Effect of the Methylation Level on the Grape Fruit Development Process

Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation maintenance and DNA methylation removal involved in the grapevine growth. We comprehensively analyzed the transcriptome and metabolome of the ‘...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 68; no. 7; pp. 2099 - 2115
Main Authors Jia, Haoran, Zhang, Zibo, Zhang, Saihang, Fu, Weihong, Su, Lingyun, Fang, Jinggui, Jia, Haifeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation maintenance and DNA methylation removal involved in the grapevine growth. We comprehensively analyzed the transcriptome and metabolome of the ‘Kyoho’ fruit with or without demethylation and screened for a large number of differential genes and metabolites. Color, hardness, and aroma are the most obvious traits reflecting the ripening of grapes. We used gas chromatography–mass spectrometry and high-performance liquid chromatography to understand the changes in metabolites during ripening. We cloned many key genes selected by transcriptome analysis and found that intron retention was observed in VvCHS, VvDFR, and VvGST. The imbalance of methylation levels affects the alternative splicing of pre-mRNA, which makes the translation process abnormal and affects gene expression. In addition, analyzing promoters of some genes, such as proVvGST4 and proVvUFGT, found that the promoters of these genes after demethylating were more difficult to methylate. Taken together, this study will provide new insights into comprehension of the molecular mechanism of methylation during ripening of grape berries. In addition, the study provides some genetic information to help guide our improvement, cultivation, and management of grapes in the future.
AbstractList Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation maintenance and DNA methylation removal involved in the grapevine growth. We comprehensively analyzed the transcriptome and metabolome of the 'Kyoho' fruit with or without demethylation and screened for a large number of differential genes and metabolites. Color, hardness, and aroma are the most obvious traits reflecting the ripening of grapes. We used gas chromatography-mass spectrometry and high-performance liquid chromatography to understand the changes in metabolites during ripening. We cloned many key genes selected by transcriptome analysis and found that intron retention was observed in , , and . The imbalance of methylation levels affects the alternative splicing of pre-mRNA, which makes the translation process abnormal and affects gene expression. In addition, analyzing promoters of some genes, such as and , found that the promoters of these genes after demethylating were more difficult to methylate. Taken together, this study will provide new insights into comprehension of the molecular mechanism of methylation during ripening of grape berries. In addition, the study provides some genetic information to help guide our improvement, cultivation, and management of grapes in the future.
Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation maintenance and DNA methylation removal involved in the grapevine growth. We comprehensively analyzed the transcriptome and metabolome of the 'Kyoho' fruit with or without demethylation and screened for a large number of differential genes and metabolites. Color, hardness, and aroma are the most obvious traits reflecting the ripening of grapes. We used gas chromatography-mass spectrometry and high-performance liquid chromatography to understand the changes in metabolites during ripening. We cloned many key genes selected by transcriptome analysis and found that intron retention was observed in VvCHS, VvDFR, and VvGST. The imbalance of methylation levels affects the alternative splicing of pre-mRNA, which makes the translation process abnormal and affects gene expression. In addition, analyzing promoters of some genes, such as proVvGST4 and proVvUFGT, found that the promoters of these genes after demethylating were more difficult to methylate. Taken together, this study will provide new insights into comprehension of the molecular mechanism of methylation during ripening of grape berries. In addition, the study provides some genetic information to help guide our improvement, cultivation, and management of grapes in the future.Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation maintenance and DNA methylation removal involved in the grapevine growth. We comprehensively analyzed the transcriptome and metabolome of the 'Kyoho' fruit with or without demethylation and screened for a large number of differential genes and metabolites. Color, hardness, and aroma are the most obvious traits reflecting the ripening of grapes. We used gas chromatography-mass spectrometry and high-performance liquid chromatography to understand the changes in metabolites during ripening. We cloned many key genes selected by transcriptome analysis and found that intron retention was observed in VvCHS, VvDFR, and VvGST. The imbalance of methylation levels affects the alternative splicing of pre-mRNA, which makes the translation process abnormal and affects gene expression. In addition, analyzing promoters of some genes, such as proVvGST4 and proVvUFGT, found that the promoters of these genes after demethylating were more difficult to methylate. Taken together, this study will provide new insights into comprehension of the molecular mechanism of methylation during ripening of grape berries. In addition, the study provides some genetic information to help guide our improvement, cultivation, and management of grapes in the future.
Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation maintenance and DNA methylation removal involved in the grapevine growth. We comprehensively analyzed the transcriptome and metabolome of the ‘Kyoho’ fruit with or without demethylation and screened for a large number of differential genes and metabolites. Color, hardness, and aroma are the most obvious traits reflecting the ripening of grapes. We used gas chromatography–mass spectrometry and high-performance liquid chromatography to understand the changes in metabolites during ripening. We cloned many key genes selected by transcriptome analysis and found that intron retention was observed in VvCHS, VvDFR, and VvGST. The imbalance of methylation levels affects the alternative splicing of pre-mRNA, which makes the translation process abnormal and affects gene expression. In addition, analyzing promoters of some genes, such as proVvGST4 and proVvUFGT, found that the promoters of these genes after demethylating were more difficult to methylate. Taken together, this study will provide new insights into comprehension of the molecular mechanism of methylation during ripening of grape berries. In addition, the study provides some genetic information to help guide our improvement, cultivation, and management of grapes in the future.
Author Su, Lingyun
Jia, Haoran
Jia, Haifeng
Fu, Weihong
Zhang, Zibo
Zhang, Saihang
Fang, Jinggui
AuthorAffiliation College of Horticulture
AuthorAffiliation_xml – name: College of Horticulture
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0000-0002-6123-2636
  surname: Jia
  fullname: Jia, Haoran
– sequence: 2
  givenname: Zibo
  surname: Zhang
  fullname: Zhang, Zibo
– sequence: 3
  givenname: Saihang
  surname: Zhang
  fullname: Zhang, Saihang
– sequence: 4
  givenname: Weihong
  surname: Fu
  fullname: Fu, Weihong
– sequence: 5
  givenname: Lingyun
  surname: Su
  fullname: Su, Lingyun
– sequence: 6
  givenname: Jinggui
  surname: Fang
  fullname: Fang, Jinggui
  email: fanggg@njau.edu.cn
– sequence: 7
  givenname: Haifeng
  surname: Jia
  fullname: Jia, Haifeng
  email: jiahaifeng@njau.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31961688$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1PwzAQxS1URD9gZ0IZGUixkzhxRlTaglQEA8yW45zVVElcbAep_z1OPxYkYLqT3u-dTu-N0aDVLSB0TfCU4IjcC2mnG6HkNC9wliX4DI0IjXBICWEDNMKeCRlNyRCNrd1gjBnN8AUaxiRPScrYCC3mSoF0gVaBW0PwAm69q4WrdBus4AvqwC-9sDRiC8HCdJULHntBbxtoXfBmtARrL9G5ErWFq-OcoI_F_H32FK5el8-zh1Uokpi6EKKSxolkMi_zTBGciKgURQaRApVmRamUSgshRJkppmgeE4KpyjNJImBFkRbxBN0e7m6N_uzAOt5UVkJdixZ0Z3mUYJxQSqL8fzT2LxEas9ijN0e0Kxoo-dZUjTA7forJA-kBkEZba0BxWbl9Ss6IquYE874P7vvgfR_82Ic34h_G0-0_LHcHy17RnWl9oL_j3waqngE
CitedBy_id crossref_primary_10_1186_s12870_021_03073_8
crossref_primary_10_17660_ActaHortic_2022_1344_1
crossref_primary_10_1016_j_postharvbio_2024_113040
crossref_primary_10_1021_acs_jafc_0c04466
crossref_primary_10_3389_fpls_2021_633846
crossref_primary_10_1016_j_plantsci_2023_111830
crossref_primary_10_59717_j_xinn_life_2024_100050
crossref_primary_10_1021_acs_jafc_1c06391
crossref_primary_10_1021_acs_jafc_3c04408
crossref_primary_10_3389_fnut_2021_715528
crossref_primary_10_1016_j_ygeno_2024_110810
crossref_primary_10_3390_foods10040896
crossref_primary_10_1016_j_jfca_2024_106446
crossref_primary_10_3233_JBR_200553
crossref_primary_10_1016_j_scienta_2023_112712
crossref_primary_10_1016_j_postharvbio_2023_112719
crossref_primary_10_1016_j_foodchem_2022_135189
crossref_primary_10_1016_j_scienta_2023_112255
crossref_primary_10_1016_j_foodchem_2024_141584
crossref_primary_10_1007_s00299_022_02829_2
crossref_primary_10_1093_hr_uhae285
crossref_primary_10_1016_j_plantsci_2022_111341
crossref_primary_10_1021_acs_jafc_4c02303
crossref_primary_10_1007_s11103_024_01528_8
crossref_primary_10_1016_j_plantsci_2024_112037
crossref_primary_10_1016_j_scienta_2024_113619
crossref_primary_10_1016_j_foodchem_2020_127772
crossref_primary_10_1186_s12870_020_02754_0
Cites_doi 10.1126/science.273.5275.654
10.1007/s00299-017-2215-z
10.1007/s10142-009-0145-8
10.1038/nmeth.3317
10.1104/pp.35.2.241
10.1016/0168-9452(93)90061-4
10.1146/annurev.py.19.090181.002253
10.1016/j.trac.2013.06.014
10.1016/j.tplants.2014.01.014
10.1016/S0168-9452(02)00142-5
10.1105/tpc.105.039255
10.1007/s10529-013-1235-1
10.1186/s13059-018-1587-x
10.1111/j.1365-313X.2004.02016.x
10.1016/j.foodchem.2011.05.009
10.1104/pp.16.00393
10.1105/tpc.107.053389
10.5344/ajev.1988.39.4.313
10.1016/j.pbi.2010.11.004
10.1007/s10142-017-0546-z
10.1007/s00438-006-0149-1
10.1073/pnas.0602039103
10.1016/j.cell.2008.03.029
10.1093/bioinformatics/btp612
10.1021/acs.jafc.5b04774
10.1093/jxb/erq442
10.1073/pnas.1419161111
10.1093/jxb/erh244
10.1002/9781118060728.ch4
10.1111/pbi.12563
10.1038/nmeth.1923
10.1073/pnas.1815441116
10.1038/nature10555
10.1007/s001220051297
10.1016/j.foodchem.2013.07.006
10.1186/1471-2229-12-185
10.1104/pp.118.3.783
10.1073/pnas.1503362112
10.1111/nph.12176
10.1104/pp.111.177311
10.1038/nature02269
10.1073/pnas.1705233114
10.1104/pp.113.231977
10.1186/1471-2105-12-323
10.1007/BF00429761
10.1093/jxb/eru504
10.1111/nph.12017
10.1080/14620316.2012.11512927
10.1126/science.286.5439.481
10.1007/s10142-015-0468-6
10.1093/jxb/ert395
10.1016/S0092-8674(02)00807-3
10.1104/pp.104.057935
10.1038/sj.onc.1209331
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jafc.9b07740
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 2115
ExternalDocumentID 31961688
10_1021_acs_jafc_9b07740
d221340553
Genre Journal Article
GroupedDBID -
55A
5GY
7~N
85S
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
GX1
IH9
JG
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
X
---
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a435t-e2d534c8c9d97f104a2dab7e2fef67bdfff6baaad7f8f5931105f97c12e8bb6b3
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Fri Jul 11 13:10:30 EDT 2025
Fri Jul 11 13:58:36 EDT 2025
Thu Jan 02 22:59:32 EST 2025
Tue Jul 01 03:33:40 EDT 2025
Thu Apr 24 23:00:33 EDT 2025
Thu Aug 27 22:10:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords grape
splicing
RNA-seq
ripening
methylation
metabolome
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-e2d534c8c9d97f104a2dab7e2fef67bdfff6baaad7f8f5931105f97c12e8bb6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6123-2636
PMID 31961688
PQID 2343515383
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2400455129
proquest_miscellaneous_2343515383
pubmed_primary_31961688
crossref_citationtrail_10_1021_acs_jafc_9b07740
crossref_primary_10_1021_acs_jafc_9b07740
acs_journals_10_1021_acs_jafc_9b07740
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-19
PublicationDateYYYYMMDD 2020-02-19
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Matthews M. A. (ref31/cit31) 1988; 39
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1126/science.273.5275.654
– ident: ref15/cit15
  doi: 10.1007/s00299-017-2215-z
– ident: ref29/cit29
  doi: 10.1007/s10142-009-0145-8
– ident: ref33/cit33
  doi: 10.1038/nmeth.3317
– ident: ref12/cit12
  doi: 10.1104/pp.35.2.241
– ident: ref26/cit26
  doi: 10.1016/0168-9452(93)90061-4
– ident: ref43/cit43
  doi: 10.1146/annurev.py.19.090181.002253
– ident: ref28/cit28
  doi: 10.1016/j.trac.2013.06.014
– ident: ref20/cit20
  doi: 10.1016/j.tplants.2014.01.014
– ident: ref10/cit10
  doi: 10.1016/S0168-9452(02)00142-5
– ident: ref42/cit42
  doi: 10.1105/tpc.105.039255
– ident: ref45/cit45
  doi: 10.1007/s10529-013-1235-1
– ident: ref52/cit52
  doi: 10.1186/s13059-018-1587-x
– ident: ref34/cit34
  doi: 10.1111/j.1365-313X.2004.02016.x
– ident: ref54/cit54
  doi: 10.1016/j.foodchem.2011.05.009
– ident: ref17/cit17
  doi: 10.1104/pp.16.00393
– ident: ref23/cit23
  doi: 10.1105/tpc.107.053389
– volume: 39
  start-page: 313
  year: 1988
  ident: ref31/cit31
  publication-title: Am. J. Enol. Vitic.
  doi: 10.5344/ajev.1988.39.4.313
– ident: ref16/cit16
  doi: 10.1016/j.pbi.2010.11.004
– ident: ref9/cit9
  doi: 10.1007/s10142-017-0546-z
– ident: ref39/cit39
  doi: 10.1007/s00438-006-0149-1
– ident: ref46/cit46
  doi: 10.1073/pnas.0602039103
– ident: ref44/cit44
  doi: 10.1016/j.cell.2008.03.029
– ident: ref50/cit50
  doi: 10.1093/bioinformatics/btp612
– ident: ref53/cit53
  doi: 10.1021/acs.jafc.5b04774
– ident: ref40/cit40
  doi: 10.1093/jxb/erq442
– ident: ref35/cit35
  doi: 10.1073/pnas.1419161111
– ident: ref4/cit4
  doi: 10.1093/jxb/erh244
– ident: ref37/cit37
  doi: 10.1002/9781118060728.ch4
– ident: ref1/cit1
  doi: 10.1111/pbi.12563
– ident: ref48/cit48
  doi: 10.1038/nmeth.1923
– ident: ref51/cit51
  doi: 10.1073/pnas.1815441116
– ident: ref18/cit18
  doi: 10.1038/nature10555
– ident: ref19/cit19
  doi: 10.1007/s001220051297
– ident: ref38/cit38
  doi: 10.1016/j.foodchem.2013.07.006
– ident: ref5/cit5
  doi: 10.1186/1471-2229-12-185
– ident: ref36/cit36
  doi: 10.1104/pp.118.3.783
– ident: ref24/cit24
  doi: 10.1073/pnas.1503362112
– ident: ref7/cit7
  doi: 10.1111/nph.12176
– ident: ref2/cit2
  doi: 10.1104/pp.111.177311
– ident: ref13/cit13
  doi: 10.1038/nature02269
– ident: ref25/cit25
  doi: 10.1073/pnas.1705233114
– ident: ref30/cit30
  doi: 10.1104/pp.113.231977
– ident: ref49/cit49
  doi: 10.1186/1471-2105-12-323
– ident: ref32/cit32
  doi: 10.1007/BF00429761
– ident: ref3/cit3
  doi: 10.1093/jxb/eru504
– ident: ref41/cit41
  doi: 10.1111/nph.12017
– ident: ref8/cit8
  doi: 10.1080/14620316.2012.11512927
– ident: ref14/cit14
  doi: 10.1126/science.286.5439.481
– ident: ref6/cit6
  doi: 10.1007/s10142-015-0468-6
– ident: ref11/cit11
  doi: 10.1093/jxb/ert395
– ident: ref21/cit21
  doi: 10.1016/S0092-8674(02)00807-3
– ident: ref27/cit27
  doi: 10.1104/pp.104.057935
– ident: ref47/cit47
  doi: 10.1038/sj.onc.1209331
SSID ssj0008570
Score 2.4523633
Snippet Grapevine is extensively grown for fresh table grapes, wine, and other processed products worldwide. DNA methylation levels are regulated by DNA methylation...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2099
SubjectTerms alternative splicing
color
demethylation
DNA methylation
Fruit - genetics
Fruit - growth & development
Fruit - metabolism
fruiting
fruits
gas chromatography-mass spectrometry
gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
hardness
high performance liquid chromatography
introns
metabolites
metabolome
Methylation
odors
Plant Proteins - genetics
Plant Proteins - metabolism
ripening
table grapes
transcriptome
transcriptomics
translation (genetics)
Vitis
Vitis - chemistry
Vitis - growth & development
Vitis - metabolism
wines
Title Effect of the Methylation Level on the Grape Fruit Development Process
URI http://dx.doi.org/10.1021/acs.jafc.9b07740
https://www.ncbi.nlm.nih.gov/pubmed/31961688
https://www.proquest.com/docview/2343515383
https://www.proquest.com/docview/2400455129
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQucCBfSmbjAQHDkkbO3HiY1URKkS5QKXeItuxEYtS1CQXvp5xkpa94pbFTuSxPfNGM36D0JnQXapD6Tmg6ZTjy9RzBO9y8Hn8IFRpwHjFxDS8ZYORfz0Oxh80Od8j-MTrCJW7T8Iol8suYBVwz5cJgz1sYVD_bq51LVF7nc7hORGAgiYk-dsXrCFS-VdD9Ae6rKxMvF6XK8orckKbXPLsloV01dtP6sZ_DGADrTVgE_fq1bGJlnS2hVZ7D9OGcENvo7imL8YTgwEK4qGGiavT4_CNzSfCcGFfXNlTWjielo8F_pRohJuDBjtoFF_e9wdOU1vBEQCQCkeTNKC-ihRPeWjAJxMkFTLUxGjDQpkaY5gUQqShiUzAKaCEwPBQeURHUjJJd1Erm2R6H2FKGaXKBGD3PJ8YwA9wQwUPpaQs7fI2OgcRJM3eyJMq7E28pHoIckkaubRRZzYhiWoIym2djJcFPS7mPV5rco4FbU9nc5zADrJhEZHpSZknhIJErOKnC9pYVRdYcNRGe_UCmf_RKjGPRdHBP8d5iFaIddptVRl-hFrFtNTHgGwKeVIt6Xfk2vJH
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9V2wPwsPExRjc-jAQPe0gb2_nyY1UtFGj7AK3Ut8h27GmA2qlJXvbX75ykYSCo4C1xbMc-n-9-pzufAd5J43MTK-qhpNNeoHLqSeELtHmCMNZ5GIk6E9NsHk2WwadVuOoB3Z2FwUEU2FNRO_F_ZhegQ1f2TVo9EMpHyIJW-iFiEeaYejT-2glfl6-9ieqgXoLYoPVM_qkHp4908as--gvIrJVNegxfumHWMSbfB1WpBvr2twyO_zWPx3DUQk8yanjlCfTM-ik8Gl1t2_Qb5hmkTTJjsrEEgSGZGVzGJliOTF10EcEH9-GDO7NF0m11XZJ7YUekPXZwAsv0cjGeeO1NC55EuFR6huUhD3SiRS5iixaaZLlUsWHW2ChWubU2UlLKPLaJDQVHzBBaEWvKTKJUpPhzOFhv1uYFEM4jzrUNUQvSgFlEE_jCpYiV4lHuiz68RxJk7U4pstoJzmhWFyJdspYufRju1iXTbbpyd2vGjz0tLroWN02qjj113-6WOsP95Jwkcm02VZExjhRxaoDvqeMEX-igUh9OGz7p_uhEGo2S5Owf5_kGHkwWs2k2_Tj_fA4PmTPn3X0z4iUclNvKvELMU6rXNZffAWYs-qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hkFB7oEAfbHnUSO2hhyybOE7i4woIlJcqtVTcIj8raLWLNtkLv56ZxLtqq7Jqb4ljO_Z4PPONZjwGeK_cgLtcxxFKOhOl2saRkgOJNk8qcmNFJttMTJdX2el1enYjbpZAzM7C4CBq7Klunfi0q--tDxkG4gMqv1Pe9KUeIGxBS32FvHbE2MPDL3MBTDnbu8iOOCoQHwTv5N96IJ1k6t910hNAs1U45Qv4Nh9qG2fyoz9tdN88_JHF8b_nsg5rAYKyYcczG7DkRpvwfPh9EtJwuJdQdkmN2dgzBIjs0uFydkFz7IKijBg-0IcTOrvFysn0tmG_hB-xcPzgFVyXx18PT6Nw40KkEDY1kUus4KkpjLQy92ipqcQqnbvEO5_l2nrvM62UsrkvvJAcsYPwMjdx4gqtM81fw_JoPHJbwDjPODdeoDaM08QjqsAXrmSuNc_sQPbgA5KgCjumrlpneBJXbSHSpQp06cHBbG0qE9KW0-0ZPxe0-Dhvcd-l7FhQd3-23BXuK3KWqJEbT-sq4UgRUgd8QR0SgIIgUw_edLwy_yOJtjgrirf_OM93sPr5qKwuPl2db8OzhKx6unZG7sByM5m6XYQ-jd5rGf0RkKn9Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+Methylation+Level+on+the+Grape+Fruit+Development+Process&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Jia%2C+Haoran&rft.au=Zhang%2C+Zibo&rft.au=Zhang%2C+Saihang&rft.au=Fu%2C+Weihong&rft.date=2020-02-19&rft.issn=1520-5118&rft.eissn=1520-5118&rft.volume=68&rft.issue=7&rft.spage=2099&rft_id=info:doi/10.1021%2Facs.jafc.9b07740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon