Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction
The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms...
Saved in:
Published in | Annual review of biomedical engineering Vol. 24; pp. 179 - 201 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Annual Reviews
06.06.2022
|
Subjects | |
Online Access | Get more information |
ISSN | 1523-9829 1545-4274 |
DOI | 10.1146/annurev-bioeng-110220-012203 |
Cover
Loading…
Abstract | The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence. |
---|---|
AbstractList | The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence. |
Author | Shen, Dinggang Liu, Tianming Siegel, Eliot |
AuthorAffiliation | 1 esiegel@umaryland.edu 2 3 4 Department of Computer Science, University of Georgia, Athens, Georgia, USA; email Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA; email School of Biomedical Engineering, ShanghaiTech University, Shanghai, China Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; email Dinggang.Shen@gmail.com tliu@uga.edu |
AuthorAffiliation_xml | – name: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China – name: Department of Computer Science, University of Georgia, Athens, Georgia, USA; email – name: 3 – name: 4 – name: Dinggang.Shen@gmail.com – name: esiegel@umaryland.edu – name: tliu@uga.edu – name: 2 – name: 1 – name: Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA; email – name: Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; email |
Author_xml | – sequence: 1 givenname: Tianming surname: Liu fullname: Liu, Tianming – sequence: 2 givenname: Eliot surname: Siegel fullname: Siegel, Eliot – sequence: 3 givenname: Dinggang surname: Shen fullname: Shen, Dinggang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35316609$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMtOwzAQRS1URB_wC8gLtgaPX4mXVcujUqEsKrbWJHEio9SpEgrq39Mohc3MaHTuSHOmZBSb6Am5A34PoMwDxnho_TfLQuNjxQC4EJxxOFV5QSaglWZKJGrUz0Iymwo7JtOu--ScWynVFRlLLcEYbifkben9nq49tjHEimIs6KsvQo41Xe2w8nQesT52oaNl09LF5mO1ZGDpMmAVm37dJ97bPvIVmnhNLkusO39z7jOyfXrcLl7YevO8WszXDJXUXyxNcqlBJDbRmUpTg0ZZww2XovCiEEleyFwBJIrLDBMsMbOQKeBcZLnWpZiR2-Hs_pDtfOH2bdhhe3R_f52A-QD0trA--Qr-p_vngLvepTu7dINLN7h0g0vxC15QadU |
CitedBy_id | crossref_primary_10_1259_dmfr_20230030 crossref_primary_10_1117_1_JEI_33_2_023046 crossref_primary_10_1016_j_cageo_2024_105531 crossref_primary_10_1109_ACCESS_2023_3267492 crossref_primary_10_1109_ACCESS_2025_3531001 crossref_primary_10_1109_JBHI_2023_3247949 crossref_primary_10_3390_pr11051460 crossref_primary_10_57197_JDR_2024_0055 crossref_primary_10_1002_jmv_29355 crossref_primary_10_3390_s23115204 crossref_primary_10_1109_ACCESS_2025_3542451 crossref_primary_10_1109_JIOT_2023_3284968 crossref_primary_10_1145_3680464 crossref_primary_10_1016_j_arcmed_2024_103131 crossref_primary_10_2196_57271 crossref_primary_10_1016_j_ejmech_2023_115226 crossref_primary_10_2147_JIR_S438308 crossref_primary_10_1186_s13677_024_00675_z crossref_primary_10_1088_1402_4896_acf007 crossref_primary_10_1016_j_heliyon_2023_e20524 crossref_primary_10_3390_bioengineering10101120 crossref_primary_10_3934_mbe_2025021 crossref_primary_10_1016_j_clon_2024_06_053 crossref_primary_10_1093_bib_bbac331 crossref_primary_10_3390_e24081119 crossref_primary_10_1186_s12890_024_03333_x crossref_primary_10_51483_IJPAMR_2_2_2022_1_9 crossref_primary_10_1007_s00521_022_08021_7 crossref_primary_10_1155_2024_6621199 crossref_primary_10_2196_44238 crossref_primary_10_1002_INMD_20240063 crossref_primary_10_1109_JBHI_2023_3286656 crossref_primary_10_3389_fmed_2023_1170331 crossref_primary_10_3390_electronics11233887 crossref_primary_10_1016_j_ijbiomac_2023_125818 crossref_primary_10_1016_j_jnlssr_2024_02_002 crossref_primary_10_1109_TNNLS_2023_3250490 crossref_primary_10_3390_app131810270 crossref_primary_10_2196_46340 crossref_primary_10_1038_s41598_025_90572_5 crossref_primary_10_1016_j_compeleceng_2023_108883 crossref_primary_10_3390_biomimetics9070440 crossref_primary_10_3390_sym16010089 crossref_primary_10_1002_itl2_451 crossref_primary_10_3390_genes13091602 crossref_primary_10_3390_s23020743 crossref_primary_10_1016_j_hybadv_2024_100271 crossref_primary_10_3390_diagnostics13081387 crossref_primary_10_1109_JBHI_2023_3339700 crossref_primary_10_4018_JOEUC_354413 crossref_primary_10_3389_fradi_2023_1153784 crossref_primary_10_1186_s40537_023_00762_z crossref_primary_10_1016_j_crbiot_2023_100164 crossref_primary_10_1038_s41598_023_39408_8 crossref_primary_10_1016_j_bios_2025_117251 |
ContentType | Journal Article |
DBID | ZYWBE CGR CUY CVF ECM EIF NPM |
DOI | 10.1146/annurev-bioeng-110220-012203 |
DatabaseName | Annual Reviews Subscribe to Open for non-subscribers Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1545-4274 |
EndPage | 201 |
ExternalDocumentID | 35316609 n/a |
Genre | Journal Article Review |
GroupedDBID | --- -QD -QH 0R~ 1KX 23M 36B 39C 4.4 51A 53G 5FA 5FB 5FC 5FD 5FE 5FF 5FH 5GY 5RE 70K 70N 70Q 70S 70W 79. 7A. 7A0 7B- 7C- 8NG AABJL AAGWO AALHT AALUV AAOHI AARJV AAWJP AAYIS ABDBF ABDOG ABGRM ABIPL ABJNI ABJZP ABKGM ABVYV ACAHA ACDVT ACGFS ACQCJ ACRLM ACSOE ADCZP ADGCW ADHAB ADNJN AEAIQ AEKBM AENEX AEPIK AEWIE AFCZG AFERR AFFNX AFKDQ AHIXL AHKZM AHVNO AICBU AIDEK AKYKI ALAFQ ALMA_UNASSIGNED_HOLDINGS AMTJG AOUBY AQQLW ATAUN B0M B9D B9E B9F B9G B9H B9K B9L B9N BCFVH BFVWR BHKIP BJPMW BMYRD CS3 EAP EBC EBD EBS EJD EMB EMK EMOBN EST ESX F-Q F-S F-T F-U F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FV. FXG GCSFC GFGFW GJQJI GLOEX GNDDA GOAVI GQXMV HZ~ H~9 I-F J1V M22 MK~ ML~ N9A O9- OK1 P0P P2P RAR RAV RNS SV3 TUS ZYWBE ~8M AAQMF AAXSQ ABZNY ACGJV ACJYF ACKHT ACMXS ACPHO ADHEY ADLON ADSVE AFKEJ AFONB AIJFW AJAAW CGR CUY CVF ECM EIF H13 NPM |
ID | FETCH-LOGICAL-a435t-87c35127975b4886a649606032de2d27cd3c4117403ba7afab91b41002bc55f2 |
IEDL.DBID | ZYWBE |
ISSN | 1523-9829 |
IngestDate | Thu Apr 03 07:03:32 EDT 2025 Fri May 24 13:42:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 deep learning radiology medical image analysis medical imaging |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a435t-87c35127975b4886a649606032de2d27cd3c4117403ba7afab91b41002bc55f2 |
OpenAccessLink | http://dx.doi.org/10.1146/annurev-bioeng-110220-012203 |
PMID | 35316609 |
PageCount | 23 |
ParticipantIDs | annualreviews_primary_10_1146_annurev_bioeng_110220_012203 pubmed_primary_35316609 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jun-06 |
PublicationDateYYYYMMDD | 2022-06-06 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-Jun-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annual review of biomedical engineering |
PublicationTitleAlternate | Annu Rev Biomed Eng |
PublicationYear | 2022 |
Publisher | Annual Reviews |
Publisher_xml | – name: Annual Reviews |
SSID | ssj0009334 |
Score | 2.608457 |
SecondaryResourceType | review_article |
Snippet | The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use... |
SourceID | pubmed annualreviews |
SourceType | Index Database Publisher |
StartPage | 179 |
SubjectTerms | Artificial Intelligence COVID-19 COVID-19 Testing Deep Learning Humans medical image analysis medical imaging radiology SARS-CoV-2 |
Title | Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction |
URI | http://dx.doi.org/10.1146/annurev-bioeng-110220-012203 https://www.ncbi.nlm.nih.gov/pubmed/35316609 |
Volume | 24 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VViAYEJRXeVQeukZKYteu2aAPtUgtHQoUlihOLp1IK1Qh8e854wCtYEBiyeDoPJzt8_f57O8AGolOuPANsZNMoSeUj55OMlvuJSWG7WMijCWKw5Hs34mbaXNaAvl7Bn-lHAsRxTnmMy-wFMXepaIv34BKqIjflaHy9Phw3f2W2-Uun0w0y9OtUG9B4y_9_ZQCXcOaH3tObw92C7DIrtzo7kMJ8ypsuvKRb1XYWRETPIBRB3HBCr3UGYvzlBVZGDZ4pqjBPvVHGOFU1r69H3S8QLOOu2tHzdZi_GJN7GAdwqTXnbT7XlEtwYsJ8iwprCWcdm-lVdPQqpSxFJad-DxMMUxDlaQ8EQEREJ-bWMVZbHRghFVgNUmzmYVHUM7nOZ4AEwY1RxHQDyS-J7XJUKWtAI3SqPxWDS7XvBQtnDBGtP7I-TVyLo6ciyPn4hocO5d-WXEKA1L6-vQ_3Z7BdmgfJtjzEXkOlYwWL14QXliaOmyMxsN6MUXeAYhuu2E |
linkProvider | Annual Reviews |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BFa8BQXmVp4euEUnsxDUb9KEW2sJQoLBEceJ0Iq1ohcS_51y7QMSCxJIh0Xk4n-_uy52_A6gmIqHMlYhOMq4cxl3liCTT415SRNiuSpjUQLHXD9sP7GYYDO3Nuqltqyywcc6r-bptG33whdXvdEFyu5jVgihyrPKR42n8ohut8EmXoaTDHxp_6eX56br5zcVLTbEZMZgjar5Yg-pf1vvNE1pIROcBqbUNWzaTJFdm63dgSeVlWDWzJT_KsPmDaXAX-g2lJsSSqY5InKfElmhI5xVdClmQkxBMYkn97rHTcDxBGqYRD19rifs3LaJ3cg8Greag3nbsKAUnxnxohj4voRjaueCBxCMbxiHT0MWlfqr81OdJShPmITpxqYx5nMVSeJJpelaZBEHm78NKPs7VIRAmlaCKefhBIRgMhcwUT2ueklwo7tYqcFnQUjQxrBlR8Qb0e2RUHBkVR0bFFTgwKv2SougjwtAVR_9Z9hzW24NeN-p2-rfHsOHrGwz6R0p4AqUMzUmdYmIxk2fWUD4BqNrJZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLaACQQHxPsNOSBuFW2TNQsXBBsT4zE48L5UTeoiJFamMUD79zhLB0xckLj00Cqt-slx_dX2Z4BtowwXviZ2kkn0hPTRUyaz415SYtg-GqEtUTxvRsfX4uSufDcCvUEvjC2rHFLj7Gfzbdk2-eDdAt_XgcjtYFYLscgXzB-9wPIXW2hFR75vOsnHM9lDt_OGO62nFvZ1iH4khnfbaTYKJdtsWRmD0sP97eHRt2IvdylpYmqeqoRqArb_8tTfaqJD4Wr_s1Wfgeki3mQHzkBmYQTzORh3Eyh7czD1Q49wHpo1xDYrJFcfWZKnrEjksEaLHA8bSJgwCnVZ9eKmUfMCxWquXI9O2xWXHbvEvvgCXNWPrqrHXjFwwUsoauqSZzScAgCpZFnTxo6SSFiC4_MwxTANpUm5EQFxGJ_rRCZZolWghRVx1aZczsJFGMtfclwGJjQqjiKgC0iUMVI6Q5lWAtRSofQrK7A3hFLcdtoa8XCf9HvsII4dxLGDeAWWHKRfqzh5kijy1ep_brsFE5e1enzWaJ6uwWRo2xzs35ZoHUoZ2RxuUPTR1ZuFnXwCsBbYKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+and+Medical+Image+Analysis+for+COVID-19+Diagnosis+and+Prediction&rft.jtitle=Annual+review+of+biomedical+engineering&rft.au=Liu%2C+Tianming&rft.au=Siegel%2C+Eliot&rft.au=Shen%2C+Dinggang&rft.date=2022-06-06&rft.eissn=1545-4274&rft.volume=24&rft.spage=179&rft_id=info:doi/10.1146%2Fannurev-bioeng-110220-012203&rft_id=info%3Apmid%2F35316609&rft_id=info%3Apmid%2F35316609&rft.externalDocID=35316609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-9829&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-9829&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-9829&client=summon |