Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties

Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here f...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 8; pp. 7296 - 7303
Main Authors Pérez-Rodríguez, Ana, Temiño, Inés, Ocal, Carmen, Mas-Torrent, Marta, Barrena, Esther
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]­benzothieno­[3,2-b]­[1]­benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm2 V–1 s–1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.
AbstractList Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm2 V-1 s-1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.
Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]­benzothieno­[3,2-b]­[1]­benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm2 V–1 s–1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.
Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm V s are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.
Author Temiño, Inés
Mas-Torrent, Marta
Barrena, Esther
Pérez-Rodríguez, Ana
Ocal, Carmen
AuthorAffiliation CIBER-BBN
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
AuthorAffiliation_xml – name: CIBER-BBN
– name: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
Author_xml – sequence: 1
  givenname: Ana
  surname: Pérez-Rodríguez
  fullname: Pérez-Rodríguez, Ana
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
– sequence: 2
  givenname: Inés
  surname: Temiño
  fullname: Temiño, Inés
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
– sequence: 3
  givenname: Carmen
  orcidid: 0000-0001-8790-8844
  surname: Ocal
  fullname: Ocal, Carmen
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
– sequence: 4
  givenname: Marta
  surname: Mas-Torrent
  fullname: Mas-Torrent, Marta
  email: mmas@icmab.es
  organization: CIBER-BBN
– sequence: 5
  givenname: Esther
  orcidid: 0000-0001-9163-2959
  surname: Barrena
  fullname: Barrena, Esther
  email: ebarrena@icmab.es
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29405695$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1Lw0AQhhepWFu9epQ9ipA2m93NZo-2fhUKFhoFT2GSTmxKk427ycF_b0pqb15mhuGZF-YZkUFlKiTkhvkT5gdsCpmDspiolOlA6TNyybQQXhTIYHCahRiSkXM73w954MsLMgy08GWo5SX5fMTMbIrqizZbpB9omyKDPV1twSFdYw0WmsJUFKoNXTSOLsoasoZ2m3nkzeJZPF2taWyhcoVrjKUra-pDCLorcp7D3uH1sY_J-_NTPH_1lm8vi_nD0gPBw8ZTmMoAIMSQq4ALrZUUyHIhOPN5pnItUMkozDjjUc4BpJSRZlKmKLoCnI_JXZ9bW_PdomuSsnAZ7vdQoWldwrSWTCqpVYdOejSzxjmLeVLbogT7kzA_OehMep3JUWd3cHvMbtMSNyf8z18H3PdAd5jsTGur7tX_0n4BK4x_VA
CitedBy_id crossref_primary_10_1002_admt_202000475
crossref_primary_10_1016_j_jcrysgro_2023_127539
crossref_primary_10_1002_admt_202101535
crossref_primary_10_1002_aelm_201900067
crossref_primary_10_1063_5_0005441
crossref_primary_10_1002_adfm_202107976
crossref_primary_10_1016_j_apsusc_2019_143822
crossref_primary_10_3390_chemosensors11020074
crossref_primary_10_1016_j_orgel_2021_106409
crossref_primary_10_1002_adfm_202006115
crossref_primary_10_1016_j_bios_2020_112433
crossref_primary_10_1038_s41467_020_15974_7
crossref_primary_10_1007_s13233_020_8118_9
crossref_primary_10_1021_acs_chemrev_1c00314
crossref_primary_10_1039_D0NH00096E
crossref_primary_10_1002_adma_201801079
crossref_primary_10_1016_j_matchemphys_2018_09_064
crossref_primary_10_1002_admt_202101487
crossref_primary_10_1016_j_surfin_2023_103752
crossref_primary_10_1021_acsami_9b00873
crossref_primary_10_1002_adfm_202008032
crossref_primary_10_1021_acs_nanolett_8b04284
crossref_primary_10_1021_jacs_0c02055
crossref_primary_10_1021_acs_jpcc_3c03332
crossref_primary_10_1021_acsami_1c24109
crossref_primary_10_35848_1347_4065_ac2f60
crossref_primary_10_1021_acsami_4c02012
crossref_primary_10_1039_D3TC04821G
crossref_primary_10_1002_admt_201900104
crossref_primary_10_1021_acsomega_0c00548
crossref_primary_10_1021_acs_chemmater_2c02780
crossref_primary_10_1002_adfm_202202071
crossref_primary_10_1021_acsami_0c08672
crossref_primary_10_1021_acsami_2c00097
crossref_primary_10_1002_adfm_202105456
crossref_primary_10_1002_aelm_202400222
crossref_primary_10_3390_nano13142087
crossref_primary_10_35848_1347_4065_ac4b92
crossref_primary_10_1021_acsami_0c06418
crossref_primary_10_1021_acscentsci_0c00251
crossref_primary_10_35848_1347_4065_abeac3
crossref_primary_10_1002_aelm_202200293
crossref_primary_10_1063_5_0092988
crossref_primary_10_1002_adfm_202314131
crossref_primary_10_1021_acs_cgd_1c01203
crossref_primary_10_1016_j_mssp_2018_12_022
crossref_primary_10_1016_j_mtphys_2023_101206
crossref_primary_10_1002_adfm_201903889
crossref_primary_10_1016_j_bios_2019_111844
crossref_primary_10_1002_pssr_202100602
crossref_primary_10_1002_aelm_202000939
crossref_primary_10_1021_acsnano_0c07003
crossref_primary_10_1002_admi_202101679
crossref_primary_10_1021_acsnano_2c08420
crossref_primary_10_1002_aelm_202000539
crossref_primary_10_3390_mi10110716
crossref_primary_10_1039_D0CE01467B
crossref_primary_10_1002_adma_202309767
crossref_primary_10_1002_admi_201900950
crossref_primary_10_1016_j_polymer_2020_122208
crossref_primary_10_1021_acsami_8b02851
Cites_doi 10.1039/c2cp43769d
10.1021/ja074841i
10.1063/1.3115826
10.1023/a:1019113218650
10.1002/adfm.200800009
10.1038/ncomms10908
10.1016/j.orgel.2017.07.032
10.1002/(sici)1521-4095(199803)10:5<365::aid-adma365>3.0.co;2-u
10.1063/1.2432410
10.1039/b924227a
10.1016/j.mattod.2014.08.037
10.1002/adfm.201201389
10.1021/am5075908
10.1063/1.3690949
10.1021/acsami.5b02747
10.1063/1.2966350
10.1002/adma.200903193
10.1021/acs.jpcc.5b00611
10.1021/la000743y
10.1039/c4tc02481h
10.1021/jp5041579
10.1021/cr960068q
10.1063/1.1613369
10.1063/1.4943646
10.1007/978-0-387-28668-6_5
10.1002/adma.200900277
10.1063/1.1470702
10.1038/ncomms6162
10.1039/c7nr01116d
10.1038/nature10313
10.1021/acs.chemmater.5b04774
10.1038/ncomms4005
10.1039/b614393h
10.1016/j.jeurceramsoc.2016.04.035
10.1088/0957-4484/18/12/125505
10.1039/c4ee00688g
10.1002/admt.201600090
10.1126/science.1207110
10.1016/j.orgel.2017.06.020
10.1021/am5015315
10.1103/physrevb.86.035320
10.1038/ncomms9598
10.1039/b417136p
10.1021/ja307802q
10.1063/1.2402349
10.1039/c5tc02488a
10.1002/adma.201500322
10.1007/s11249-011-9871-x
10.1002/adfm.201502274
10.1002/adma.201104206
10.1002/adma.201601075
10.1002/adma.201104580
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.7b19279
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 7303
ExternalDocumentID 10_1021_acsami_7b19279
29405695
c327003179
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a436t-7eb52aa6e63723499754e1f443103c7f94e7586c3138f3aa55589155be455ba33
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 04:07:27 EDT 2024
Fri Aug 23 00:54:01 EDT 2024
Wed Oct 16 01:00:07 EDT 2024
Thu Aug 27 13:42:07 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords AFM
organic semiconductors
friction anisotropy
C8-BTBT
OFETs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a436t-7eb52aa6e63723499754e1f443103c7f94e7586c3138f3aa55589155be455ba33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8790-8844
0000-0001-9163-2959
OpenAccessLink https://digital.csic.es/bitstream/10261/161898/1/Perez_ACSApplMatInt_2018_postprint.pdf
PMID 29405695
PQID 1995157597
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1995157597
crossref_primary_10_1021_acsami_7b19279
pubmed_primary_29405695
acs_journals_10_1021_acsami_7b19279
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-02-28
PublicationDateYYYYMMDD 2018-02-28
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
Glatzel T. (ref23/cit23) 2007
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1039/c2cp43769d
– ident: ref17/cit17
  doi: 10.1021/ja074841i
– ident: ref44/cit44
  doi: 10.1063/1.3115826
– ident: ref22/cit22
  doi: 10.1023/a:1019113218650
– ident: ref38/cit38
  doi: 10.1002/adfm.200800009
– ident: ref52/cit52
  doi: 10.1038/ncomms10908
– ident: ref43/cit43
  doi: 10.1016/j.orgel.2017.07.032
– ident: ref2/cit2
  doi: 10.1002/(sici)1521-4095(199803)10:5<365::aid-adma365>3.0.co;2-u
– ident: ref20/cit20
  doi: 10.1063/1.2432410
– ident: ref24/cit24
  doi: 10.1039/b924227a
– ident: ref42/cit42
  doi: 10.1016/j.mattod.2014.08.037
– ident: ref15/cit15
  doi: 10.1002/adfm.201201389
– ident: ref25/cit25
  doi: 10.1021/am5075908
– ident: ref45/cit45
  doi: 10.1063/1.3690949
– ident: ref33/cit33
  doi: 10.1021/acsami.5b02747
– ident: ref14/cit14
  doi: 10.1063/1.2966350
– ident: ref51/cit51
– ident: ref5/cit5
  doi: 10.1002/adma.200903193
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.5b00611
– ident: ref28/cit28
  doi: 10.1021/la000743y
– ident: ref26/cit26
  doi: 10.1039/c4tc02481h
– ident: ref34/cit34
  doi: 10.1021/jp5041579
– ident: ref21/cit21
  doi: 10.1021/cr960068q
– ident: ref41/cit41
  doi: 10.1063/1.1613369
– ident: ref49/cit49
  doi: 10.1063/1.4943646
– start-page: 113
  volume-title: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale
  year: 2007
  ident: ref23/cit23
  doi: 10.1007/978-0-387-28668-6_5
  contributor:
    fullname: Glatzel T.
– ident: ref6/cit6
  doi: 10.1002/adma.200900277
– ident: ref40/cit40
  doi: 10.1063/1.1470702
– ident: ref10/cit10
  doi: 10.1038/ncomms6162
– ident: ref30/cit30
  doi: 10.1039/c7nr01116d
– ident: ref53/cit53
  doi: 10.1038/nature10313
– ident: ref9/cit9
  doi: 10.1021/acs.chemmater.5b04774
– ident: ref12/cit12
  doi: 10.1038/ncomms4005
– ident: ref3/cit3
  doi: 10.1039/b614393h
– ident: ref32/cit32
  doi: 10.1016/j.jeurceramsoc.2016.04.035
– ident: ref35/cit35
  doi: 10.1088/0957-4484/18/12/125505
– ident: ref4/cit4
  doi: 10.1039/c4ee00688g
– ident: ref1/cit1
  doi: 10.1002/admt.201600090
– ident: ref31/cit31
  doi: 10.1126/science.1207110
– ident: ref47/cit47
  doi: 10.1016/j.orgel.2017.06.020
– ident: ref19/cit19
  doi: 10.1021/am5015315
– ident: ref46/cit46
  doi: 10.1103/physrevb.86.035320
– ident: ref11/cit11
  doi: 10.1038/ncomms9598
– ident: ref36/cit36
  doi: 10.1039/b417136p
– ident: ref18/cit18
  doi: 10.1021/ja307802q
– ident: ref50/cit50
  doi: 10.1063/1.2402349
– ident: ref37/cit37
  doi: 10.1039/c5tc02488a
– ident: ref16/cit16
  doi: 10.1002/adma.201500322
– ident: ref27/cit27
  doi: 10.1007/s11249-011-9871-x
– ident: ref8/cit8
  doi: 10.1002/adfm.201502274
– ident: ref48/cit48
  doi: 10.1002/adma.201104206
– ident: ref7/cit7
  doi: 10.1002/adma.201601075
– ident: ref13/cit13
  doi: 10.1002/adma.201104580
SSID ssj0063205
Score 2.5148985
Snippet Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 7296
Title Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties
URI http://dx.doi.org/10.1021/acsami.7b19279
https://www.ncbi.nlm.nih.gov/pubmed/29405695
https://search.proquest.com/docview/1995157597
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24L-NGRMFTtG3SpDk6o6KCMjAzMp5KkqYIQkds5-Kv9yWdujLopYfQhJDt-15e3vcQOg6oUTLOKDFhZglLAkl0qCVhxqlnZTLU1AUK393z6wG7HcbDz_uOnx78KDxTpnSpcIQGLiLkLJqPRCBdkobzTq85czmN_GNFsMgZSQCxGnnGX_UdCJnyOwhNYZYeYa6Wa7mj0gsTuoclz6fjSp-at9-yjX92fgUtTWgmPq_XxSqascUaWvwiPriOHi_A8nTIhYED4gf_vhqqdJ8A13DP1prgowKrIsM3VYlvfDwlhpJOQtr9dv-s28Me6rzSCO66a_1Xp8-6gQZXl_3ONZkkWiCKUV4RYXUcKcUtpyKiYAOJmNkwZ8wlITMil8yCWcENDWmSU6WcRpjTldeWwUdRuonmilFhtxEOOc9MDMeszjXLAytjpSwzPBOZEyfMW-gIxiSdbJQy9T7wKEzrgUonA9VCJ838pC-16sbUPw-b6UthYzhvhyrsaAwtSyCPLv2oaKGtel4_2ook8FQu451_9WYXLQBNSupA9j00V72O7T5QkUof-FX4DpdH1nM
link.rule.ids 315,783,787,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xONAeWqCFblvACKSezG5ix46PsIB2eWmlXSp6imzHEVKlbEWyl_76jp0NrwoJLjlYseX49X2T8XwDsN9jVqskZ9RGuaM87SlqIqMot149K1eRYT5Q-PJKDK752U1yswDdNhYGO1FhS1Vw4j-oC0RdLPMZcaRBSiLVIiwnsid9yoLD_rg9egWLw51FNMw5TRG4WpXG_-p7LLLVUyx6gWAGoDn9CKP7Lob7Jb8PZrU5sH-fqTe-4RtW4cOcdJLDZpWswYIr1-H9IynCT_DrGO1Qj2MEGSH5GW5bY5XRLaIcGbtGIXxaEl3mZFhXZBiiKwmW9FN6NDmadEdjEoAv6I6Qkf_Jf-fVWj_D9enJpD-g87QLVHMmaiqdSWKthRNMxgwtIplwFxWc-5RkVhaKOzQyhGURSwumtVcM8yrzxnF8aMY2YKmclu4LkEiI3CZ46JrC8KLnVKK141bkMvdShUUH9nBMsvm2qbLgEY-jrBmobD5QHfjRTlP2p9HgePHN3XYWM9wm3vehSzedYcsKqaRPRio7sNlM731bsULWKlTy9VW92YGVweTyIrsYXp1_g3dIoNImxP07LNV3M7eFJKU222Fh_gM3uN7c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7amIS2wxgbbAU2PIHEyaWOHTs-QllFYUOVWiY4RbbjaNKkFJH0sr9-z06KgAmJXXKwYsvxr-97eX7fA9gfcGd0WnDqWOGpyAaaWmY1FS6oZxWaWR4ChX9cyNNLcXaVXnVx3CEWBjtRY0t1dOKHXX1TlJ3CADvE8pAVR1mkJUq_hFepYklIW3A0nC6PX8mTeG8RjXNBMwSvpVLjP_UDHrn6IR49QTIj2IzWYHbXzXjH5Hd_0di--_NIwfE_v-MdvO3IJzlqV8s6vPDVe3hzT5LwA1yfoD0a8IwgMyQ_461rrDL5hWhHpr5VCp9XxFQFGTc1GccoS4Ilw4wez45nh5MpiQAY9UfIJPzsvw2qrRtwOfo2G57SLv0CNYLLhipv08QY6SVXCUfLSKXCs1KIkJrMqVILj8aGdJzxrOTGBOWwoDZvvcCH4XwTVqp55T8BYVIWLsXD15ZWlAOvU2O8cLJQRZAsLHuwh2OSd9unzqNnPGF5O1B5N1A9OFhOVX7TanE8-ebX5UzmuF2CD8RUfr7AljVSypCUVPXgYzvFd20lGtmr1OnWs3qzC6uTk1H-fXxxvg2vkUdlbaT7Dqw0twv_GblKY7_EtfkXh7vhVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+Vertical+Phase+Separation+and+Its+Impact+on+C8-BTBT%2FPS+Transistor+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=P%C3%A9rez-Rodr%C3%ADguez%2C+Ana&rft.au=Temi%C3%B1o%2C+In%C3%A9s&rft.au=Ocal%2C+Carmen&rft.au=Mas-Torrent%2C+Marta&rft.date=2018-02-28&rft.eissn=1944-8252&rft.volume=10&rft.issue=8&rft.spage=7296&rft_id=info:doi/10.1021%2Facsami.7b19279&rft_id=info%3Apmid%2F29405695&rft.externalDocID=29405695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon