: 310
  year: 2012
  end-page: 314
  ident: bb0035
  article-title: The State and Fate of Himalayan Glaciers
  publication-title: Science
– volume: 27
  start-page: 262
  year: 2013
  end-page: 274
  ident: bb0180
  article-title: Prediction and assessment of multiple glacial lake outburst floods scenario in Pho Chu River basin, Bhutan
  publication-title: Hydrol. Process.
– volume: 68
  start-page: 164
  year: 2009
  end-page: 174
  ident: bb0130
  article-title: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings
  publication-title: Glob. Planet. Chang.
– volume: 59
  start-page: 3010
  year: 2014
  end-page: 3021
  ident: bb0340
  article-title: Lakes' state and abundance across the Tibetan Plateau
  publication-title: Chin. Sci. Bull.
– volume: 114
  start-page: 127
  year: 2010
  end-page: 137
  ident: bb0030
  article-title: Landsat-based inventory of glaciers in western Canada, 1985-2005
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 014009
  year: 2014
  ident: bb0155
  article-title: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements
  publication-title: Environ. Res. Lett.
– volume: 6
  start-page: 211
  year: 2009
  end-page: 220
  ident: bb0315
  article-title: Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China
  publication-title: J. Mt. Sci.
– volume: 17
  start-page: 12
  year: 2012
  end-page: 22
  ident: bb0190
  article-title: ICESat derived elevation changes of Tibetan lakes between 2003 and 2009
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 88
  start-page: 298
  issue: 3-4
  year: 2007
  ident: 10.1016/j.gloplacha.2015.05.013_bb0045
  article-title: Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.11.012
– volume: 8
  start-page: 1329
  issue: 6
  year: 2008
  ident: 10.1016/j.gloplacha.2015.05.013_bb0025
  article-title: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-8-1329-2008
– volume: 33
  start-page: 285
  issue: 2
  year: 2005
  ident: 10.1016/j.gloplacha.2015.05.013_bb0210
  article-title: Moraine-Dammed Lakes study in the chenab and The Satluj River Basins using IRS data
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/BF02990047
– volume: 9
  start-page: 557
  issue: 2
  year: 2015
  ident: 10.1016/j.gloplacha.2015.05.013_bb0105
  article-title: Brief Communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir–Karakoram–Himalaya
  publication-title: Cryosphere
  doi: 10.5194/tc-9-557-2015
– start-page: 619
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0245
  article-title: Ice-Dammed Lakes
– volume: 65–66
  start-page: 31
  year: 2000
  ident: 10.1016/j.gloplacha.2015.05.013_bb0215
  article-title: An overview of glacial hazards in the Himalayas
  publication-title: Quat. Int.
  doi: 10.1016/S1040-6182(99)00035-X
– volume: 90–94
  year: 1986
  ident: 10.1016/j.gloplacha.2015.05.013_bb0250
  article-title: The Langmoche flash-flood, Khumbu Himal, Nepal
  publication-title: Mt. Res. Dev.
– volume: 55
  start-page: 213
  issue: 66
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0270
  article-title: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps
  publication-title: Ann. Glaciol.
  doi: 10.3189/2014AoG66A038
– volume: 50
  start-page: 3170
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0235
  article-title: Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014724
– volume: 107
  start-page: 13
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0145
  article-title: Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia)
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2013.04.001
– volume: 103
  start-page: 31
  issue: 1-2
  year: 2010
  ident: 10.1016/j.gloplacha.2015.05.013_bb0300
  article-title: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2010.07.002
– volume: 111
  start-page: 246
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0290
  article-title: Glacier and glacial lakes changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2013.09.011
– volume: 40
  start-page: 2125
  issue: 10
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0330
  article-title: Increased mass over the Tibetan Plateau: From lakes or glaciers?
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50462
– volume: 53
  start-page: 181
  issue: 181
  year: 2007
  ident: 10.1016/j.gloplacha.2015.05.013_bb0085
  article-title: Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya
  publication-title: J. Glaciol.
  doi: 10.3189/172756507782202829
– volume: 145–146
  start-page: 1
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0240
  article-title: A rapidly growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.08.015
– volume: 47
  start-page: 626
  issue: 159
  year: 2001
  ident: 10.1016/j.gloplacha.2015.05.013_bb0015
  article-title: Growth and drainage of supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal
  publication-title: J. Glaciol.
  doi: 10.3189/172756501781831729
– volume: 340
  start-page: 852
  issue: 6134
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0065
  article-title: A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009
  publication-title: Science
  doi: 10.1126/science.1234532
– volume: 29
  start-page: 859
  issue: 6
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0255
  article-title: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10199
– volume: 60
  start-page: 537
  issue: 221
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0185
  article-title: The Randolph Glacier Inventory: a globally complete inventory of glaciers
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J176
– volume: 7
  start-page: 1385
  issue: 5
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0020
  article-title: Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1385-2013
– volume: 9
  start-page: 417
  issue: 1
  year: 2015
  ident: 10.1016/j.gloplacha.2015.05.013_bb0110
  article-title: Decapitation of high-altitude glaciers on the Tibetan Plateau revealed by ice core tritium and mercury records
  publication-title: Cryosphere Discuss.
– volume: 33
  start-page: 5194
  issue: 16
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0115
  article-title: An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.657370
– volume: 18
  start-page: 746
  issue: 7
  year: 1996
  ident: 10.1016/j.gloplacha.2015.05.013_bb0170
  article-title: Subpixel precision of straight-edged shapes for registration and measurement
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.506796
– volume: 8
  start-page: 1661
  issue: 5
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0230
  article-title: Changes in Imja Tsho in the Mount Everest region of Nepal
  publication-title: Cryosphere
  doi: 10.5194/tc-8-1661-2014
– volume: 59
  start-page: 1035
  issue: 218
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0010
  article-title: The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India
  publication-title: J. Glaciol.
  doi: 10.3189/2013JoG12J184
– volume: 114
  start-page: 127
  issue: 1
  year: 2010
  ident: 10.1016/j.gloplacha.2015.05.013_bb0030
  article-title: Landsat-based inventory of glaciers in western Canada, 1985-2005
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.015
– start-page: 165
  year: 2000
  ident: 10.1016/j.gloplacha.2015.05.013_bb0005
– volume: 29
  start-page: 276
  issue: 3
  year: 2011
  ident: 10.1016/j.gloplacha.2015.05.013_bb0165
  article-title: Monitoring on ice-dammed lake and related surging glaciers in Yankant River, Karakorum in 2009
  publication-title: J. Mt. Sci.
– volume: 92–93
  start-page: 30
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0225
  article-title: Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2012.04.001
– volume: 119
  start-page: 8552
  issue: 14
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0335
  article-title: Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2014JD021615
– volume: 321
  start-page: 78
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0120
  article-title: The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2013.11.023
– volume: 17
  start-page: 12
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0190
  article-title: ICESat derived elevation changes of Tibetan lakes between 2003 and 2009
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 2
  start-page: 663
  issue: 9
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0305
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1580
– volume: 4
  start-page: 241
  issue: 3
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0070
  article-title: Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: semi-automated approach using satellite data
  publication-title: Geomatics Nat. Hazards Risk
  doi: 10.1080/19475705.2012.707153
– volume: 8
  start-page: 044052
  issue: 4
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0265
  article-title: Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/8/4/044052
– volume: 15
  start-page: 1312
  issue: 1-2
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0285
  article-title: Long-Term Changes of Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan Plateau
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-13-093.1
– volume: 8
  start-page: e83973
  issue: 12
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0160
  article-title: Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083973
– volume: 35
  start-page: 263
  issue: 2
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0345
  article-title: Recent variation of mass balance of the Xiaodongkemadi glacier in the Tanggula Range and its infuencing factors
  publication-title: J. Glaciol. Geocryol.
– year: 2001
  ident: 10.1016/j.gloplacha.2015.05.013_bb0150
  article-title: Inventory of glaciers, glacial lakes and glacial lake outburst floods
– year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0075
  article-title: The Second Glacier Inventory Dataset of China (Version 1.0)
– volume: 6
  start-page: 211
  issue: 3
  year: 2009
  ident: 10.1016/j.gloplacha.2015.05.013_bb0315
  article-title: Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-009-1016-4
– volume: 68
  start-page: 164
  issue: 3
  year: 2009
  ident: 10.1016/j.gloplacha.2015.05.013_bb0130
  article-title: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2009.03.017
– volume: 134
  start-page: 137
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0275
  article-title: Modelling outburst floods from moraine-dammed glacial lakes
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2014.03.009
– volume: 336
  start-page: 310
  issue: 6079
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0035
  article-title: The State and Fate of Himalayan Glaciers
  publication-title: Science
  doi: 10.1126/science.1215828
– volume: 9
  start-page: 014009
  issue: 1
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0155
  article-title: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/1/014009
– volume: 7
  start-page: 975
  issue: 2
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0060
  article-title: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011
  publication-title: Cryosphere
– volume: 17
  start-page: 4061
  issue: 10
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0195
  article-title: Geometric dependency of Tibetan lakes on glacial runoff
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-4061-2013
– volume: 454
  start-page: 393
  issue: 7203
  year: 2008
  ident: 10.1016/j.gloplacha.2015.05.013_bb0200
  article-title: The third pole
  publication-title: Nature
  doi: 10.1038/454393a
– volume: 14
  start-page: 3065
  issue: 11
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0125
  article-title: The 1988 glacial lake outburst flood in Guangxieco Lake, Tibet, China
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-3065-2014
– volume: 468–469
  start-page: S71
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0280
  article-title: Glacial lakes in the Indian Himalayas — From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.11.043
– volume: 31
  start-page: 528
  issue: 6
  year: 2010
  ident: 10.1016/j.gloplacha.2015.05.013_bb0090
  article-title: Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats
  publication-title: Phys. Geogr.
  doi: 10.2747/0272-3646.31.6.528
– year: 2010
  ident: 10.1016/j.gloplacha.2015.05.013_bb0100
– volume: 23
  start-page: 2943
  issue: 20
  year: 2009
  ident: 10.1016/j.gloplacha.2015.05.013_bb0175
  article-title: Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7405
– volume: 59
  start-page: 3010
  issue: 24
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0340
  article-title: Lakes' state and abundance across the Tibetan Plateau
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-014-0258-x
– volume: 3
  start-page: 52
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0310
  article-title: Third Pole Environment (TPE)
  publication-title: J. Environ. Dev.
  doi: 10.1016/j.envdev.2012.04.002
– volume: 4
  start-page: 045205
  issue: 4
  year: 2009
  ident: 10.1016/j.gloplacha.2015.05.013_bb0050
  article-title: Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/4/4/045205
– year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0095
  article-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects
– volume: 12
  start-page: 3109
  issue: 10
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0260
  article-title: An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-12-3109-2012
– volume: 37
  start-page: L24106
  issue: 24
  year: 2010
  ident: 10.1016/j.gloplacha.2015.05.013_bb0140
  article-title: A half-century of changes in China's lakes: Global warming or human influence?
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL045514
– volume: 75
  start-page: 47
  issue: 1–2
  year: 2011
  ident: 10.1016/j.gloplacha.2015.05.013_bb0055
  article-title: Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2010.10.003
– year: 2005
  ident: 10.1016/j.gloplacha.2015.05.013_bb0205
  article-title: An overview of glaciers, glacier retreat, and subsequent impacts in Nepal, India and China
– volume: 308
  start-page: 460
  year: 2006
  ident: 10.1016/j.gloplacha.2015.05.013_bb0040
  article-title: Climate change impacts on glacial lakes and glacierized basins in Nepal and implications for water resources
  publication-title: IAHS Publ.
– volume: 61
  start-page: 357
  issue: 226
  year: 2015
  ident: 10.1016/j.gloplacha.2015.05.013_bb0080
  article-title: The second Chinese glacier inventory: data, methods and results
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG14J209
– volume: 112
  start-page: 79
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0295
  article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2013.12.001
– volume: 115
  start-page: 1733
  issue: 7
  year: 2011
  ident: 10.1016/j.gloplacha.2015.05.013_bb0320
  article-title: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.03.005
– volume: 48
  start-page: W10529
  issue: 10
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0325
  article-title: Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010)
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR011971
– volume: 122
  start-page: 22
  year: 2012
  ident: 10.1016/j.gloplacha.2015.05.013_bb0135
  article-title: Landsat: Building a strong future
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.022
– volume: 27
  start-page: 262
  issue: 2
  year: 2013
  ident: 10.1016/j.gloplacha.2015.05.013_bb0180
  article-title: Prediction and assessment of multiple glacial lake outburst floods scenario in Pho Chu River basin, Bhutan
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8342
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.gloplacha.2015.05.013_bb0220
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
SSID ssj0017022
Score 2.5833285
Snippet No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram-Himalayas and the Tibetan Plateau. Therefore,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms China
climate
Freshwater
Glacial lake inventory
Glacier-fed lakes
Glaciers
Global warming
Inventories
Lakes
Landsat
Poles
snowmelt
Stockpiling
temperature
Third Pole
Trends
Title An inventory of glacial lakes in the Third Pole region and their changes in response to global warming
URI https://dx.doi.org/10.1016/j.gloplacha.2015.05.013
https://www.proquest.com/docview/1746888748
https://www.proquest.com/docview/1778038325
https://www.proquest.com/docview/2000304761
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpdBL6ZOmj6BCr-7Ktl7ObQlNty0NhSaQm5C1o2TTxQ6bDSGX_vbOSPZCCmkOBR_8GIEYjWc-SZ9mGPsQpMe4KGVR1bEtEN-KogUQRdWoEBsRy9jSOuT3Qz07ll9P1MkW2x_PwhCtcvD92acnbz28mQzanFwsFpOfoqHwZAnSUBBLJ9ilISv_-HtD8yiNyDsJKFyQ9C2O1-myJ-rTGSUgKlVO4VnfFaH-8tUpAB08YY8H5MinuXNP2RZ0z9jDz6ky781zFqcdXyQGeb-64X3kiItpOZwv_S-4xE8coR4_Olus5vxHvwROJRn6jvtuztNuAc9ngJPoKjNnga97nlOG8GtPrJnTF-z44NPR_qwYiigUXtZmXdRRGRwOD631eCfnsglBzb2CoLWpQixBGlAqWuNDkKC1lUEFqSIiCe3b-iXb7voOXjHe6DJE4SNgYJXQgKXJYat0i1YABuwO06PiXBgyjFOhi6UbqWTnbqNxRxp3Aq-y3mFi0_AiJ9m4v8neODLulr04DAX3N34_jqXDv4m2SHwH_dWlQ7PVFv2utP-SMVbgxL5Sd8tUaa6J1li-_p-OvmGP6CkTDt-y7fXqCt4hCFq3u8nKd9mD6Zdvs8M_ptIJaQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZpSmgvpa-Q9KlAe3RXtvVyoYfQNt08CWQDuSmydpRsu9hhd0PYS_9U_2BHlr2QQpJDCfhgLMkMI2m-kfRphpAPjlvERc6TLPdlgv4tS0oAlmSFcL5gPvVl2IfcP5D9Y75zIk6WyJ_uLkygVba2P9r0xlq3X3qtNnsXo1HviBUBnnRwaQKIpS2zchfmV7hum37Z_oad_DHLtr4PvvaTNrVAYnmuZknuhUIhLZTa4hsf8sI5MbQCnJQqcz4FrkAIr5V1joOUmjvhuPCIr9KWOf73AXnI0VyEtAmffi94Jali8egCpUuCeNdIZWfjOnCtzkPEo1TEmKH5TZD4Dzg0iLf1lDxpXVW6GbXxjCxB9Zys_GhSAc9fEL9Z0VFDWa8nc1p7io542H-nY_sLplhE0bekg_PRZEgP6zHQkAOirqithrQ5nqDx0nFTdRKpukBnNY0xSuiVDTSds5fk-F5Uu0qWq7qCNUILmTrPrAdEcg4F6LAaLYUscdiBAr1OZKc449qQ5iGzxth03LWfZqFxEzRuGD5pvk7YouFFjOpxd5PPXc-YawPUIPbc3Xij60uD0zecydgK6supwXkiNRp6rm-rozTL0fSKm-tkzeKWK5m--h9B35NH_cH-ntnbPth9TR6Hksh2fEOWZ5NLeIse2Kx814x4Sk7ve4r9BVOGRm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inventory+of+glacial+lakes+in+the+Third+Pole+region+and+their+changes+in+response+to+global+warming&rft.jtitle=Global+and+planetary+change&rft.au=Zhang%2C+Guoqing&rft.au=Yao%2C+Tandong&rft.au=Xie%2C+Hongjie&rft.au=Wang%2C+Weicai&rft.date=2015-08-01&rft.issn=0921-8181&rft.volume=131&rft.spage=148&rft.epage=157&rft_id=info:doi/10.1016%2Fj.gloplacha.2015.05.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8181&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8181&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8181&client=summon