Hypoglycemia Early Alarm Systems Based on Multivariable Models
Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycem...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 52; no. 35; pp. 12329 - 12336 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence. |
---|---|
AbstractList | Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence. Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence. Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence. Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter-/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence. |
Author | Bayrak, Elif S Turksoy, Kamuran Littlejohn, Elizabeth Rollins, Derrick Cinar, Ali Quinn, Lauretta |
AuthorAffiliation | University of Chicago Iowa State University University of Illinois at Chicago Illinois Institute of Technology |
AuthorAffiliation_xml | – name: Iowa State University – name: Illinois Institute of Technology – name: University of Chicago – name: University of Illinois at Chicago – name: 2 Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd St., Chicago, IL 60616 – name: 4 Department of Pediatrics and Medicine, Section of Endocrinology, Biological Sciences Division, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637 – name: 5 Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 – name: 3 College of Nursing, University of Illinois at Chicago, 845 South Damen Avenue MC 802, Chicago, IL 60612 – name: 1 Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S. Dearborn St., Chicago, IL 60616 |
Author_xml | – sequence: 1 givenname: Kamuran surname: Turksoy fullname: Turksoy, Kamuran organization: Illinois Institute of Technology – sequence: 2 givenname: Elif S surname: Bayrak fullname: Bayrak, Elif S organization: Illinois Institute of Technology – sequence: 3 givenname: Lauretta surname: Quinn fullname: Quinn, Lauretta organization: University of Illinois at Chicago – sequence: 4 givenname: Elizabeth surname: Littlejohn fullname: Littlejohn, Elizabeth organization: University of Chicago – sequence: 5 givenname: Derrick surname: Rollins fullname: Rollins, Derrick organization: Iowa State University – sequence: 6 givenname: Ali surname: Cinar fullname: Cinar, Ali email: cinar@iit.edu organization: Illinois Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24187436$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtL9TAQhoMoerws_AMf3Qi6qObapBtBxRsoLtR1SNLEL5I2x6QV-u_t4aioCK4GZp555_JugtUudhaAXQQPEcToyFsCCYWIrYAZYhiWDFK2CmZQCFEyIdgG2Mz5GULIGKXrYANTJDgl1QwcX43z-BRGY1uvinOVwlicBJXa4n7MvW1zcaqybYrYFbdD6P2rSl7pYIvb2NiQt8GaUyHbnfe4BR4vzh_Orsqbu8vrs5ObUk1T-pJpXXFCNW8odoY7y1BNtdJUVxq5WmuySDcGa8wddpUV3FEnDBSuYrBRZAscL3Xng25tY2zXJxXkPPlWpVFG5eX3Suf_y6f4KolAqGbVJLD_LpDiy2BzL1ufjQ1BdTYOWeLpY4LymvA_USRwNbGI0b_RqsaEI07FhP77esHn6h9WTMDREjAp5pysk8b3qvdxcZAPEkG5MFt-mj11HPzo-BD9jd1bsspk-RyH1E12_cK9AV3dtK8 |
CitedBy_id | crossref_primary_10_1089_dia_2023_0140 crossref_primary_10_1109_TBME_2020_3049109 crossref_primary_10_1177_1932296814524862 crossref_primary_10_1002_dmrr_3348 crossref_primary_10_1016_j_bioactmat_2022_02_025 crossref_primary_10_1177_1932296820922622 crossref_primary_10_1177_193229681300700605 crossref_primary_10_4028_www_scientific_net_AMR_971_973_275 crossref_primary_10_1177_1932296815592409 crossref_primary_10_1016_j_neucom_2019_10_003 crossref_primary_10_1016_j_bbe_2018_02_005 crossref_primary_10_1109_JBHI_2015_2446413 crossref_primary_10_1038_s41746_022_00626_5 crossref_primary_10_1089_dia_2017_0364 crossref_primary_10_3390_s16122093 crossref_primary_10_1186_s12911_019_0943_4 crossref_primary_10_1007_s12046_024_02657_y crossref_primary_10_1016_j_bbe_2020_10_004 crossref_primary_10_3390_biomedinformatics2040048 crossref_primary_10_1016_j_bspc_2025_107814 crossref_primary_10_1007_s13755_024_00313_7 crossref_primary_10_2196_26909 crossref_primary_10_1089_dia_2018_0072 crossref_primary_10_1177_20552076221129712 crossref_primary_10_1002_aisy_202400822 crossref_primary_10_1177_1932296816654161 crossref_primary_10_1109_ACCESS_2023_3244712 crossref_primary_10_1109_TBME_2016_2535412 crossref_primary_10_1007_s11517_021_02433_8 crossref_primary_10_1177_19322968231212205 crossref_primary_10_1002_cnm_3799 crossref_primary_10_1109_JBHI_2024_3371108 crossref_primary_10_1002_dmrr_3449 crossref_primary_10_1007_s11517_018_1859_3 crossref_primary_10_3390_s20226460 crossref_primary_10_1186_s12911_021_01462_5 crossref_primary_10_6000_1929_6029_2015_04_02_4 crossref_primary_10_1177_1932296815583507 crossref_primary_10_1109_JBHI_2018_2823763 crossref_primary_10_1109_JBHI_2019_2956704 crossref_primary_10_1177_1932296819880864 crossref_primary_10_1089_dia_2019_0119 crossref_primary_10_1111_coin_12396 crossref_primary_10_1177_19322968221093665 crossref_primary_10_1115_1_4041522 crossref_primary_10_1177_1932296818823792 crossref_primary_10_1038_s41598_022_10360_3 crossref_primary_10_1016_j_ifacol_2015_10_142 crossref_primary_10_3182_20140824_6_ZA_1003_00815 crossref_primary_10_1002_cnm_2833 crossref_primary_10_1016_j_bbe_2018_06_005 crossref_primary_10_1109_TBME_2021_3101589 crossref_primary_10_3390_s20143896 crossref_primary_10_1016_j_conengprac_2014_12_006 crossref_primary_10_1021_ie505035r crossref_primary_10_1016_j_conengprac_2016_08_001 crossref_primary_10_1016_j_jprocont_2018_02_003 crossref_primary_10_1109_JBHI_2018_2840690 crossref_primary_10_1177_1932296816658666 crossref_primary_10_2196_28861 crossref_primary_10_1016_j_bspc_2017_11_016 crossref_primary_10_1016_j_heliyon_2022_e11372 crossref_primary_10_1109_TBME_2020_3015199 |
Cites_doi | 10.1016/0005-1098(81)90092-3 10.1016/j.arcontrol.2012.09.007 10.1177/193229681000400222 10.1109/TBME.2009.2033264 10.1080/00401706.1976.10489467 10.1155/2010/216167 10.1080/00401706.1974.10489208 10.1016/j.jprocont.2010.02.008 10.1177/193229681200600519 10.1016/j.automatica.2012.05.076 10.2337/diacare.10.5.584 10.2337/dc09-2303 10.1177/193229680800200412 10.1021/ac60214a047 10.1089/dia.2012.0168 10.1177/193229681300700126 10.1109/TAC.2003.814273 10.1089/dia.2011.0052 10.1111/j.1399-543X.2006.00146.x 10.1177/193229680700100505 10.1089/dia.2012.0283 10.1177/193229681100500514 10.1089/dia.2008.0065 10.1089/dia.2008.0032 10.2337/dc09-1487 10.1089/dia.2005.7.3 10.1117/12.509703 10.2337/diabetes.52.5.1195 10.1109/TBME.2006.889774 10.1016/0005-1098(90)90159-F |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 5PM |
DOI | 10.1021/ie3034015 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5045 |
EndPage | 12336 |
ExternalDocumentID | PMC3811956 24187436 10_1021_ie3034015 b179385283 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK085611 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R01 DK085611 || DK |
GroupedDBID | 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a436t-5bb6734b7d42fc7fe5194bab4b6b1f9bb32fc7dc2b27f2f6e87f4f8c08f650da3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Thu Aug 21 14:10:39 EDT 2025 Thu Jul 10 21:44:03 EDT 2025 Fri Jul 11 09:37:43 EDT 2025 Fri Jul 11 11:59:36 EDT 2025 Thu Jan 02 22:11:13 EST 2025 Tue Jul 01 01:17:19 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | recursive algorithms Hypoglycemia alarms multivariable models process monitoring diabetes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a436t-5bb6734b7d42fc7fe5194bab4b6b1f9bb32fc7dc2b27f2f6e87f4f8c08f650da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24187436 |
PQID | 1692371748 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811956 proquest_miscellaneous_2045847937 proquest_miscellaneous_1826584154 proquest_miscellaneous_1692371748 pubmed_primary_24187436 crossref_citationtrail_10_1021_ie3034015 crossref_primary_10_1021_ie3034015 acs_journals_10_1021_ie3034015 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-04 |
PublicationDateYYYYMMDD | 2013-09-04 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Aström K. J. (ref21/cit21) 2011 De Keyser R. M. C. (ref23/cit23) 1981; 17 Bayrak E. S. (ref13/cit13) 2012; 7 Riddell M. C. (ref36/cit36) 2006; 7 Savitzky A. (ref26/cit26) 1964; 36 Walsh J. (ref25/cit25) 2006 Favier G. (ref22/cit22) 1990; 26 Eren-Oruklu M. (ref10/cit10) 2012; 48 ref14/cit14 Bequette B. W. (ref31/cit31) 2012; 36 Yardley J. E. (ref33/cit33) 2013; 15 Banarer S. (ref29/cit29) 2003; 52 ref37/cit37 Badwe A. S. (ref20/cit20) 2010; 20 Sohlberg B. (ref17/cit17) 2008 Buckingham B. (ref2/cit2) 2010; 33 ref35/cit35 Box G. E. P. (ref15/cit15) 1976; 18 Bequette B. W. (ref27/cit27) 2010; 4 MacDonald M. J. (ref32/cit32) 1987; 10 Lütkepohl H. (ref19/cit19) 2006 Palerm C. C. (ref7/cit7) 2005; 7 Dassau E. (ref11/cit11) 2010; 33 Cameron F. (ref5/cit5) 2012; 6 Palerm C. C. (ref6/cit6) 2007; 1 Sparacino G. (ref8/cit8) 2007; 54 Box G. E. P. (ref18/cit18) 1974; 16 Lacy S. L. (ref24/cit24) 2003; 48 Eren-Oruklu M. (ref9/cit9) 2009; 11 Buckingham B. (ref3/cit3) 2009; 11 Agrawal P. (ref4/cit4) 2011; 5 Riddell M. C. (ref34/cit34) 2011; 13 Cameron F. (ref12/cit12) 2008; 2 ref30/cit30 ref1/cit1 Facchinetti A. (ref28/cit28) 2010; 57 Turksoy K. (ref16/cit16) 23511311 - J Endocrinol Invest. 2013 Sep;36(8):617-21 20811595 - Int J Pediatr. 2010;2010:null 21599515 - Diabetes Technol Ther. 2011 Aug;13(8):819-25 20200307 - Diabetes Care. 2010 May;33(5):1013-7 17518291 - IEEE Trans Biomed Eng. 2007 May;54(5):931-7 22027306 - J Diabetes Sci Technol. 2011 Sep 01;5(5):1137-41 19885237 - J Diabetes Sci Technol. 2008 Jul;2(4):612-21 20508231 - Diabetes Care. 2010 Jun;33(6):1249-54 23175620 - Annu Rev Control. 2012 Dec;36(2):255-266 23216304 - Diabetes Technol Ther. 2013 Jan;15(1):84-8 19344199 - Diabetes Technol Ther. 2009 Apr;11(4):243-53 16489976 - Pediatr Diabetes. 2006 Feb;7(1):60-70 3677976 - Diabetes Care. 1987 Sep-Oct;10(5):584-8 15738700 - Diabetes Technol Ther. 2005 Feb;7(1):3-14 23439179 - J Diabetes Sci Technol. 2013 Jan 01;7(1):206-14 23063041 - J Diabetes Sci Technol. 2012 Sep 01;6(5):1142-7 22865931 - Automatica (Oxf). 2012 Aug;48(8):1892-1897 19885130 - J Diabetes Sci Technol. 2007 Sep;1(5):624-9 19822467 - IEEE Trans Biomed Eng. 2010 Mar;57(3):634-41 23544672 - Diabetes Technol Ther. 2013 May;15(5):386-400 20307402 - J Diabetes Sci Technol. 2010 Mar 01;4(2):404-18 19848575 - Diabetes Technol Ther. 2009 Feb;11(2):93-7 12716752 - Diabetes. 2003 May;52(5):1195-203 |
References_xml | – volume-title: Applied Modelling and Identification year: 2008 ident: ref17/cit17 – volume: 17 start-page: 167 issue: 1 year: 1981 ident: ref23/cit23 publication-title: Automatica doi: 10.1016/0005-1098(81)90092-3 – volume: 36 start-page: 255 issue: 2 year: 2012 ident: ref31/cit31 publication-title: Ann. Rev. Control doi: 10.1016/j.arcontrol.2012.09.007 – volume: 4 start-page: 404 issue: 2 year: 2010 ident: ref27/cit27 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681000400222 – volume: 57 start-page: 634 issue: 3 year: 2010 ident: ref28/cit28 publication-title: IEEE Trans. Bio-Med. Eng. doi: 10.1109/TBME.2009.2033264 – volume-title: New Introduction to Multiple Time Series Analysis year: 2006 ident: ref19/cit19 – volume-title: Pumping Insulin year: 2006 ident: ref25/cit25 – volume: 18 start-page: 371 issue: 4 year: 1976 ident: ref15/cit15 publication-title: Technometrics doi: 10.1080/00401706.1976.10489467 – ident: ref35/cit35 doi: 10.1155/2010/216167 – volume: 16 start-page: 391 issue: 3 year: 1974 ident: ref18/cit18 publication-title: Technometrics doi: 10.1080/00401706.1974.10489208 – volume: 20 start-page: 559 issue: 5 year: 2010 ident: ref20/cit20 publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.02.008 – volume: 6 start-page: 1142 issue: 5 year: 2012 ident: ref5/cit5 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681200600519 – volume: 48 start-page: 1892 issue: 8 year: 2012 ident: ref10/cit10 publication-title: Automatica doi: 10.1016/j.automatica.2012.05.076 – ident: ref1/cit1 – volume: 10 start-page: 584 issue: 5 year: 1987 ident: ref32/cit32 publication-title: Diabetes Care doi: 10.2337/diacare.10.5.584 – volume-title: Computer-Controlled Systems: Theory and Design year: 2011 ident: ref21/cit21 – volume: 33 start-page: 1013 issue: 5 year: 2010 ident: ref2/cit2 publication-title: Diabetes Care doi: 10.2337/dc09-2303 – volume: 2 start-page: 612 issue: 4 year: 2008 ident: ref12/cit12 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680800200412 – volume-title: Proc. 2013 American Control Conf. ident: ref16/cit16 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: ref26/cit26 publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 15 start-page: 84 issue: 1 year: 2013 ident: ref33/cit33 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2012.0168 – volume: 7 start-page: 206 issue: 1 year: 2012 ident: ref13/cit13 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681300700126 – volume: 48 start-page: 1259 issue: 7 year: 2003 ident: ref24/cit24 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2003.814273 – volume: 13 start-page: 819 issue: 8 year: 2011 ident: ref34/cit34 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2011.0052 – volume: 7 start-page: 60 issue: 1 year: 2006 ident: ref36/cit36 publication-title: Pediatr. Diabetes. doi: 10.1111/j.1399-543X.2006.00146.x – volume: 1 start-page: 624 issue: 5 year: 2007 ident: ref6/cit6 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680700100505 – ident: ref14/cit14 doi: 10.1089/dia.2012.0283 – volume: 5 start-page: 1137 issue: 5 year: 2011 ident: ref4/cit4 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681100500514 – volume: 11 start-page: 243 issue: 4 year: 2009 ident: ref9/cit9 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2008.0065 – volume: 11 start-page: 93 issue: 2 year: 2009 ident: ref3/cit3 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2008.0032 – volume: 33 start-page: 1249 issue: 6 year: 2010 ident: ref11/cit11 publication-title: Diabetes Care doi: 10.2337/dc09-1487 – volume: 7 start-page: 3 issue: 1 year: 2005 ident: ref7/cit7 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2005.7.3 – ident: ref37/cit37 doi: 10.1117/12.509703 – volume: 52 start-page: 1195 issue: 5 year: 2003 ident: ref29/cit29 publication-title: Diabetes doi: 10.2337/diabetes.52.5.1195 – volume: 54 start-page: 931 issue: 5 year: 2007 ident: ref8/cit8 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889774 – volume: 26 start-page: 75 issue: 1 year: 1990 ident: ref22/cit22 publication-title: Automatica doi: 10.1016/0005-1098(90)90159-F – ident: ref30/cit30 – reference: 23175620 - Annu Rev Control. 2012 Dec;36(2):255-266 – reference: 17518291 - IEEE Trans Biomed Eng. 2007 May;54(5):931-7 – reference: 23544672 - Diabetes Technol Ther. 2013 May;15(5):386-400 – reference: 22865931 - Automatica (Oxf). 2012 Aug;48(8):1892-1897 – reference: 12716752 - Diabetes. 2003 May;52(5):1195-203 – reference: 22027306 - J Diabetes Sci Technol. 2011 Sep 01;5(5):1137-41 – reference: 23063041 - J Diabetes Sci Technol. 2012 Sep 01;6(5):1142-7 – reference: 23511311 - J Endocrinol Invest. 2013 Sep;36(8):617-21 – reference: 3677976 - Diabetes Care. 1987 Sep-Oct;10(5):584-8 – reference: 19885237 - J Diabetes Sci Technol. 2008 Jul;2(4):612-21 – reference: 20307402 - J Diabetes Sci Technol. 2010 Mar 01;4(2):404-18 – reference: 19885130 - J Diabetes Sci Technol. 2007 Sep;1(5):624-9 – reference: 19344199 - Diabetes Technol Ther. 2009 Apr;11(4):243-53 – reference: 23439179 - J Diabetes Sci Technol. 2013 Jan 01;7(1):206-14 – reference: 19822467 - IEEE Trans Biomed Eng. 2010 Mar;57(3):634-41 – reference: 19848575 - Diabetes Technol Ther. 2009 Feb;11(2):93-7 – reference: 23216304 - Diabetes Technol Ther. 2013 Jan;15(1):84-8 – reference: 15738700 - Diabetes Technol Ther. 2005 Feb;7(1):3-14 – reference: 20508231 - Diabetes Care. 2010 Jun;33(6):1249-54 – reference: 20811595 - Int J Pediatr. 2010;2010:null – reference: 20200307 - Diabetes Care. 2010 May;33(5):1013-7 – reference: 16489976 - Pediatr Diabetes. 2006 Feb;7(1):60-70 – reference: 21599515 - Diabetes Technol Ther. 2011 Aug;13(8):819-25 |
SSID | ssj0005544 |
Score | 2.4220574 |
Snippet | Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12329 |
SubjectTerms | Alarm systems Algorithms blood glucose chemistry children engineering Glucose Hypoglycemia insulin-dependent diabetes mellitus Mathematical models Pancreas parents Patients prediction Recursive time series analysis |
Title | Hypoglycemia Early Alarm Systems Based on Multivariable Models |
URI | http://dx.doi.org/10.1021/ie3034015 https://www.ncbi.nlm.nih.gov/pubmed/24187436 https://www.proquest.com/docview/1692371748 https://www.proquest.com/docview/1826584154 https://www.proquest.com/docview/2045847937 https://pubmed.ncbi.nlm.nih.gov/PMC3811956 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pvA4cClsaZp0FyQYTBMHLjCJW5WkCUyMDrENafx6nLYbGzC4tq7aOnH8WbY_AxyLSsxrePaifVcCj4lYelL52qsZK4XSVlCVFsje8maL3TwEDwU4mpHBp9WztsFTFqOAYA7mKUfjdfinfvdVxxGkE1vRWlwLURiM6IMmH3WuR_emXc8PPPm9LHLCzzSW4WrUrZOVlzyfDvrqVH_8JG_86xdWYCnHmeQi2xirUDDJGixOsA-uw3lz-Np97Ay1eWlLkjIdkwsMdF9ITmNOLtHFxaSbkLRN9x3DatdoRdz8tE5vA1qN6_t608vHKXiS-bzvBUpx4TMlYkatFtYgeGNKKqa4qtqaUr67HGuqqLDUchMKy2yoK6FFGBdLfxOKSTcx20AERhmaG19QqpnRCCqM4dKPET8odPqyBGXUd5SbQy9KM920Go0VUYKT0VJEOicjdzMxOr-JHo5FXzMGjt-EDkbrGaF9uKSHTEx3gK_mCGExZmXhHzIYYyEQQzQ5W4ZmGWVEcyXYyvbJ-HMQBYWIxHgJxNQOGgs4Du_pO0n7KeXyRsDkOjZ3_lPYLizQdBCHS2XtQbH_NjD7CIf6qpyawyekSgQm |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA58NoFytOs9rCXQOs4dnpBKghUnhdA4hbZjg0VJUWkRYJfz9hJS8truSaTxLFn7G80M98A_BXVlNdx70X7rkYBE6kMpAp1UDdWCqWtoMonyJ7x5iU7uoquSpocVwuDg8jxTbkP4r-yC9S2WwY3W3QGoh8wgSCEOm1u7J2_pnNEvnErGo2rJIqjPovQ8KPuBNL56An0Dla-zY4cOm4OZoq-RX6gPsvkdqvXVVv6-Q2H4_f-ZBamS9RJGoWazMGYyeZhaoiL8BfsNJ_uO9ftJ23uWpJ43mPSQLf3jpSk5mQXD7yUdDLii3Yf0cl2ZVfEdVNr57_h8mD_Yq8ZlM0VAslC3g0ipbgImRIpo1YLaxDKMSUVU1zVbF2p0F1ONVVUWGq5iYVlNtbV2CKoS2W4AONZJzNLQAT6HJqbUFCqmdEIMYzhMkwRTSiEALIC6zgPSWkceeLj3rSWDCaiAv_6K5LokprcdchofyT6ZyB6X_BxfCS02V_WBK3FhUBkZjo9_DRHQIseLIu_kEGPC2EZYsvPZWgRX0ZsV4HFQl0Gw0FMFCMu4xUQI4o0EHCM3qN3staNZ_ZG-OTqN5f_N2EbMNm8OD1JTg7PjlfgJ_UtOlyQaxXGuw89s4ZAqavWvYW8ACk1DIc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tIKHxwMeArcDAQzzwEmgdx05fkApbVT4ESIDEW2Q7NqsoabW0SPDXc3bTrGUw9ppcEse-s3-nu_sdwLaopryOey_adzUKmEhlIFWog7qxUihtBVU-QfaMt67Z8U10UziKrhYGB5Hjm3IfxHdW3UttwTBQ22sb3HDRIYg-wrQL1zmNbhxe_knpiHzzVjQcV00URyMmofFH3Smk88lT6C9o-TJDcuzIac7DeTlYn2lytzvoq1399ILH8f__ZgHmCvRJGkN1WYQPJvsMs2OchEuw33rsdW87j9rctyXx_Mekge7vPSnIzckBHnwp6WbEF-8-oLPtyq-I66rWyZfhuvnz6rAVFE0WAslC3g8ipbgImRIpo1YLaxDSMSUVU1zVbF2p0F1ONVVUWGq5iYVlNtbV2CK4S2W4AlNZNzNfgQj0PTQ3oaBUM6MRahjDZZgiqlAIBWQFNnAuksJI8sTHv2ktKSeiAjujVUl0QVHuOmV0XhPdKkV7Q16O14S-j5Y2QatxoRCZme4AP80R2KIny-J_yKDnhfAMMebbMnQYZ0aMV4EvQ5Uph4PYKEZ8xisgJpSpFHDM3pN3svYvz_CNMMrVca6-N2GbMHPxo5mcHp2drMEn6jt1uFjXOkz1fw_MN8RLfbXhjeQZ4Y0PCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoglycemia+Early+Alarm+Systems+Based+on+Multivariable+Models&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Turksoy%2C+Kamuran&rft.au=Bayrak%2C+Elif+S&rft.au=Quinn%2C+Lauretta&rft.au=Littlejohn%2C+Elizabeth&rft.date=2013-09-04&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=52&rft.issue=35&rft.spage=12329&rft.epage=12336&rft_id=info:doi/10.1021%2Fie3034015&rft.externalDocID=b179385283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |