Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 28; pp. 31591 - 31600 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V–1 s–1, a value higher than that of control transistors (≈10–2 cm2 V–1 s–1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V–1 s–1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits. |
---|---|
AbstractList | Recent
advances in solution-processable semiconducting colloidal quantum
dots (CQDs) have enabled their use in a range of (opto)electronic
devices. In most of these studies, device fabrication relied almost
exclusively on thermal annealing to remove organic residues and enhance
inter-CQD electronic coupling. Despite its widespread use, however,
thermal annealing is a lengthy process, while its effectiveness to
eliminate organic residues remains limited. Here, we exploit the use
of xenon flash lamp sintering to post-treat solution-deposited layers
of lead sulfide (PbS) CQDs and their application in n-channel thin-film
transistors (TFTs). The process is simple, fast, and highly scalable
and allows for efficient removal of organic residues while preserving
both quantum confinement and high channel current modulation. Bottom-gate,
top-contact PbS CQD TFTs incorporating SiO
2
as the gate
dielectric exhibit a maximum electron mobility of 0.2 cm
2
V
–1
s
–1
, a value higher than
that of control transistors (≈10
–2
cm
2
V
–1
s
–1
) processed via
thermal annealing for 30 min at 120 °C. Replacing SiO
2
with a polymeric dielectric improves the transistor’s channel
interface, leading to a significant increase in electron mobility
to 3.7 cm
2
V
–1
s
–1
.
The present work highlights the potential of flash lamp annealing
as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic
devices and circuits. Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO₂ as the gate dielectric exhibit a maximum electron mobility of 0.2 cm² V–¹ s–¹, a value higher than that of control transistors (≈10–² cm² V–¹ s–¹) processed via thermal annealing for 30 min at 120 °C. Replacing SiO₂ with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm² V–¹ s–¹. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits. Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V–1 s–1, a value higher than that of control transistors (≈10–2 cm2 V–1 s–1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V–1 s–1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits. Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits. |
Author | Yarali, Emre Firdaus, Yuliar El-Labban, Abdulrahman Lidorikis, Elefterios Faber, Hendrik Gedda, Murali Nugraha, Mohamad I Yengel, Emre Anthopoulos, Thomas D Lin, Yuanbao |
AuthorAffiliation | Department of Materials Science and Engineering Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) |
AuthorAffiliation_xml | – name: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Mohamad I surname: Nugraha fullname: Nugraha, Mohamad I email: mohamad.nugraha@kaust.edu.sa organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 2 givenname: Emre surname: Yarali fullname: Yarali, Emre organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 3 givenname: Yuliar surname: Firdaus fullname: Firdaus, Yuliar organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 4 givenname: Yuanbao surname: Lin fullname: Lin, Yuanbao organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 5 givenname: Abdulrahman surname: El-Labban fullname: El-Labban, Abdulrahman organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 6 givenname: Murali surname: Gedda fullname: Gedda, Murali organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 7 givenname: Elefterios surname: Lidorikis fullname: Lidorikis, Elefterios organization: Department of Materials Science and Engineering – sequence: 8 givenname: Emre orcidid: 0000-0001-7208-4803 surname: Yengel fullname: Yengel, Emre organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 9 givenname: Hendrik surname: Faber fullname: Faber, Hendrik organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 10 givenname: Thomas D orcidid: 0000-0002-0978-8813 surname: Anthopoulos fullname: Anthopoulos, Thomas D email: thomas.anthopoulos@kaust.edu.sa organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) |
BookMark | eNqNkc2LFDEQxYOsuB969ZyjCD0mnY_uvggyrq6w4qjrwVOoTqdnsqRTY5IW9r-3lxkWFBY8VVH1e4-i3jk5iRgdIS85W3FW8zdgM0x-xSzTgukn5Ix3UlZtreqTh17KU3Ke8y1bmJqpZ-RU1EpL1bEz8vMb7P1ANzssGL2lm4TW5ezjluJIr_x2V10GZ0vCWH3G3gdf7uim_07XGAL6AQL9OkMs80TfY6E3CWL2uWDKz8nTEUJ2L471gvz4cHmzvqquv3z8tH53XYEUqlSDGK0AKZnkXd8Ng-sbJ52FTrqON0I3y6DlTvd6bPSooXV1JxSIgbfdAK0UF-TtwXc_95MbrIslQTD75CdIdwbBm7830e_MFn-bRupG6WYxeHU0SPhrdrmYyWfrQoDocM6mlk2jueJc_wfKVVu3mrEFXR1QmzDn5MaHizgz99GZQ3TmGN0ikP8IrC9QPN5f7cPjstcH2TI3tzinuDz7MfgPPX2vAA |
CitedBy_id | crossref_primary_10_1021_acsami_2c01196 crossref_primary_10_1016_j_jece_2024_113543 crossref_primary_10_1063_5_0188574 crossref_primary_10_1088_1361_6528_ac3f54 crossref_primary_10_1007_s12274_021_3969_8 crossref_primary_10_1002_aisy_202300218 crossref_primary_10_1016_j_optlastec_2024_111822 crossref_primary_10_1002_adfm_202102149 crossref_primary_10_1002_smll_202400380 crossref_primary_10_1016_j_jwpe_2021_102414 crossref_primary_10_1364_JOSAB_403604 crossref_primary_10_1021_acsami_1c01886 crossref_primary_10_1002_adma_202210683 crossref_primary_10_1016_j_apsusc_2021_149086 crossref_primary_10_1039_D0NR07548E crossref_primary_10_1016_j_colsurfa_2024_133524 crossref_primary_10_1021_acsami_3c12282 crossref_primary_10_1007_s12598_021_01955_2 crossref_primary_10_1039_D3TC02037A |
Cites_doi | 10.1038/nnano.2012.63 10.1002/aelm.201600360 10.1063/1.4966208 10.1021/nl504582d 10.1002/adma.201403281 10.1038/nmat4007 10.1002/adma.201701764 10.1021/cm304136a 10.1038/ncomms10766 10.1002/adfm.201906022 10.1039/C9NR02173F 10.1039/C2NR11589A 10.1021/acsenergylett.7b00091 10.1038/ncomms2218 10.1002/adma.201404495 10.1021/nn4021983 10.1021/acs.nanolett.5b01429 10.1126/sciadv.aao1558 10.1038/s41598-017-00669-9 10.1002/aenm.201901244 10.1063/1.4804434 10.1021/nl202578g 10.1021/acsenergylett.8b00041 10.1002/adma.201501156 10.1002/adma.201707572 10.1021/acsami.6b14934 10.1002/adma.201205041 10.1021/nl101284k 10.1021/nl404818z 10.1021/nn500897c 10.1038/s41528-020-0070-4 10.1021/acsnano.8b07938 10.1002/adma.200305395 10.1039/c3ee41479e 10.1021/nn203948x 10.1021/acsami.7b02867 10.1021/ja800040c 10.1021/nl203389x 10.1002/adma.201700749 10.1021/nl8009704 10.1002/adma.201707600 10.1038/nphoton.2013.70 10.1063/1.4869216 10.1021/acsami.7b13997 10.1002/aelm.201500467 10.1038/nphoton.2016.11 10.1002/aenm.201803049 10.1088/1361-6528/aab7a2 10.1002/aelm.201600476 10.1039/C4TC01624F 10.1021/acsnano.5b04547 10.1038/nnano.2012.127 10.1038/nnano.2011.46 10.1021/acsphotonics.8b00783 10.1021/acsami.8b22458 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 5PM |
DOI | 10.1021/acsami.0c06306 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 31600 |
ExternalDocumentID | PMC7467567 10_1021_acsami_0c06306 a944773385 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a435t-d3fc3a440419b9ddeb7e4eca94e917367eb781e6b6f76f6a8e2935a3d189da843 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Aug 21 14:05:00 EDT 2025 Fri Jul 11 11:36:38 EDT 2025 Fri Jul 11 05:31:04 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Tue Jul 01 02:36:16 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | solution-processed semiconductors colloidal quantum dots flash lamp annealing large-area electronics thin-film transistors |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a435t-d3fc3a440419b9ddeb7e4eca94e917367eb781e6b6f76f6a8e2935a3d189da843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0978-8813 0000-0001-7208-4803 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7467567 |
PMID | 32564590 |
PQID | 2415828600 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7467567 proquest_miscellaneous_2477615116 proquest_miscellaneous_2415828600 crossref_primary_10_1021_acsami_0c06306 crossref_citationtrail_10_1021_acsami_0c06306 acs_journals_10_1021_acsami_0c06306 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1038/nnano.2012.63 – ident: ref47/cit47 doi: 10.1002/aelm.201600360 – ident: ref53/cit53 doi: 10.1063/1.4966208 – ident: ref9/cit9 doi: 10.1021/nl504582d – ident: ref19/cit19 doi: 10.1002/adma.201403281 – ident: ref11/cit11 doi: 10.1038/nmat4007 – ident: ref51/cit51 doi: 10.1002/adma.201701764 – ident: ref7/cit7 doi: 10.1021/cm304136a – ident: ref15/cit15 doi: 10.1038/ncomms10766 – ident: ref32/cit32 doi: 10.1002/adfm.201906022 – ident: ref34/cit34 doi: 10.1039/C9NR02173F – ident: ref42/cit42 doi: 10.1039/C2NR11589A – ident: ref45/cit45 doi: 10.1021/acsenergylett.7b00091 – ident: ref1/cit1 doi: 10.1038/ncomms2218 – ident: ref2/cit2 doi: 10.1002/adma.201404495 – ident: ref18/cit18 doi: 10.1021/nn4021983 – ident: ref43/cit43 doi: 10.1021/acs.nanolett.5b01429 – ident: ref50/cit50 doi: 10.1126/sciadv.aao1558 – ident: ref20/cit20 doi: 10.1038/s41598-017-00669-9 – ident: ref40/cit40 doi: 10.1002/aenm.201901244 – ident: ref41/cit41 doi: 10.1063/1.4804434 – ident: ref52/cit52 doi: 10.1021/nl202578g – ident: ref17/cit17 doi: 10.1021/acsenergylett.8b00041 – ident: ref44/cit44 doi: 10.1002/adma.201501156 – ident: ref25/cit25 doi: 10.1002/adma.201707572 – ident: ref4/cit4 doi: 10.1021/acsami.6b14934 – ident: ref49/cit49 doi: 10.1002/adma.201205041 – ident: ref55/cit55 doi: 10.1021/nl101284k – ident: ref46/cit46 doi: 10.1021/nl404818z – ident: ref13/cit13 doi: 10.1021/nn500897c – ident: ref35/cit35 doi: 10.1038/s41528-020-0070-4 – ident: ref48/cit48 doi: 10.1021/acsnano.8b07938 – ident: ref54/cit54 doi: 10.1021/nl404818z – ident: ref56/cit56 doi: 10.1002/adma.200305395 – ident: ref12/cit12 doi: 10.1039/c3ee41479e – ident: ref3/cit3 doi: 10.1021/nn203948x – ident: ref30/cit30 doi: 10.1021/acsami.7b02867 – ident: ref28/cit28 doi: 10.1021/ja800040c – ident: ref24/cit24 doi: 10.1021/nl203389x – ident: ref31/cit31 doi: 10.1002/adma.201700749 – ident: ref14/cit14 doi: 10.1021/nl8009704 – ident: ref33/cit33 doi: 10.1002/adma.201707600 – ident: ref8/cit8 doi: 10.1038/nphoton.2013.70 – ident: ref21/cit21 doi: 10.1063/1.4869216 – ident: ref22/cit22 doi: 10.1021/acsami.7b13997 – ident: ref23/cit23 doi: 10.1002/aelm.201500467 – ident: ref5/cit5 doi: 10.1038/nphoton.2016.11 – ident: ref16/cit16 doi: 10.1002/aenm.201803049 – ident: ref37/cit37 doi: 10.1088/1361-6528/aab7a2 – ident: ref36/cit36 doi: 10.1002/aelm.201600476 – ident: ref27/cit27 doi: 10.1039/C4TC01624F – ident: ref26/cit26 doi: 10.1021/acsnano.5b04547 – ident: ref10/cit10 doi: 10.1038/nnano.2012.127 – ident: ref29/cit29 doi: 10.1038/nnano.2011.46 – ident: ref38/cit38 doi: 10.1021/acsphotonics.8b00783 – ident: ref39/cit39 doi: 10.1021/acsami.8b22458 |
SSID | ssj0063205 |
Score | 2.4231756 |
Snippet | Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of... Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of... Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31591 |
SubjectTerms | annealing films (materials) Functional Inorganic Materials and Devices lead manufacturing photons polymers quantum dots silica sulfides transistors xenon |
Title | Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors |
URI | http://dx.doi.org/10.1021/acsami.0c06306 https://www.proquest.com/docview/2415828600 https://www.proquest.com/docview/2477615116 https://pubmed.ncbi.nlm.nih.gov/PMC7467567 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-LnrwLb6JKHiKbps2aY-iLiIo6wvWU0nSFBe1Fdse9Nc7k-2qq6x6KrTTlE4e801m8g0hu4JrGQYiYyYLA3BQtGCxCVOmYiOMH4UydhQb5xfi9DY464bdz_2O7xF83ztQpsRSOC2D7FBinEz6AmYwgqCj68GaK7jvkhXBIw9YBBZrQM_44300QqYcNkKfyHI4L_KLoWnP9lmPSsdPiPklD_t1pffN20_2xj__YY7MNGiTHvaHxzwZs_kCmf7CQbhI7q7Ucy-lnfuiQpZc2pwcgGe0yCimgbCTplQOOy9cKu0r7ehrilsORS-F5i9r6J76iR4XFXW2z1GPlEvktn1yc3TKmnoLTAFoqljKM8MVEgZ6sY5h3dPSBtaoOLDg1HEh4UbkWaFFJkUmVGQBK4SKp14UpyoK-DKZyIvcrhBqONd-yxgXebUGQKhBIjW4gIupUrlKdkAnSTNfysSFwn0v6SsqaRS1StigmxLTUJZj5YzHkfJ7H_LPfbKOkZLbg15PYD5hkETltqjLBBENHq1vtX6TkRKRoAftyKEh8_FZZO0efpL37h17N9Z3CYVc-5cG1smUjw4-MnmGG2SieqntJqCgSm-5CfAOCEUEWQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4gPKgPCCoRUFyjiU8L12672z4ShJzCkVMgwadmd7sNF7Ultn2Av56ZvfbgMBh9arKdbrf7a77pzH4D8EEKo-JIFtwWcYQGipE8tXHOdWqlDZNYpZ5iY3Qsh2fRl_P4fAF2-rMw2Igaa6q9E_-WXSDYwTLKiDOwRBIlH8ESIpGQpvTu3km_9UoR-phFNMwjnqDi6lka_3iedJGt53XRLcCcD4-8o28OnsF41lIfZvJju23Mtr2-R-L4H5-yAssd9mS708myCguufA5P7zASvoDv3_TlJGfji6ohzlzWnSPAe6wqGAWF8P0ucQ4fVT6w9oqNzQmjHxDVJMfqv7Y4WO0v9qlqmNeEnoikfglnB_une0PeZV_gGiFUw3NRWKGJPjBITYq7oFEuclankUMTT0iFBUngpJGFkoXUiUPkEGuRB0ma6yQSa7BYVqV7BcwKYcKBtd4P6yxCUku0anhBg1Pnah3eY59k3eqpM-8YD4Ns2lFZ11HrwPvRymxHYE55NH4-KP9xJn85pe54UPJdP_gZri5ymejSVW2dEb6hg_aDwd9klCJcGGA9am7mzF5LHN7zd8rJhefypmwvsVQb_9QDb-Hx8HR0lB19Pj7chCchmf7E8Rm_hsXmd-veID5qzJZfEzdXPwy6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKgceFe866qVejLdxImdHBGwoi2g5SXBKbIdR6zaJqsmOcCvZ8brXVgQqD1Fsh3HsWc8M57xN4R8EVzLOBIFM0UcgYGiBUtNnDOVGmHCJJapg9g4ORVHV9GP6_ja3-PGuzAwiBp6qp0TH7l6kBceYSD4BuWYFadjEChKvCMz6LNDst7bvxhtv4KHLm4RjPOIJSC8RkiNL95HeWTqSXn0qGROhkg-kTndBXI5Hq0LNfm12zZ619w_A3L8z99ZJPNeB6V7Q6JZIlO2XCZzT5AJV8jNuRr0c9q7rRrEzqX-PgHU0aqgGBzCDn0CHXZSuQDbO9rTFxQPIqp-Dt2ftbBo7R96UDXUSUQHSFKvkqvu4eX-EfNZGJgCVaphOS8MVwgjGKQ6hd1QSxtZo9LIgqnHhYSCJLBCi0KKQqjEggYRK54HSZqrJOIfyHRZlXaNUMO5DjvGOH-sNaCaGoRXgwcYniqX6-QzzEnmuajOnIM8DLLhRGV-otYJG61YZjyQOebT-P1q-6_j9oMhhMerLT-NCCADLkPXiSpt1dYZ6jl44b7TeauNlKgfBtCPnKCe8WcRy3uypuzfOkxvzPoSC7nxTzPwkcz2DrrZ8ffTn5vkfYgnAAj1GW-R6eZva7dBTWr0jmOLB_FtDz0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Photonic+Processing+of+High-Electron-Mobility+PbS+Colloidal+Quantum+Dot+Transistors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Nugraha%2C+Mohamad+I.&rft.au=Yarali%2C+Emre&rft.au=Firdaus%2C+Yuliar&rft.au=Lin%2C+Yuanbao&rft.date=2020-07-15&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=12&rft.issue=28&rft.spage=31591&rft.epage=31600&rft_id=info:doi/10.1021%2Facsami.0c06306&rft_id=info%3Apmid%2F32564590&rft.externalDocID=PMC7467567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |