Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction

The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of biomedical engineering Vol. 24; pp. 179 - 201
Main Authors Liu, Tianming, Siegel, Eliot, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States Annual Reviews 06.06.2022
Subjects
Online AccessGet more information
ISSN1523-9829
1545-4274
DOI10.1146/annurev-bioeng-110220-012203

Cover

Loading…
Abstract The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence.
AbstractList The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence.
Author Shen, Dinggang
Liu, Tianming
Siegel, Eliot
AuthorAffiliation 1
esiegel@umaryland.edu
2
3
4
Department of Computer Science, University of Georgia, Athens, Georgia, USA; email
Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA; email
School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; email
Dinggang.Shen@gmail.com
tliu@uga.edu
AuthorAffiliation_xml – name: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– name: Department of Computer Science, University of Georgia, Athens, Georgia, USA; email
– name: 3
– name: 4
– name: Dinggang.Shen@gmail.com
– name: esiegel@umaryland.edu
– name: tliu@uga.edu
– name: 2
– name: 1
– name: Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA; email
– name: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; email
Author_xml – sequence: 1
  givenname: Tianming
  surname: Liu
  fullname: Liu, Tianming
– sequence: 2
  givenname: Eliot
  surname: Siegel
  fullname: Siegel, Eliot
– sequence: 3
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35316609$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS1URB_wC8gLtgaPX4mXVcujUqEsKrbWJHEio9SpEgrq39Mohc3MaHTuSHOmZBSb6Am5A34PoMwDxnho_TfLQuNjxQC4EJxxOFV5QSaglWZKJGrUz0Iymwo7JtOu--ScWynVFRlLLcEYbifkben9nq49tjHEimIs6KsvQo41Xe2w8nQesT52oaNl09LF5mO1ZGDpMmAVm37dJ97bPvIVmnhNLkusO39z7jOyfXrcLl7YevO8WszXDJXUXyxNcqlBJDbRmUpTg0ZZww2XovCiEEleyFwBJIrLDBMsMbOQKeBcZLnWpZiR2-Hs_pDtfOH2bdhhe3R_f52A-QD0trA--Qr-p_vngLvepTu7dINLN7h0g0vxC15QadU
CitedBy_id crossref_primary_10_1259_dmfr_20230030
crossref_primary_10_1117_1_JEI_33_2_023046
crossref_primary_10_1016_j_cageo_2024_105531
crossref_primary_10_1109_ACCESS_2023_3267492
crossref_primary_10_1109_ACCESS_2025_3531001
crossref_primary_10_1109_JBHI_2023_3247949
crossref_primary_10_3390_pr11051460
crossref_primary_10_57197_JDR_2024_0055
crossref_primary_10_1002_jmv_29355
crossref_primary_10_3390_s23115204
crossref_primary_10_1109_ACCESS_2025_3542451
crossref_primary_10_1109_JIOT_2023_3284968
crossref_primary_10_1145_3680464
crossref_primary_10_1016_j_arcmed_2024_103131
crossref_primary_10_2196_57271
crossref_primary_10_1016_j_ejmech_2023_115226
crossref_primary_10_2147_JIR_S438308
crossref_primary_10_1186_s13677_024_00675_z
crossref_primary_10_1088_1402_4896_acf007
crossref_primary_10_1016_j_heliyon_2023_e20524
crossref_primary_10_3390_bioengineering10101120
crossref_primary_10_3934_mbe_2025021
crossref_primary_10_1016_j_clon_2024_06_053
crossref_primary_10_1093_bib_bbac331
crossref_primary_10_3390_e24081119
crossref_primary_10_1186_s12890_024_03333_x
crossref_primary_10_51483_IJPAMR_2_2_2022_1_9
crossref_primary_10_1007_s00521_022_08021_7
crossref_primary_10_1155_2024_6621199
crossref_primary_10_2196_44238
crossref_primary_10_1002_INMD_20240063
crossref_primary_10_1109_JBHI_2023_3286656
crossref_primary_10_3389_fmed_2023_1170331
crossref_primary_10_3390_electronics11233887
crossref_primary_10_1016_j_ijbiomac_2023_125818
crossref_primary_10_1016_j_jnlssr_2024_02_002
crossref_primary_10_1109_TNNLS_2023_3250490
crossref_primary_10_3390_app131810270
crossref_primary_10_2196_46340
crossref_primary_10_1038_s41598_025_90572_5
crossref_primary_10_1016_j_compeleceng_2023_108883
crossref_primary_10_3390_biomimetics9070440
crossref_primary_10_3390_sym16010089
crossref_primary_10_1002_itl2_451
crossref_primary_10_3390_genes13091602
crossref_primary_10_3390_s23020743
crossref_primary_10_1016_j_hybadv_2024_100271
crossref_primary_10_3390_diagnostics13081387
crossref_primary_10_1109_JBHI_2023_3339700
crossref_primary_10_4018_JOEUC_354413
crossref_primary_10_3389_fradi_2023_1153784
crossref_primary_10_1186_s40537_023_00762_z
crossref_primary_10_1016_j_crbiot_2023_100164
crossref_primary_10_1038_s41598_023_39408_8
crossref_primary_10_1016_j_bios_2025_117251
ContentType Journal Article
DBID ZYWBE
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1146/annurev-bioeng-110220-012203
DatabaseName Annual Reviews Subscribe to Open for non-subscribers
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1545-4274
EndPage 201
ExternalDocumentID 35316609
n/a
Genre Journal Article
Review
GroupedDBID ---
-QD
-QH
0R~
1KX
23M
36B
39C
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5FH
5GY
5RE
70K
70N
70Q
70S
70W
79.
7A.
7A0
7B-
7C-
8NG
AABJL
AAGWO
AALHT
AALUV
AAOHI
AARJV
AAWJP
AAYIS
ABDBF
ABDOG
ABGRM
ABIPL
ABJNI
ABJZP
ABKGM
ABVYV
ACAHA
ACDVT
ACGFS
ACQCJ
ACRLM
ACSOE
ADCZP
ADGCW
ADHAB
ADNJN
AEAIQ
AEKBM
AENEX
AEPIK
AEWIE
AFCZG
AFERR
AFFNX
AFKDQ
AHIXL
AHKZM
AHVNO
AICBU
AIDEK
AKYKI
ALAFQ
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
ATAUN
B0M
B9D
B9E
B9F
B9G
B9H
B9K
B9L
B9N
BCFVH
BFVWR
BHKIP
BJPMW
BMYRD
CS3
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F-Q
F-S
F-T
F-U
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FV.
FXG
GCSFC
GFGFW
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
HZ~
H~9
I-F
J1V
M22
MK~
ML~
N9A
O9-
OK1
P0P
P2P
RAR
RAV
RNS
SV3
TUS
ZYWBE
~8M
AAQMF
AAXSQ
ABZNY
ACGJV
ACJYF
ACKHT
ACMXS
ACPHO
ADHEY
ADLON
ADSVE
AFKEJ
AFONB
AIJFW
AJAAW
CGR
CUY
CVF
ECM
EIF
H13
NPM
ID FETCH-LOGICAL-a435t-87c35127975b4886a649606032de2d27cd3c4117403ba7afab91b41002bc55f2
IEDL.DBID ZYWBE
ISSN 1523-9829
IngestDate Thu Apr 03 07:03:32 EDT 2025
Fri May 24 13:42:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
deep learning
radiology
medical image analysis
medical imaging
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-87c35127975b4886a649606032de2d27cd3c4117403ba7afab91b41002bc55f2
OpenAccessLink http://dx.doi.org/10.1146/annurev-bioeng-110220-012203
PMID 35316609
PageCount 23
ParticipantIDs annualreviews_primary_10_1146_annurev_bioeng_110220_012203
pubmed_primary_35316609
PublicationCentury 2000
PublicationDate 2022-Jun-06
PublicationDateYYYYMMDD 2022-06-06
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-Jun-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of biomedical engineering
PublicationTitleAlternate Annu Rev Biomed Eng
PublicationYear 2022
Publisher Annual Reviews
Publisher_xml – name: Annual Reviews
SSID ssj0009334
Score 2.608457
SecondaryResourceType review_article
Snippet The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use...
SourceID pubmed
annualreviews
SourceType Index Database
Publisher
StartPage 179
SubjectTerms Artificial Intelligence
COVID-19
COVID-19 Testing
Deep Learning
Humans
medical image analysis
medical imaging
radiology
SARS-CoV-2
Title Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction
URI http://dx.doi.org/10.1146/annurev-bioeng-110220-012203
https://www.ncbi.nlm.nih.gov/pubmed/35316609
Volume 24
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VViAYEJRXeVQeukZKYteu2aAPtUgtHQoUlihOLp1IK1Qh8e854wCtYEBiyeDoPJzt8_f57O8AGolOuPANsZNMoSeUj55OMlvuJSWG7WMijCWKw5Hs34mbaXNaAvl7Bn-lHAsRxTnmMy-wFMXepaIv34BKqIjflaHy9Phw3f2W2-Uun0w0y9OtUG9B4y_9_ZQCXcOaH3tObw92C7DIrtzo7kMJ8ypsuvKRb1XYWRETPIBRB3HBCr3UGYvzlBVZGDZ4pqjBPvVHGOFU1r69H3S8QLOOu2tHzdZi_GJN7GAdwqTXnbT7XlEtwYsJ8iwprCWcdm-lVdPQqpSxFJad-DxMMUxDlaQ8EQEREJ-bWMVZbHRghFVgNUmzmYVHUM7nOZ4AEwY1RxHQDyS-J7XJUKWtAI3SqPxWDS7XvBQtnDBGtP7I-TVyLo6ciyPn4hocO5d-WXEKA1L6-vQ_3Z7BdmgfJtjzEXkOlYwWL14QXliaOmyMxsN6MUXeAYhuu2E
linkProvider Annual Reviews
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BFa8BQXmVp4euEUnsxDUb9KEW2sJQoLBEceJ0Iq1ohcS_51y7QMSCxJIh0Xk4n-_uy52_A6gmIqHMlYhOMq4cxl3liCTT415SRNiuSpjUQLHXD9sP7GYYDO3Nuqltqyywcc6r-bptG33whdXvdEFyu5jVgihyrPKR42n8ohut8EmXoaTDHxp_6eX56br5zcVLTbEZMZgjar5Yg-pf1vvNE1pIROcBqbUNWzaTJFdm63dgSeVlWDWzJT_KsPmDaXAX-g2lJsSSqY5InKfElmhI5xVdClmQkxBMYkn97rHTcDxBGqYRD19rifs3LaJ3cg8Greag3nbsKAUnxnxohj4voRjaueCBxCMbxiHT0MWlfqr81OdJShPmITpxqYx5nMVSeJJpelaZBEHm78NKPs7VIRAmlaCKefhBIRgMhcwUT2ueklwo7tYqcFnQUjQxrBlR8Qb0e2RUHBkVR0bFFTgwKv2SougjwtAVR_9Z9hzW24NeN-p2-rfHsOHrGwz6R0p4AqUMzUmdYmIxk2fWUD4BqNrJZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLaACQQHxPsNOSBuFW2TNQsXBBsT4zE48L5UTeoiJFamMUD79zhLB0xckLj00Cqt-slx_dX2Z4BtowwXviZ2kkn0hPTRUyaz415SYtg-GqEtUTxvRsfX4uSufDcCvUEvjC2rHFLj7Gfzbdk2-eDdAt_XgcjtYFYLscgXzB-9wPIXW2hFR75vOsnHM9lDt_OGO62nFvZ1iH4khnfbaTYKJdtsWRmD0sP97eHRt2IvdylpYmqeqoRqArb_8tTfaqJD4Wr_s1Wfgeki3mQHzkBmYQTzORh3Eyh7czD1Q49wHpo1xDYrJFcfWZKnrEjksEaLHA8bSJgwCnVZ9eKmUfMCxWquXI9O2xWXHbvEvvgCXNWPrqrHXjFwwUsoauqSZzScAgCpZFnTxo6SSFiC4_MwxTANpUm5EQFxGJ_rRCZZolWghRVx1aZczsJFGMtfclwGJjQqjiKgC0iUMVI6Q5lWAtRSofQrK7A3hFLcdtoa8XCf9HvsII4dxLGDeAWWHKRfqzh5kijy1ep_brsFE5e1enzWaJ6uwWRo2xzs35ZoHUoZ2RxuUPTR1ZuFnXwCsBbYKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+and+Medical+Image+Analysis+for+COVID-19+Diagnosis+and+Prediction&rft.jtitle=Annual+review+of+biomedical+engineering&rft.au=Liu%2C+Tianming&rft.au=Siegel%2C+Eliot&rft.au=Shen%2C+Dinggang&rft.date=2022-06-06&rft.eissn=1545-4274&rft.volume=24&rft.spage=179&rft_id=info:doi/10.1146%2Fannurev-bioeng-110220-012203&rft_id=info%3Apmid%2F35316609&rft_id=info%3Apmid%2F35316609&rft.externalDocID=35316609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-9829&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-9829&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-9829&client=summon