Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties
Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here f...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 8; pp. 7296 - 7303 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm2 V–1 s–1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts. |
---|---|
AbstractList | Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm2 V-1 s-1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts. Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm2 V–1 s–1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts. Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm V s are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts. |
Author | Temiño, Inés Mas-Torrent, Marta Barrena, Esther Pérez-Rodríguez, Ana Ocal, Carmen |
AuthorAffiliation | CIBER-BBN Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) |
AuthorAffiliation_xml | – name: CIBER-BBN – name: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) |
Author_xml | – sequence: 1 givenname: Ana surname: Pérez-Rodríguez fullname: Pérez-Rodríguez, Ana organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) – sequence: 2 givenname: Inés surname: Temiño fullname: Temiño, Inés organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) – sequence: 3 givenname: Carmen orcidid: 0000-0001-8790-8844 surname: Ocal fullname: Ocal, Carmen organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) – sequence: 4 givenname: Marta surname: Mas-Torrent fullname: Mas-Torrent, Marta email: mmas@icmab.es organization: CIBER-BBN – sequence: 5 givenname: Esther orcidid: 0000-0001-9163-2959 surname: Barrena fullname: Barrena, Esther email: ebarrena@icmab.es organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29405695$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1Lw0AQhhepWFu9epQ9ipA2m93NZo-2fhUKFhoFT2GSTmxKk427ycF_b0pqb15mhuGZF-YZkUFlKiTkhvkT5gdsCpmDspiolOlA6TNyybQQXhTIYHCahRiSkXM73w954MsLMgy08GWo5SX5fMTMbIrqizZbpB9omyKDPV1twSFdYw0WmsJUFKoNXTSOLsoasoZ2m3nkzeJZPF2taWyhcoVrjKUra-pDCLorcp7D3uH1sY_J-_NTPH_1lm8vi_nD0gPBw8ZTmMoAIMSQq4ALrZUUyHIhOPN5pnItUMkozDjjUc4BpJSRZlKmKLoCnI_JXZ9bW_PdomuSsnAZ7vdQoWldwrSWTCqpVYdOejSzxjmLeVLbogT7kzA_OehMep3JUWd3cHvMbtMSNyf8z18H3PdAd5jsTGur7tX_0n4BK4x_VA |
CitedBy_id | crossref_primary_10_1002_admt_202000475 crossref_primary_10_1016_j_jcrysgro_2023_127539 crossref_primary_10_1002_admt_202101535 crossref_primary_10_1002_aelm_201900067 crossref_primary_10_1063_5_0005441 crossref_primary_10_1002_adfm_202107976 crossref_primary_10_1016_j_apsusc_2019_143822 crossref_primary_10_3390_chemosensors11020074 crossref_primary_10_1016_j_orgel_2021_106409 crossref_primary_10_1002_adfm_202006115 crossref_primary_10_1016_j_bios_2020_112433 crossref_primary_10_1038_s41467_020_15974_7 crossref_primary_10_1007_s13233_020_8118_9 crossref_primary_10_1021_acs_chemrev_1c00314 crossref_primary_10_1039_D0NH00096E crossref_primary_10_1002_adma_201801079 crossref_primary_10_1016_j_matchemphys_2018_09_064 crossref_primary_10_1002_admt_202101487 crossref_primary_10_1016_j_surfin_2023_103752 crossref_primary_10_1021_acsami_9b00873 crossref_primary_10_1002_adfm_202008032 crossref_primary_10_1021_acs_nanolett_8b04284 crossref_primary_10_1021_jacs_0c02055 crossref_primary_10_1021_acs_jpcc_3c03332 crossref_primary_10_1021_acsami_1c24109 crossref_primary_10_35848_1347_4065_ac2f60 crossref_primary_10_1021_acsami_4c02012 crossref_primary_10_1039_D3TC04821G crossref_primary_10_1002_admt_201900104 crossref_primary_10_1021_acsomega_0c00548 crossref_primary_10_1021_acs_chemmater_2c02780 crossref_primary_10_1002_adfm_202202071 crossref_primary_10_1021_acsami_0c08672 crossref_primary_10_1021_acsami_2c00097 crossref_primary_10_1002_adfm_202105456 crossref_primary_10_1002_aelm_202400222 crossref_primary_10_3390_nano13142087 crossref_primary_10_35848_1347_4065_ac4b92 crossref_primary_10_1021_acsami_0c06418 crossref_primary_10_1021_acscentsci_0c00251 crossref_primary_10_35848_1347_4065_abeac3 crossref_primary_10_1002_aelm_202200293 crossref_primary_10_1063_5_0092988 crossref_primary_10_1002_adfm_202314131 crossref_primary_10_1021_acs_cgd_1c01203 crossref_primary_10_1016_j_mssp_2018_12_022 crossref_primary_10_1016_j_mtphys_2023_101206 crossref_primary_10_1002_adfm_201903889 crossref_primary_10_1016_j_bios_2019_111844 crossref_primary_10_1002_pssr_202100602 crossref_primary_10_1002_aelm_202000939 crossref_primary_10_1021_acsnano_0c07003 crossref_primary_10_1002_admi_202101679 crossref_primary_10_1021_acsnano_2c08420 crossref_primary_10_1002_aelm_202000539 crossref_primary_10_3390_mi10110716 crossref_primary_10_1039_D0CE01467B crossref_primary_10_1002_adma_202309767 crossref_primary_10_1002_admi_201900950 crossref_primary_10_1016_j_polymer_2020_122208 crossref_primary_10_1021_acsami_8b02851 |
Cites_doi | 10.1039/c2cp43769d 10.1021/ja074841i 10.1063/1.3115826 10.1023/a:1019113218650 10.1002/adfm.200800009 10.1038/ncomms10908 10.1016/j.orgel.2017.07.032 10.1002/(sici)1521-4095(199803)10:5<365::aid-adma365>3.0.co;2-u 10.1063/1.2432410 10.1039/b924227a 10.1016/j.mattod.2014.08.037 10.1002/adfm.201201389 10.1021/am5075908 10.1063/1.3690949 10.1021/acsami.5b02747 10.1063/1.2966350 10.1002/adma.200903193 10.1021/acs.jpcc.5b00611 10.1021/la000743y 10.1039/c4tc02481h 10.1021/jp5041579 10.1021/cr960068q 10.1063/1.1613369 10.1063/1.4943646 10.1007/978-0-387-28668-6_5 10.1002/adma.200900277 10.1063/1.1470702 10.1038/ncomms6162 10.1039/c7nr01116d 10.1038/nature10313 10.1021/acs.chemmater.5b04774 10.1038/ncomms4005 10.1039/b614393h 10.1016/j.jeurceramsoc.2016.04.035 10.1088/0957-4484/18/12/125505 10.1039/c4ee00688g 10.1002/admt.201600090 10.1126/science.1207110 10.1016/j.orgel.2017.06.020 10.1021/am5015315 10.1103/physrevb.86.035320 10.1038/ncomms9598 10.1039/b417136p 10.1021/ja307802q 10.1063/1.2402349 10.1039/c5tc02488a 10.1002/adma.201500322 10.1007/s11249-011-9871-x 10.1002/adfm.201502274 10.1002/adma.201104206 10.1002/adma.201601075 10.1002/adma.201104580 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.7b19279 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 7303 |
ExternalDocumentID | 10_1021_acsami_7b19279 29405695 c327003179 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a436t-7eb52aa6e63723499754e1f443103c7f94e7586c3138f3aa55589155be455ba33 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri Aug 16 04:07:27 EDT 2024 Fri Aug 23 00:54:01 EDT 2024 Wed Oct 16 01:00:07 EDT 2024 Thu Aug 27 13:42:07 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | AFM organic semiconductors friction anisotropy C8-BTBT OFETs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a436t-7eb52aa6e63723499754e1f443103c7f94e7586c3138f3aa55589155be455ba33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8790-8844 0000-0001-9163-2959 |
OpenAccessLink | https://digital.csic.es/bitstream/10261/161898/1/Perez_ACSApplMatInt_2018_postprint.pdf |
PMID | 29405695 |
PQID | 1995157597 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1995157597 crossref_primary_10_1021_acsami_7b19279 pubmed_primary_29405695 acs_journals_10_1021_acsami_7b19279 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-28 |
PublicationDateYYYYMMDD | 2018-02-28 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 Glatzel T. (ref23/cit23) 2007 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1039/c2cp43769d – ident: ref17/cit17 doi: 10.1021/ja074841i – ident: ref44/cit44 doi: 10.1063/1.3115826 – ident: ref22/cit22 doi: 10.1023/a:1019113218650 – ident: ref38/cit38 doi: 10.1002/adfm.200800009 – ident: ref52/cit52 doi: 10.1038/ncomms10908 – ident: ref43/cit43 doi: 10.1016/j.orgel.2017.07.032 – ident: ref2/cit2 doi: 10.1002/(sici)1521-4095(199803)10:5<365::aid-adma365>3.0.co;2-u – ident: ref20/cit20 doi: 10.1063/1.2432410 – ident: ref24/cit24 doi: 10.1039/b924227a – ident: ref42/cit42 doi: 10.1016/j.mattod.2014.08.037 – ident: ref15/cit15 doi: 10.1002/adfm.201201389 – ident: ref25/cit25 doi: 10.1021/am5075908 – ident: ref45/cit45 doi: 10.1063/1.3690949 – ident: ref33/cit33 doi: 10.1021/acsami.5b02747 – ident: ref14/cit14 doi: 10.1063/1.2966350 – ident: ref51/cit51 – ident: ref5/cit5 doi: 10.1002/adma.200903193 – ident: ref39/cit39 doi: 10.1021/acs.jpcc.5b00611 – ident: ref28/cit28 doi: 10.1021/la000743y – ident: ref26/cit26 doi: 10.1039/c4tc02481h – ident: ref34/cit34 doi: 10.1021/jp5041579 – ident: ref21/cit21 doi: 10.1021/cr960068q – ident: ref41/cit41 doi: 10.1063/1.1613369 – ident: ref49/cit49 doi: 10.1063/1.4943646 – start-page: 113 volume-title: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale year: 2007 ident: ref23/cit23 doi: 10.1007/978-0-387-28668-6_5 contributor: fullname: Glatzel T. – ident: ref6/cit6 doi: 10.1002/adma.200900277 – ident: ref40/cit40 doi: 10.1063/1.1470702 – ident: ref10/cit10 doi: 10.1038/ncomms6162 – ident: ref30/cit30 doi: 10.1039/c7nr01116d – ident: ref53/cit53 doi: 10.1038/nature10313 – ident: ref9/cit9 doi: 10.1021/acs.chemmater.5b04774 – ident: ref12/cit12 doi: 10.1038/ncomms4005 – ident: ref3/cit3 doi: 10.1039/b614393h – ident: ref32/cit32 doi: 10.1016/j.jeurceramsoc.2016.04.035 – ident: ref35/cit35 doi: 10.1088/0957-4484/18/12/125505 – ident: ref4/cit4 doi: 10.1039/c4ee00688g – ident: ref1/cit1 doi: 10.1002/admt.201600090 – ident: ref31/cit31 doi: 10.1126/science.1207110 – ident: ref47/cit47 doi: 10.1016/j.orgel.2017.06.020 – ident: ref19/cit19 doi: 10.1021/am5015315 – ident: ref46/cit46 doi: 10.1103/physrevb.86.035320 – ident: ref11/cit11 doi: 10.1038/ncomms9598 – ident: ref36/cit36 doi: 10.1039/b417136p – ident: ref18/cit18 doi: 10.1021/ja307802q – ident: ref50/cit50 doi: 10.1063/1.2402349 – ident: ref37/cit37 doi: 10.1039/c5tc02488a – ident: ref16/cit16 doi: 10.1002/adma.201500322 – ident: ref27/cit27 doi: 10.1007/s11249-011-9871-x – ident: ref8/cit8 doi: 10.1002/adfm.201502274 – ident: ref48/cit48 doi: 10.1002/adma.201104206 – ident: ref7/cit7 doi: 10.1002/adma.201601075 – ident: ref13/cit13 doi: 10.1002/adma.201104580 |
SSID | ssj0063205 |
Score | 2.5148985 |
Snippet | Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7296 |
Title | Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties |
URI | http://dx.doi.org/10.1021/acsami.7b19279 https://www.ncbi.nlm.nih.gov/pubmed/29405695 https://search.proquest.com/docview/1995157597 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24L-NGRMFTtG3SpDk6o6KCMjAzMp5KkqYIQkds5-Kv9yWdujLopYfQhJDt-15e3vcQOg6oUTLOKDFhZglLAkl0qCVhxqlnZTLU1AUK393z6wG7HcbDz_uOnx78KDxTpnSpcIQGLiLkLJqPRCBdkobzTq85czmN_GNFsMgZSQCxGnnGX_UdCJnyOwhNYZYeYa6Wa7mj0gsTuoclz6fjSp-at9-yjX92fgUtTWgmPq_XxSqascUaWvwiPriOHi_A8nTIhYED4gf_vhqqdJ8A13DP1prgowKrIsM3VYlvfDwlhpJOQtr9dv-s28Me6rzSCO66a_1Xp8-6gQZXl_3ONZkkWiCKUV4RYXUcKcUtpyKiYAOJmNkwZ8wlITMil8yCWcENDWmSU6WcRpjTldeWwUdRuonmilFhtxEOOc9MDMeszjXLAytjpSwzPBOZEyfMW-gIxiSdbJQy9T7wKEzrgUonA9VCJ838pC-16sbUPw-b6UthYzhvhyrsaAwtSyCPLv2oaKGtel4_2ook8FQu451_9WYXLQBNSupA9j00V72O7T5QkUof-FX4DpdH1nM |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xONAeWqCFblvACKSezG5ix46PsIB2eWmlXSp6imzHEVKlbEWyl_76jp0NrwoJLjlYseX49X2T8XwDsN9jVqskZ9RGuaM87SlqIqMot149K1eRYT5Q-PJKDK752U1yswDdNhYGO1FhS1Vw4j-oC0RdLPMZcaRBSiLVIiwnsid9yoLD_rg9egWLw51FNMw5TRG4WpXG_-p7LLLVUyx6gWAGoDn9CKP7Lob7Jb8PZrU5sH-fqTe-4RtW4cOcdJLDZpWswYIr1-H9IynCT_DrGO1Qj2MEGSH5GW5bY5XRLaIcGbtGIXxaEl3mZFhXZBiiKwmW9FN6NDmadEdjEoAv6I6Qkf_Jf-fVWj_D9enJpD-g87QLVHMmaiqdSWKthRNMxgwtIplwFxWc-5RkVhaKOzQyhGURSwumtVcM8yrzxnF8aMY2YKmclu4LkEiI3CZ46JrC8KLnVKK141bkMvdShUUH9nBMsvm2qbLgEY-jrBmobD5QHfjRTlP2p9HgePHN3XYWM9wm3vehSzedYcsKqaRPRio7sNlM731bsULWKlTy9VW92YGVweTyIrsYXp1_g3dIoNImxP07LNV3M7eFJKU222Fh_gM3uN7c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7amIS2wxgbbAU2PIHEyaWOHTs-QllFYUOVWiY4RbbjaNKkFJH0sr9-z06KgAmJXXKwYsvxr-97eX7fA9gfcGd0WnDqWOGpyAaaWmY1FS6oZxWaWR4ChX9cyNNLcXaVXnVx3CEWBjtRY0t1dOKHXX1TlJ3CADvE8pAVR1mkJUq_hFepYklIW3A0nC6PX8mTeG8RjXNBMwSvpVLjP_UDHrn6IR49QTIj2IzWYHbXzXjH5Hd_0di--_NIwfE_v-MdvO3IJzlqV8s6vPDVe3hzT5LwA1yfoD0a8IwgMyQ_461rrDL5hWhHpr5VCp9XxFQFGTc1GccoS4Ilw4wez45nh5MpiQAY9UfIJPzsvw2qrRtwOfo2G57SLv0CNYLLhipv08QY6SVXCUfLSKXCs1KIkJrMqVILj8aGdJzxrOTGBOWwoDZvvcCH4XwTVqp55T8BYVIWLsXD15ZWlAOvU2O8cLJQRZAsLHuwh2OSd9unzqNnPGF5O1B5N1A9OFhOVX7TanE8-ebX5UzmuF2CD8RUfr7AljVSypCUVPXgYzvFd20lGtmr1OnWs3qzC6uTk1H-fXxxvg2vkUdlbaT7Dqw0twv_GblKY7_EtfkXh7vhVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+Vertical+Phase+Separation+and+Its+Impact+on+C8-BTBT%2FPS+Transistor+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=P%C3%A9rez-Rodr%C3%ADguez%2C+Ana&rft.au=Temi%C3%B1o%2C+In%C3%A9s&rft.au=Ocal%2C+Carmen&rft.au=Mas-Torrent%2C+Marta&rft.date=2018-02-28&rft.eissn=1944-8252&rft.volume=10&rft.issue=8&rft.spage=7296&rft_id=info:doi/10.1021%2Facsami.7b19279&rft_id=info%3Apmid%2F29405695&rft.externalDocID=29405695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |