Hypoglycemia Early Alarm Systems Based on Multivariable Models

Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycem...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 52; no. 35; pp. 12329 - 12336
Main Authors Turksoy, Kamuran, Bayrak, Elif S, Quinn, Lauretta, Littlejohn, Elizabeth, Rollins, Derrick, Cinar, Ali
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.
AbstractList Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.
Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.
Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.
Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.
Author Bayrak, Elif S
Turksoy, Kamuran
Littlejohn, Elizabeth
Rollins, Derrick
Cinar, Ali
Quinn, Lauretta
AuthorAffiliation University of Chicago
Iowa State University
University of Illinois at Chicago
Illinois Institute of Technology
AuthorAffiliation_xml – name: Iowa State University
– name: Illinois Institute of Technology
– name: University of Chicago
– name: University of Illinois at Chicago
– name: 2 Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd St., Chicago, IL 60616
– name: 4 Department of Pediatrics and Medicine, Section of Endocrinology, Biological Sciences Division, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637
– name: 5 Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011
– name: 3 College of Nursing, University of Illinois at Chicago, 845 South Damen Avenue MC 802, Chicago, IL 60612
– name: 1 Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S. Dearborn St., Chicago, IL 60616
Author_xml – sequence: 1
  givenname: Kamuran
  surname: Turksoy
  fullname: Turksoy, Kamuran
  organization: Illinois Institute of Technology
– sequence: 2
  givenname: Elif S
  surname: Bayrak
  fullname: Bayrak, Elif S
  organization: Illinois Institute of Technology
– sequence: 3
  givenname: Lauretta
  surname: Quinn
  fullname: Quinn, Lauretta
  organization: University of Illinois at Chicago
– sequence: 4
  givenname: Elizabeth
  surname: Littlejohn
  fullname: Littlejohn, Elizabeth
  organization: University of Chicago
– sequence: 5
  givenname: Derrick
  surname: Rollins
  fullname: Rollins, Derrick
  organization: Iowa State University
– sequence: 6
  givenname: Ali
  surname: Cinar
  fullname: Cinar, Ali
  email: cinar@iit.edu
  organization: Illinois Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24187436$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtL9TAQhoMoerws_AMf3Qi6qObapBtBxRsoLtR1SNLEL5I2x6QV-u_t4aioCK4GZp555_JugtUudhaAXQQPEcToyFsCCYWIrYAZYhiWDFK2CmZQCFEyIdgG2Mz5GULIGKXrYANTJDgl1QwcX43z-BRGY1uvinOVwlicBJXa4n7MvW1zcaqybYrYFbdD6P2rSl7pYIvb2NiQt8GaUyHbnfe4BR4vzh_Orsqbu8vrs5ObUk1T-pJpXXFCNW8odoY7y1BNtdJUVxq5WmuySDcGa8wddpUV3FEnDBSuYrBRZAscL3Xng25tY2zXJxXkPPlWpVFG5eX3Suf_y6f4KolAqGbVJLD_LpDiy2BzL1ufjQ1BdTYOWeLpY4LymvA_USRwNbGI0b_RqsaEI07FhP77esHn6h9WTMDREjAp5pysk8b3qvdxcZAPEkG5MFt-mj11HPzo-BD9jd1bsspk-RyH1E12_cK9AV3dtK8
CitedBy_id crossref_primary_10_1089_dia_2023_0140
crossref_primary_10_1109_TBME_2020_3049109
crossref_primary_10_1177_1932296814524862
crossref_primary_10_1002_dmrr_3348
crossref_primary_10_1016_j_bioactmat_2022_02_025
crossref_primary_10_1177_1932296820922622
crossref_primary_10_1177_193229681300700605
crossref_primary_10_4028_www_scientific_net_AMR_971_973_275
crossref_primary_10_1177_1932296815592409
crossref_primary_10_1016_j_neucom_2019_10_003
crossref_primary_10_1016_j_bbe_2018_02_005
crossref_primary_10_1109_JBHI_2015_2446413
crossref_primary_10_1038_s41746_022_00626_5
crossref_primary_10_1089_dia_2017_0364
crossref_primary_10_3390_s16122093
crossref_primary_10_1186_s12911_019_0943_4
crossref_primary_10_1007_s12046_024_02657_y
crossref_primary_10_1016_j_bbe_2020_10_004
crossref_primary_10_3390_biomedinformatics2040048
crossref_primary_10_1016_j_bspc_2025_107814
crossref_primary_10_1007_s13755_024_00313_7
crossref_primary_10_2196_26909
crossref_primary_10_1089_dia_2018_0072
crossref_primary_10_1177_20552076221129712
crossref_primary_10_1002_aisy_202400822
crossref_primary_10_1177_1932296816654161
crossref_primary_10_1109_ACCESS_2023_3244712
crossref_primary_10_1109_TBME_2016_2535412
crossref_primary_10_1007_s11517_021_02433_8
crossref_primary_10_1177_19322968231212205
crossref_primary_10_1002_cnm_3799
crossref_primary_10_1109_JBHI_2024_3371108
crossref_primary_10_1002_dmrr_3449
crossref_primary_10_1007_s11517_018_1859_3
crossref_primary_10_3390_s20226460
crossref_primary_10_1186_s12911_021_01462_5
crossref_primary_10_6000_1929_6029_2015_04_02_4
crossref_primary_10_1177_1932296815583507
crossref_primary_10_1109_JBHI_2018_2823763
crossref_primary_10_1109_JBHI_2019_2956704
crossref_primary_10_1177_1932296819880864
crossref_primary_10_1089_dia_2019_0119
crossref_primary_10_1111_coin_12396
crossref_primary_10_1177_19322968221093665
crossref_primary_10_1115_1_4041522
crossref_primary_10_1177_1932296818823792
crossref_primary_10_1038_s41598_022_10360_3
crossref_primary_10_1016_j_ifacol_2015_10_142
crossref_primary_10_3182_20140824_6_ZA_1003_00815
crossref_primary_10_1002_cnm_2833
crossref_primary_10_1016_j_bbe_2018_06_005
crossref_primary_10_1109_TBME_2021_3101589
crossref_primary_10_3390_s20143896
crossref_primary_10_1016_j_conengprac_2014_12_006
crossref_primary_10_1021_ie505035r
crossref_primary_10_1016_j_conengprac_2016_08_001
crossref_primary_10_1016_j_jprocont_2018_02_003
crossref_primary_10_1109_JBHI_2018_2840690
crossref_primary_10_1177_1932296816658666
crossref_primary_10_2196_28861
crossref_primary_10_1016_j_bspc_2017_11_016
crossref_primary_10_1016_j_heliyon_2022_e11372
crossref_primary_10_1109_TBME_2020_3015199
Cites_doi 10.1016/0005-1098(81)90092-3
10.1016/j.arcontrol.2012.09.007
10.1177/193229681000400222
10.1109/TBME.2009.2033264
10.1080/00401706.1976.10489467
10.1155/2010/216167
10.1080/00401706.1974.10489208
10.1016/j.jprocont.2010.02.008
10.1177/193229681200600519
10.1016/j.automatica.2012.05.076
10.2337/diacare.10.5.584
10.2337/dc09-2303
10.1177/193229680800200412
10.1021/ac60214a047
10.1089/dia.2012.0168
10.1177/193229681300700126
10.1109/TAC.2003.814273
10.1089/dia.2011.0052
10.1111/j.1399-543X.2006.00146.x
10.1177/193229680700100505
10.1089/dia.2012.0283
10.1177/193229681100500514
10.1089/dia.2008.0065
10.1089/dia.2008.0032
10.2337/dc09-1487
10.1089/dia.2005.7.3
10.1117/12.509703
10.2337/diabetes.52.5.1195
10.1109/TBME.2006.889774
10.1016/0005-1098(90)90159-F
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
DOI 10.1021/ie3034015
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database

MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5045
EndPage 12336
ExternalDocumentID PMC3811956
24187436
10_1021_ie3034015
b179385283
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK085611
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R01 DK085611 || DK
GroupedDBID 02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a436t-5bb6734b7d42fc7fe5194bab4b6b1f9bb32fc7dc2b27f2f6e87f4f8c08f650da3
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Thu Aug 21 14:10:39 EDT 2025
Thu Jul 10 21:44:03 EDT 2025
Fri Jul 11 09:37:43 EDT 2025
Fri Jul 11 11:59:36 EDT 2025
Thu Jan 02 22:11:13 EST 2025
Tue Jul 01 01:17:19 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Thu Aug 27 13:42:37 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords recursive algorithms
Hypoglycemia alarms
multivariable models
process monitoring
diabetes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a436t-5bb6734b7d42fc7fe5194bab4b6b1f9bb32fc7dc2b27f2f6e87f4f8c08f650da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24187436
PQID 1692371748
PQPubID 23500
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811956
proquest_miscellaneous_2045847937
proquest_miscellaneous_1826584154
proquest_miscellaneous_1692371748
pubmed_primary_24187436
crossref_citationtrail_10_1021_ie3034015
crossref_primary_10_1021_ie3034015
acs_journals_10_1021_ie3034015
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-04
PublicationDateYYYYMMDD 2013-09-04
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Aström K. J. (ref21/cit21) 2011
De Keyser R. M. C. (ref23/cit23) 1981; 17
Bayrak E. S. (ref13/cit13) 2012; 7
Riddell M. C. (ref36/cit36) 2006; 7
Savitzky A. (ref26/cit26) 1964; 36
Walsh J. (ref25/cit25) 2006
Favier G. (ref22/cit22) 1990; 26
Eren-Oruklu M. (ref10/cit10) 2012; 48
ref14/cit14
Bequette B. W. (ref31/cit31) 2012; 36
Yardley J. E. (ref33/cit33) 2013; 15
Banarer S. (ref29/cit29) 2003; 52
ref37/cit37
Badwe A. S. (ref20/cit20) 2010; 20
Sohlberg B. (ref17/cit17) 2008
Buckingham B. (ref2/cit2) 2010; 33
ref35/cit35
Box G. E. P. (ref15/cit15) 1976; 18
Bequette B. W. (ref27/cit27) 2010; 4
MacDonald M. J. (ref32/cit32) 1987; 10
Lütkepohl H. (ref19/cit19) 2006
Palerm C. C. (ref7/cit7) 2005; 7
Dassau E. (ref11/cit11) 2010; 33
Cameron F. (ref5/cit5) 2012; 6
Palerm C. C. (ref6/cit6) 2007; 1
Sparacino G. (ref8/cit8) 2007; 54
Box G. E. P. (ref18/cit18) 1974; 16
Lacy S. L. (ref24/cit24) 2003; 48
Eren-Oruklu M. (ref9/cit9) 2009; 11
Buckingham B. (ref3/cit3) 2009; 11
Agrawal P. (ref4/cit4) 2011; 5
Riddell M. C. (ref34/cit34) 2011; 13
Cameron F. (ref12/cit12) 2008; 2
ref30/cit30
ref1/cit1
Facchinetti A. (ref28/cit28) 2010; 57
Turksoy K. (ref16/cit16)
23511311 - J Endocrinol Invest. 2013 Sep;36(8):617-21
20811595 - Int J Pediatr. 2010;2010:null
21599515 - Diabetes Technol Ther. 2011 Aug;13(8):819-25
20200307 - Diabetes Care. 2010 May;33(5):1013-7
17518291 - IEEE Trans Biomed Eng. 2007 May;54(5):931-7
22027306 - J Diabetes Sci Technol. 2011 Sep 01;5(5):1137-41
19885237 - J Diabetes Sci Technol. 2008 Jul;2(4):612-21
20508231 - Diabetes Care. 2010 Jun;33(6):1249-54
23175620 - Annu Rev Control. 2012 Dec;36(2):255-266
23216304 - Diabetes Technol Ther. 2013 Jan;15(1):84-8
19344199 - Diabetes Technol Ther. 2009 Apr;11(4):243-53
16489976 - Pediatr Diabetes. 2006 Feb;7(1):60-70
3677976 - Diabetes Care. 1987 Sep-Oct;10(5):584-8
15738700 - Diabetes Technol Ther. 2005 Feb;7(1):3-14
23439179 - J Diabetes Sci Technol. 2013 Jan 01;7(1):206-14
23063041 - J Diabetes Sci Technol. 2012 Sep 01;6(5):1142-7
22865931 - Automatica (Oxf). 2012 Aug;48(8):1892-1897
19885130 - J Diabetes Sci Technol. 2007 Sep;1(5):624-9
19822467 - IEEE Trans Biomed Eng. 2010 Mar;57(3):634-41
23544672 - Diabetes Technol Ther. 2013 May;15(5):386-400
20307402 - J Diabetes Sci Technol. 2010 Mar 01;4(2):404-18
19848575 - Diabetes Technol Ther. 2009 Feb;11(2):93-7
12716752 - Diabetes. 2003 May;52(5):1195-203
References_xml – volume-title: Applied Modelling and Identification
  year: 2008
  ident: ref17/cit17
– volume: 17
  start-page: 167
  issue: 1
  year: 1981
  ident: ref23/cit23
  publication-title: Automatica
  doi: 10.1016/0005-1098(81)90092-3
– volume: 36
  start-page: 255
  issue: 2
  year: 2012
  ident: ref31/cit31
  publication-title: Ann. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.007
– volume: 4
  start-page: 404
  issue: 2
  year: 2010
  ident: ref27/cit27
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681000400222
– volume: 57
  start-page: 634
  issue: 3
  year: 2010
  ident: ref28/cit28
  publication-title: IEEE Trans. Bio-Med. Eng.
  doi: 10.1109/TBME.2009.2033264
– volume-title: New Introduction to Multiple Time Series Analysis
  year: 2006
  ident: ref19/cit19
– volume-title: Pumping Insulin
  year: 2006
  ident: ref25/cit25
– volume: 18
  start-page: 371
  issue: 4
  year: 1976
  ident: ref15/cit15
  publication-title: Technometrics
  doi: 10.1080/00401706.1976.10489467
– ident: ref35/cit35
  doi: 10.1155/2010/216167
– volume: 16
  start-page: 391
  issue: 3
  year: 1974
  ident: ref18/cit18
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489208
– volume: 20
  start-page: 559
  issue: 5
  year: 2010
  ident: ref20/cit20
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.02.008
– volume: 6
  start-page: 1142
  issue: 5
  year: 2012
  ident: ref5/cit5
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681200600519
– volume: 48
  start-page: 1892
  issue: 8
  year: 2012
  ident: ref10/cit10
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.05.076
– ident: ref1/cit1
– volume: 10
  start-page: 584
  issue: 5
  year: 1987
  ident: ref32/cit32
  publication-title: Diabetes Care
  doi: 10.2337/diacare.10.5.584
– volume-title: Computer-Controlled Systems: Theory and Design
  year: 2011
  ident: ref21/cit21
– volume: 33
  start-page: 1013
  issue: 5
  year: 2010
  ident: ref2/cit2
  publication-title: Diabetes Care
  doi: 10.2337/dc09-2303
– volume: 2
  start-page: 612
  issue: 4
  year: 2008
  ident: ref12/cit12
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680800200412
– volume-title: Proc. 2013 American Control Conf.
  ident: ref16/cit16
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: ref26/cit26
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 15
  start-page: 84
  issue: 1
  year: 2013
  ident: ref33/cit33
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2012.0168
– volume: 7
  start-page: 206
  issue: 1
  year: 2012
  ident: ref13/cit13
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681300700126
– volume: 48
  start-page: 1259
  issue: 7
  year: 2003
  ident: ref24/cit24
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2003.814273
– volume: 13
  start-page: 819
  issue: 8
  year: 2011
  ident: ref34/cit34
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2011.0052
– volume: 7
  start-page: 60
  issue: 1
  year: 2006
  ident: ref36/cit36
  publication-title: Pediatr. Diabetes.
  doi: 10.1111/j.1399-543X.2006.00146.x
– volume: 1
  start-page: 624
  issue: 5
  year: 2007
  ident: ref6/cit6
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680700100505
– ident: ref14/cit14
  doi: 10.1089/dia.2012.0283
– volume: 5
  start-page: 1137
  issue: 5
  year: 2011
  ident: ref4/cit4
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681100500514
– volume: 11
  start-page: 243
  issue: 4
  year: 2009
  ident: ref9/cit9
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2008.0065
– volume: 11
  start-page: 93
  issue: 2
  year: 2009
  ident: ref3/cit3
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2008.0032
– volume: 33
  start-page: 1249
  issue: 6
  year: 2010
  ident: ref11/cit11
  publication-title: Diabetes Care
  doi: 10.2337/dc09-1487
– volume: 7
  start-page: 3
  issue: 1
  year: 2005
  ident: ref7/cit7
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2005.7.3
– ident: ref37/cit37
  doi: 10.1117/12.509703
– volume: 52
  start-page: 1195
  issue: 5
  year: 2003
  ident: ref29/cit29
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.5.1195
– volume: 54
  start-page: 931
  issue: 5
  year: 2007
  ident: ref8/cit8
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889774
– volume: 26
  start-page: 75
  issue: 1
  year: 1990
  ident: ref22/cit22
  publication-title: Automatica
  doi: 10.1016/0005-1098(90)90159-F
– ident: ref30/cit30
– reference: 23175620 - Annu Rev Control. 2012 Dec;36(2):255-266
– reference: 17518291 - IEEE Trans Biomed Eng. 2007 May;54(5):931-7
– reference: 23544672 - Diabetes Technol Ther. 2013 May;15(5):386-400
– reference: 22865931 - Automatica (Oxf). 2012 Aug;48(8):1892-1897
– reference: 12716752 - Diabetes. 2003 May;52(5):1195-203
– reference: 22027306 - J Diabetes Sci Technol. 2011 Sep 01;5(5):1137-41
– reference: 23063041 - J Diabetes Sci Technol. 2012 Sep 01;6(5):1142-7
– reference: 23511311 - J Endocrinol Invest. 2013 Sep;36(8):617-21
– reference: 3677976 - Diabetes Care. 1987 Sep-Oct;10(5):584-8
– reference: 19885237 - J Diabetes Sci Technol. 2008 Jul;2(4):612-21
– reference: 20307402 - J Diabetes Sci Technol. 2010 Mar 01;4(2):404-18
– reference: 19885130 - J Diabetes Sci Technol. 2007 Sep;1(5):624-9
– reference: 19344199 - Diabetes Technol Ther. 2009 Apr;11(4):243-53
– reference: 23439179 - J Diabetes Sci Technol. 2013 Jan 01;7(1):206-14
– reference: 19822467 - IEEE Trans Biomed Eng. 2010 Mar;57(3):634-41
– reference: 19848575 - Diabetes Technol Ther. 2009 Feb;11(2):93-7
– reference: 23216304 - Diabetes Technol Ther. 2013 Jan;15(1):84-8
– reference: 15738700 - Diabetes Technol Ther. 2005 Feb;7(1):3-14
– reference: 20508231 - Diabetes Care. 2010 Jun;33(6):1249-54
– reference: 20811595 - Int J Pediatr. 2010;2010:null
– reference: 20200307 - Diabetes Care. 2010 May;33(5):1013-7
– reference: 16489976 - Pediatr Diabetes. 2006 Feb;7(1):60-70
– reference: 21599515 - Diabetes Technol Ther. 2011 Aug;13(8):819-25
SSID ssj0005544
Score 2.4220574
Snippet Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12329
SubjectTerms Alarm systems
Algorithms
blood glucose
chemistry
children
engineering
Glucose
Hypoglycemia
insulin-dependent diabetes mellitus
Mathematical models
Pancreas
parents
Patients
prediction
Recursive
time series analysis
Title Hypoglycemia Early Alarm Systems Based on Multivariable Models
URI http://dx.doi.org/10.1021/ie3034015
https://www.ncbi.nlm.nih.gov/pubmed/24187436
https://www.proquest.com/docview/1692371748
https://www.proquest.com/docview/1826584154
https://www.proquest.com/docview/2045847937
https://pubmed.ncbi.nlm.nih.gov/PMC3811956
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pvA4cClsaZp0FyQYTBMHLjCJW5WkCUyMDrENafx6nLYbGzC4tq7aOnH8WbY_AxyLSsxrePaifVcCj4lYelL52qsZK4XSVlCVFsje8maL3TwEDwU4mpHBp9WztsFTFqOAYA7mKUfjdfinfvdVxxGkE1vRWlwLURiM6IMmH3WuR_emXc8PPPm9LHLCzzSW4WrUrZOVlzyfDvrqVH_8JG_86xdWYCnHmeQi2xirUDDJGixOsA-uw3lz-Np97Ay1eWlLkjIdkwsMdF9ITmNOLtHFxaSbkLRN9x3DatdoRdz8tE5vA1qN6_t608vHKXiS-bzvBUpx4TMlYkatFtYgeGNKKqa4qtqaUr67HGuqqLDUchMKy2yoK6FFGBdLfxOKSTcx20AERhmaG19QqpnRCCqM4dKPET8odPqyBGXUd5SbQy9KM920Go0VUYKT0VJEOicjdzMxOr-JHo5FXzMGjt-EDkbrGaF9uKSHTEx3gK_mCGExZmXhHzIYYyEQQzQ5W4ZmGWVEcyXYyvbJ-HMQBYWIxHgJxNQOGgs4Du_pO0n7KeXyRsDkOjZ3_lPYLizQdBCHS2XtQbH_NjD7CIf6qpyawyekSgQm
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA58NoFytOs9rCXQOs4dnpBKghUnhdA4hbZjg0VJUWkRYJfz9hJS8truSaTxLFn7G80M98A_BXVlNdx70X7rkYBE6kMpAp1UDdWCqWtoMonyJ7x5iU7uoquSpocVwuDg8jxTbkP4r-yC9S2WwY3W3QGoh8wgSCEOm1u7J2_pnNEvnErGo2rJIqjPovQ8KPuBNL56An0Dla-zY4cOm4OZoq-RX6gPsvkdqvXVVv6-Q2H4_f-ZBamS9RJGoWazMGYyeZhaoiL8BfsNJ_uO9ftJ23uWpJ43mPSQLf3jpSk5mQXD7yUdDLii3Yf0cl2ZVfEdVNr57_h8mD_Yq8ZlM0VAslC3g0ipbgImRIpo1YLaxDKMSUVU1zVbF2p0F1ONVVUWGq5iYVlNtbV2CKoS2W4AONZJzNLQAT6HJqbUFCqmdEIMYzhMkwRTSiEALIC6zgPSWkceeLj3rSWDCaiAv_6K5LokprcdchofyT6ZyB6X_BxfCS02V_WBK3FhUBkZjo9_DRHQIseLIu_kEGPC2EZYsvPZWgRX0ZsV4HFQl0Gw0FMFCMu4xUQI4o0EHCM3qN3staNZ_ZG-OTqN5f_N2EbMNm8OD1JTg7PjlfgJ_UtOlyQaxXGuw89s4ZAqavWvYW8ACk1DIc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tIKHxwMeArcDAQzzwEmgdx05fkApbVT4ESIDEW2Q7NqsoabW0SPDXc3bTrGUw9ppcEse-s3-nu_sdwLaopryOey_adzUKmEhlIFWog7qxUihtBVU-QfaMt67Z8U10UziKrhYGB5Hjm3IfxHdW3UttwTBQ22sb3HDRIYg-wrQL1zmNbhxe_knpiHzzVjQcV00URyMmofFH3Smk88lT6C9o-TJDcuzIac7DeTlYn2lytzvoq1399ILH8f__ZgHmCvRJGkN1WYQPJvsMs2OchEuw33rsdW87j9rctyXx_Mekge7vPSnIzckBHnwp6WbEF-8-oLPtyq-I66rWyZfhuvnz6rAVFE0WAslC3g8ipbgImRIpo1YLaxDSMSUVU1zVbF2p0F1ONVVUWGq5iYVlNtbV2CK4S2W4AlNZNzNfgQj0PTQ3oaBUM6MRahjDZZgiqlAIBWQFNnAuksJI8sTHv2ktKSeiAjujVUl0QVHuOmV0XhPdKkV7Q16O14S-j5Y2QatxoRCZme4AP80R2KIny-J_yKDnhfAMMebbMnQYZ0aMV4EvQ5Uph4PYKEZ8xisgJpSpFHDM3pN3svYvz_CNMMrVca6-N2GbMHPxo5mcHp2drMEn6jt1uFjXOkz1fw_MN8RLfbXhjeQZ4Y0PCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoglycemia+Early+Alarm+Systems+Based+on+Multivariable+Models&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Turksoy%2C+Kamuran&rft.au=Bayrak%2C+Elif+S&rft.au=Quinn%2C+Lauretta&rft.au=Littlejohn%2C+Elizabeth&rft.date=2013-09-04&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=52&rft.issue=35&rft.spage=12329&rft.epage=12336&rft_id=info:doi/10.1021%2Fie3034015&rft.externalDocID=b179385283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon