Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors

Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)­electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 28; pp. 31591 - 31600
Main Authors Nugraha, Mohamad I, Yarali, Emre, Firdaus, Yuliar, Lin, Yuanbao, El-Labban, Abdulrahman, Gedda, Murali, Lidorikis, Elefterios, Yengel, Emre, Faber, Hendrik, Anthopoulos, Thomas D
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)­electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V–1 s–1, a value higher than that of control transistors (≈10–2 cm2 V–1 s–1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V–1 s–1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)­electronic devices and circuits.
AbstractList Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO 2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm 2 V –1 s –1 , a value higher than that of control transistors (≈10 –2 cm 2 V –1 s –1 ) processed via thermal annealing for 30 min at 120 °C. Replacing SiO 2 with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm 2 V –1 s –1 . The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO₂ as the gate dielectric exhibit a maximum electron mobility of 0.2 cm² V–¹ s–¹, a value higher than that of control transistors (≈10–² cm² V–¹ s–¹) processed via thermal annealing for 30 min at 120 °C. Replacing SiO₂ with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm² V–¹ s–¹. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)­electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V–1 s–1, a value higher than that of control transistors (≈10–2 cm2 V–1 s–1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V–1 s–1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)­electronic devices and circuits.
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
Author Yarali, Emre
Firdaus, Yuliar
El-Labban, Abdulrahman
Lidorikis, Elefterios
Faber, Hendrik
Gedda, Murali
Nugraha, Mohamad I
Yengel, Emre
Anthopoulos, Thomas D
Lin, Yuanbao
AuthorAffiliation Department of Materials Science and Engineering
Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
AuthorAffiliation_xml – name: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Mohamad I
  surname: Nugraha
  fullname: Nugraha, Mohamad I
  email: mohamad.nugraha@kaust.edu.sa
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 2
  givenname: Emre
  surname: Yarali
  fullname: Yarali, Emre
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 3
  givenname: Yuliar
  surname: Firdaus
  fullname: Firdaus, Yuliar
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 4
  givenname: Yuanbao
  surname: Lin
  fullname: Lin, Yuanbao
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 5
  givenname: Abdulrahman
  surname: El-Labban
  fullname: El-Labban, Abdulrahman
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 6
  givenname: Murali
  surname: Gedda
  fullname: Gedda, Murali
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 7
  givenname: Elefterios
  surname: Lidorikis
  fullname: Lidorikis, Elefterios
  organization: Department of Materials Science and Engineering
– sequence: 8
  givenname: Emre
  orcidid: 0000-0001-7208-4803
  surname: Yengel
  fullname: Yengel, Emre
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 9
  givenname: Hendrik
  surname: Faber
  fullname: Faber, Hendrik
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 10
  givenname: Thomas D
  orcidid: 0000-0002-0978-8813
  surname: Anthopoulos
  fullname: Anthopoulos, Thomas D
  email: thomas.anthopoulos@kaust.edu.sa
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
BookMark eNqNkc2LFDEQxYOsuB969ZyjCD0mnY_uvggyrq6w4qjrwVOoTqdnsqRTY5IW9r-3lxkWFBY8VVH1e4-i3jk5iRgdIS85W3FW8zdgM0x-xSzTgukn5Ix3UlZtreqTh17KU3Ke8y1bmJqpZ-RU1EpL1bEz8vMb7P1ANzssGL2lm4TW5ezjluJIr_x2V10GZ0vCWH3G3gdf7uim_07XGAL6AQL9OkMs80TfY6E3CWL2uWDKz8nTEUJ2L471gvz4cHmzvqquv3z8tH53XYEUqlSDGK0AKZnkXd8Ng-sbJ52FTrqON0I3y6DlTvd6bPSooXV1JxSIgbfdAK0UF-TtwXc_95MbrIslQTD75CdIdwbBm7830e_MFn-bRupG6WYxeHU0SPhrdrmYyWfrQoDocM6mlk2jueJc_wfKVVu3mrEFXR1QmzDn5MaHizgz99GZQ3TmGN0ikP8IrC9QPN5f7cPjstcH2TI3tzinuDz7MfgPPX2vAA
CitedBy_id crossref_primary_10_1021_acsami_2c01196
crossref_primary_10_1016_j_jece_2024_113543
crossref_primary_10_1063_5_0188574
crossref_primary_10_1088_1361_6528_ac3f54
crossref_primary_10_1007_s12274_021_3969_8
crossref_primary_10_1002_aisy_202300218
crossref_primary_10_1016_j_optlastec_2024_111822
crossref_primary_10_1002_adfm_202102149
crossref_primary_10_1002_smll_202400380
crossref_primary_10_1016_j_jwpe_2021_102414
crossref_primary_10_1364_JOSAB_403604
crossref_primary_10_1021_acsami_1c01886
crossref_primary_10_1002_adma_202210683
crossref_primary_10_1016_j_apsusc_2021_149086
crossref_primary_10_1039_D0NR07548E
crossref_primary_10_1016_j_colsurfa_2024_133524
crossref_primary_10_1021_acsami_3c12282
crossref_primary_10_1007_s12598_021_01955_2
crossref_primary_10_1039_D3TC02037A
Cites_doi 10.1038/nnano.2012.63
10.1002/aelm.201600360
10.1063/1.4966208
10.1021/nl504582d
10.1002/adma.201403281
10.1038/nmat4007
10.1002/adma.201701764
10.1021/cm304136a
10.1038/ncomms10766
10.1002/adfm.201906022
10.1039/C9NR02173F
10.1039/C2NR11589A
10.1021/acsenergylett.7b00091
10.1038/ncomms2218
10.1002/adma.201404495
10.1021/nn4021983
10.1021/acs.nanolett.5b01429
10.1126/sciadv.aao1558
10.1038/s41598-017-00669-9
10.1002/aenm.201901244
10.1063/1.4804434
10.1021/nl202578g
10.1021/acsenergylett.8b00041
10.1002/adma.201501156
10.1002/adma.201707572
10.1021/acsami.6b14934
10.1002/adma.201205041
10.1021/nl101284k
10.1021/nl404818z
10.1021/nn500897c
10.1038/s41528-020-0070-4
10.1021/acsnano.8b07938
10.1002/adma.200305395
10.1039/c3ee41479e
10.1021/nn203948x
10.1021/acsami.7b02867
10.1021/ja800040c
10.1021/nl203389x
10.1002/adma.201700749
10.1021/nl8009704
10.1002/adma.201707600
10.1038/nphoton.2013.70
10.1063/1.4869216
10.1021/acsami.7b13997
10.1002/aelm.201500467
10.1038/nphoton.2016.11
10.1002/aenm.201803049
10.1088/1361-6528/aab7a2
10.1002/aelm.201600476
10.1039/C4TC01624F
10.1021/acsnano.5b04547
10.1038/nnano.2012.127
10.1038/nnano.2011.46
10.1021/acsphotonics.8b00783
10.1021/acsami.8b22458
ContentType Journal Article
Copyright Copyright © 2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
5PM
DOI 10.1021/acsami.0c06306
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 31600
ExternalDocumentID PMC7467567
10_1021_acsami_0c06306
a944773385
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a435t-d3fc3a440419b9ddeb7e4eca94e917367eb781e6b6f76f6a8e2935a3d189da843
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Aug 21 14:05:00 EDT 2025
Fri Jul 11 11:36:38 EDT 2025
Fri Jul 11 05:31:04 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Tue Jul 01 02:36:16 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords solution-processed semiconductors
colloidal quantum dots
flash lamp annealing
large-area electronics
thin-film transistors
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-d3fc3a440419b9ddeb7e4eca94e917367eb781e6b6f76f6a8e2935a3d189da843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0978-8813
0000-0001-7208-4803
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7467567
PMID 32564590
PQID 2415828600
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7467567
proquest_miscellaneous_2477615116
proquest_miscellaneous_2415828600
crossref_primary_10_1021_acsami_0c06306
crossref_citationtrail_10_1021_acsami_0c06306
acs_journals_10_1021_acsami_0c06306
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-15
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-15
  day: 15
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1038/nnano.2012.63
– ident: ref47/cit47
  doi: 10.1002/aelm.201600360
– ident: ref53/cit53
  doi: 10.1063/1.4966208
– ident: ref9/cit9
  doi: 10.1021/nl504582d
– ident: ref19/cit19
  doi: 10.1002/adma.201403281
– ident: ref11/cit11
  doi: 10.1038/nmat4007
– ident: ref51/cit51
  doi: 10.1002/adma.201701764
– ident: ref7/cit7
  doi: 10.1021/cm304136a
– ident: ref15/cit15
  doi: 10.1038/ncomms10766
– ident: ref32/cit32
  doi: 10.1002/adfm.201906022
– ident: ref34/cit34
  doi: 10.1039/C9NR02173F
– ident: ref42/cit42
  doi: 10.1039/C2NR11589A
– ident: ref45/cit45
  doi: 10.1021/acsenergylett.7b00091
– ident: ref1/cit1
  doi: 10.1038/ncomms2218
– ident: ref2/cit2
  doi: 10.1002/adma.201404495
– ident: ref18/cit18
  doi: 10.1021/nn4021983
– ident: ref43/cit43
  doi: 10.1021/acs.nanolett.5b01429
– ident: ref50/cit50
  doi: 10.1126/sciadv.aao1558
– ident: ref20/cit20
  doi: 10.1038/s41598-017-00669-9
– ident: ref40/cit40
  doi: 10.1002/aenm.201901244
– ident: ref41/cit41
  doi: 10.1063/1.4804434
– ident: ref52/cit52
  doi: 10.1021/nl202578g
– ident: ref17/cit17
  doi: 10.1021/acsenergylett.8b00041
– ident: ref44/cit44
  doi: 10.1002/adma.201501156
– ident: ref25/cit25
  doi: 10.1002/adma.201707572
– ident: ref4/cit4
  doi: 10.1021/acsami.6b14934
– ident: ref49/cit49
  doi: 10.1002/adma.201205041
– ident: ref55/cit55
  doi: 10.1021/nl101284k
– ident: ref46/cit46
  doi: 10.1021/nl404818z
– ident: ref13/cit13
  doi: 10.1021/nn500897c
– ident: ref35/cit35
  doi: 10.1038/s41528-020-0070-4
– ident: ref48/cit48
  doi: 10.1021/acsnano.8b07938
– ident: ref54/cit54
  doi: 10.1021/nl404818z
– ident: ref56/cit56
  doi: 10.1002/adma.200305395
– ident: ref12/cit12
  doi: 10.1039/c3ee41479e
– ident: ref3/cit3
  doi: 10.1021/nn203948x
– ident: ref30/cit30
  doi: 10.1021/acsami.7b02867
– ident: ref28/cit28
  doi: 10.1021/ja800040c
– ident: ref24/cit24
  doi: 10.1021/nl203389x
– ident: ref31/cit31
  doi: 10.1002/adma.201700749
– ident: ref14/cit14
  doi: 10.1021/nl8009704
– ident: ref33/cit33
  doi: 10.1002/adma.201707600
– ident: ref8/cit8
  doi: 10.1038/nphoton.2013.70
– ident: ref21/cit21
  doi: 10.1063/1.4869216
– ident: ref22/cit22
  doi: 10.1021/acsami.7b13997
– ident: ref23/cit23
  doi: 10.1002/aelm.201500467
– ident: ref5/cit5
  doi: 10.1038/nphoton.2016.11
– ident: ref16/cit16
  doi: 10.1002/aenm.201803049
– ident: ref37/cit37
  doi: 10.1088/1361-6528/aab7a2
– ident: ref36/cit36
  doi: 10.1002/aelm.201600476
– ident: ref27/cit27
  doi: 10.1039/C4TC01624F
– ident: ref26/cit26
  doi: 10.1021/acsnano.5b04547
– ident: ref10/cit10
  doi: 10.1038/nnano.2012.127
– ident: ref29/cit29
  doi: 10.1038/nnano.2011.46
– ident: ref38/cit38
  doi: 10.1021/acsphotonics.8b00783
– ident: ref39/cit39
  doi: 10.1021/acsami.8b22458
SSID ssj0063205
Score 2.4231756
Snippet Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)­electronic devices. In most of...
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of...
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31591
SubjectTerms annealing
films (materials)
Functional Inorganic Materials and Devices
lead
manufacturing
photons
polymers
quantum dots
silica
sulfides
transistors
xenon
Title Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
URI http://dx.doi.org/10.1021/acsami.0c06306
https://www.proquest.com/docview/2415828600
https://www.proquest.com/docview/2477615116
https://pubmed.ncbi.nlm.nih.gov/PMC7467567
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-LnrwLb6JKHiKbps2aY-iLiIo6wvWU0nSFBe1Fdse9Nc7k-2qq6x6KrTTlE4e801m8g0hu4JrGQYiYyYLA3BQtGCxCVOmYiOMH4UydhQb5xfi9DY464bdz_2O7xF83ztQpsRSOC2D7FBinEz6AmYwgqCj68GaK7jvkhXBIw9YBBZrQM_44300QqYcNkKfyHI4L_KLoWnP9lmPSsdPiPklD_t1pffN20_2xj__YY7MNGiTHvaHxzwZs_kCmf7CQbhI7q7Ucy-lnfuiQpZc2pwcgGe0yCimgbCTplQOOy9cKu0r7ehrilsORS-F5i9r6J76iR4XFXW2z1GPlEvktn1yc3TKmnoLTAFoqljKM8MVEgZ6sY5h3dPSBtaoOLDg1HEh4UbkWaFFJkUmVGQBK4SKp14UpyoK-DKZyIvcrhBqONd-yxgXebUGQKhBIjW4gIupUrlKdkAnSTNfysSFwn0v6SsqaRS1StigmxLTUJZj5YzHkfJ7H_LPfbKOkZLbg15PYD5hkETltqjLBBENHq1vtX6TkRKRoAftyKEh8_FZZO0efpL37h17N9Z3CYVc-5cG1smUjw4-MnmGG2SieqntJqCgSm-5CfAOCEUEWQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4gPKgPCCoRUFyjiU8L12672z4ShJzCkVMgwadmd7sNF7Ultn2Av56ZvfbgMBh9arKdbrf7a77pzH4D8EEKo-JIFtwWcYQGipE8tXHOdWqlDZNYpZ5iY3Qsh2fRl_P4fAF2-rMw2Igaa6q9E_-WXSDYwTLKiDOwRBIlH8ESIpGQpvTu3km_9UoR-phFNMwjnqDi6lka_3iedJGt53XRLcCcD4-8o28OnsF41lIfZvJju23Mtr2-R-L4H5-yAssd9mS708myCguufA5P7zASvoDv3_TlJGfji6ohzlzWnSPAe6wqGAWF8P0ucQ4fVT6w9oqNzQmjHxDVJMfqv7Y4WO0v9qlqmNeEnoikfglnB_une0PeZV_gGiFUw3NRWKGJPjBITYq7oFEuclankUMTT0iFBUngpJGFkoXUiUPkEGuRB0ma6yQSa7BYVqV7BcwKYcKBtd4P6yxCUku0anhBg1Pnah3eY59k3eqpM-8YD4Ns2lFZ11HrwPvRymxHYE55NH4-KP9xJn85pe54UPJdP_gZri5ymejSVW2dEb6hg_aDwd9klCJcGGA9am7mzF5LHN7zd8rJhefypmwvsVQb_9QDb-Hx8HR0lB19Pj7chCchmf7E8Rm_hsXmd-veID5qzJZfEzdXPwy6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKgceFe866qVejLdxImdHBGwoi2g5SXBKbIdR6zaJqsmOcCvZ8brXVgQqD1Fsh3HsWc8M57xN4R8EVzLOBIFM0UcgYGiBUtNnDOVGmHCJJapg9g4ORVHV9GP6_ja3-PGuzAwiBp6qp0TH7l6kBceYSD4BuWYFadjEChKvCMz6LNDst7bvxhtv4KHLm4RjPOIJSC8RkiNL95HeWTqSXn0qGROhkg-kTndBXI5Hq0LNfm12zZ619w_A3L8z99ZJPNeB6V7Q6JZIlO2XCZzT5AJV8jNuRr0c9q7rRrEzqX-PgHU0aqgGBzCDn0CHXZSuQDbO9rTFxQPIqp-Dt2ftbBo7R96UDXUSUQHSFKvkqvu4eX-EfNZGJgCVaphOS8MVwgjGKQ6hd1QSxtZo9LIgqnHhYSCJLBCi0KKQqjEggYRK54HSZqrJOIfyHRZlXaNUMO5DjvGOH-sNaCaGoRXgwcYniqX6-QzzEnmuajOnIM8DLLhRGV-otYJG61YZjyQOebT-P1q-6_j9oMhhMerLT-NCCADLkPXiSpt1dYZ6jl44b7TeauNlKgfBtCPnKCe8WcRy3uypuzfOkxvzPoSC7nxTzPwkcz2DrrZ8ffTn5vkfYgnAAj1GW-R6eZva7dBTWr0jmOLB_FtDz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Photonic+Processing+of+High-Electron-Mobility+PbS+Colloidal+Quantum+Dot+Transistors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Nugraha%2C+Mohamad+I.&rft.au=Yarali%2C+Emre&rft.au=Firdaus%2C+Yuliar&rft.au=Lin%2C+Yuanbao&rft.date=2020-07-15&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=12&rft.issue=28&rft.spage=31591&rft.epage=31600&rft_id=info:doi/10.1021%2Facsami.0c06306&rft_id=info%3Apmid%2F32564590&rft.externalDocID=PMC7467567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon