Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review

Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatog...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 65; no. 32; pp. 6719 - 6726
Main Authors Xu, Meng-Lei, Gao, Yu, Han, Xiao Xia, Zhao, Bing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.
AbstractList Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.
Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.
Author Han, Xiao Xia
Gao, Yu
Xu, Meng-Lei
Zhao, Bing
AuthorAffiliation College of Agriculture
Jilin University
State Key Laboratory of Supramolecular Structure and Materials
AuthorAffiliation_xml – name: State Key Laboratory of Supramolecular Structure and Materials
– name: Jilin University
– name: College of Agriculture
Author_xml – sequence: 1
  givenname: Meng-Lei
  orcidid: 0000-0002-1371-6900
  surname: Xu
  fullname: Xu, Meng-Lei
  organization: Jilin University
– sequence: 2
  givenname: Yu
  surname: Gao
  fullname: Gao, Yu
  organization: College of Agriculture
– sequence: 3
  givenname: Xiao Xia
  surname: Han
  fullname: Han, Xiao Xia
  email: hanxiaoxia@jlu.edu.cn
  organization: Jilin University
– sequence: 4
  givenname: Bing
  surname: Zhao
  fullname: Zhao, Bing
  email: zhaob@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28726388$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAURi0EghbYmZBHBlL8iBOHDfGWkEAFJobIsa_BqLVLnID497i0MCABkwefc-37fUO06oMHhHYoGVHC6IHScfSsrB6VDWGC5CtoQAUjmaBUrqIBSUwmRUE30DDGZ0KIFCVZRxtMlqzgUg7Qwwl0oDsXPA4W30DsnHYG8BiiMz1E7Dw-C8Hg--j8I77tW6s0ZKf-SXkNBo_VVHl8O0sz2hB1mL0f4qNkvzp420JrVk0ibC_PTXR_dnp3fJFdXZ9fHh9dZSrnosuKCqDkmlS2tLYQ0hhLjGyakkgjGNCK5YwLyCvbGNEIYzXlYCsuK8m5zS3fRHuLubM2vKQ_d_XURQ2TifIQ-liztLggvKT8XzQ9RikrckoTurtE-2YKpp61bqra9_oruwSQBaDT5rEF-41QUs_rqVM99byeellPUoofinadmqfftcpN_hL3F-LnTehbnwL9Hf8Ag8qkTg
CitedBy_id crossref_primary_10_1016_j_fochx_2024_101387
crossref_primary_10_1039_D0RA08060H
crossref_primary_10_1016_j_snb_2019_04_020
crossref_primary_10_1016_j_cej_2021_130323
crossref_primary_10_1002_admt_202001242
crossref_primary_10_1021_acs_jafc_7b04220
crossref_primary_10_1039_D1AN02292J
crossref_primary_10_3390_bios13090850
crossref_primary_10_1002_fsh3_12022
crossref_primary_10_1007_s00216_022_04400_0
crossref_primary_10_1038_s41538_021_00117_z
crossref_primary_10_1155_2021_5532477
crossref_primary_10_3390_bios15030168
crossref_primary_10_1007_s12161_018_1290_2
crossref_primary_10_1016_j_snb_2024_137100
crossref_primary_10_1016_j_talanta_2018_11_114
crossref_primary_10_1088_2632_959X_ad858f
crossref_primary_10_1016_j_jelechem_2018_09_047
crossref_primary_10_1021_acs_jpcc_3c02312
crossref_primary_10_1149_2_0641816jes
crossref_primary_10_1016_j_talanta_2020_120998
crossref_primary_10_1039_D4AY00297K
crossref_primary_10_1016_j_jallcom_2020_156438
crossref_primary_10_1016_j_saa_2019_04_074
crossref_primary_10_3390_s19030506
crossref_primary_10_1016_j_chemosphere_2022_137693
crossref_primary_10_1016_j_saa_2018_08_035
crossref_primary_10_1016_j_jfca_2024_107052
crossref_primary_10_1016_j_trac_2023_117365
crossref_primary_10_1016_j_saa_2018_01_014
crossref_primary_10_3390_s24123743
crossref_primary_10_1016_j_optmat_2022_112861
crossref_primary_10_1039_D1AN02335G
crossref_primary_10_1080_10408347_2021_1950522
crossref_primary_10_1088_1361_6528_aca0f5
crossref_primary_10_3390_s24196324
crossref_primary_10_1016_j_apsusc_2024_162135
crossref_primary_10_1016_j_ccr_2024_216137
crossref_primary_10_3390_chemosensors12050082
crossref_primary_10_1021_acs_jpcc_0c06078
crossref_primary_10_1007_s00604_021_05025_3
crossref_primary_10_3390_nano8120967
crossref_primary_10_3390_nano8100757
crossref_primary_10_1016_j_jenvman_2024_121045
crossref_primary_10_2116_analsci_19P361
crossref_primary_10_3390_bios11110459
crossref_primary_10_1016_j_cej_2023_144023
crossref_primary_10_3389_fnut_2021_663569
crossref_primary_10_3390_mi13101570
crossref_primary_10_1177_18479804221082778
crossref_primary_10_3390_foods9111610
crossref_primary_10_1007_s00216_021_03169_y
crossref_primary_10_1021_acsagscitech_4c00757
crossref_primary_10_3390_molecules25184081
crossref_primary_10_1039_D3EN00821E
crossref_primary_10_1186_s11671_023_03851_3
crossref_primary_10_1021_acsami_8b10303
crossref_primary_10_1016_j_foodres_2023_113799
crossref_primary_10_1016_j_microc_2025_113346
crossref_primary_10_1080_03601234_2019_1631099
crossref_primary_10_1007_s10895_024_04120_x
crossref_primary_10_1364_OME_411419
crossref_primary_10_1007_s00604_020_04596_x
crossref_primary_10_1038_s41598_021_01742_0
crossref_primary_10_1016_j_aca_2019_03_058
crossref_primary_10_1016_j_microc_2024_110459
crossref_primary_10_1039_D3ME00008G
crossref_primary_10_3390_foods11010089
crossref_primary_10_1016_j_jece_2024_112777
crossref_primary_10_1039_C8AN00540K
crossref_primary_10_1016_j_jfca_2025_107264
crossref_primary_10_1088_2043_6254_ab6c5f
crossref_primary_10_1007_s00217_021_03887_8
crossref_primary_10_1007_s10812_022_01456_9
crossref_primary_10_1021_acs_jafc_8b02056
crossref_primary_10_1016_j_saa_2020_119262
crossref_primary_10_3390_ma15217446
crossref_primary_10_1021_acs_nanolett_1c00416
crossref_primary_10_1021_acs_analchem_1c03235
crossref_primary_10_1016_j_snb_2022_132360
crossref_primary_10_1021_acsanm_8b02164
crossref_primary_10_3390_agronomy11091882
crossref_primary_10_1016_j_ecoenv_2020_110736
crossref_primary_10_1016_j_jcis_2021_12_167
crossref_primary_10_1021_acs_jafc_0c06231
crossref_primary_10_3389_fpls_2022_956778
crossref_primary_10_3390_foods11142097
crossref_primary_10_1007_s42452_019_0619_9
crossref_primary_10_1080_05704928_2024_2407112
crossref_primary_10_1016_j_tifs_2017_12_012
crossref_primary_10_1080_10408347_2019_1626697
crossref_primary_10_1039_D3CP05835B
crossref_primary_10_1016_j_snb_2021_131056
crossref_primary_10_1002_vzj2_20076
crossref_primary_10_1007_s00604_019_4022_4
crossref_primary_10_1039_D0AY01953D
crossref_primary_10_1016_j_jmrt_2021_01_069
crossref_primary_10_1016_j_photonics_2024_101238
crossref_primary_10_1021_acsomega_3c03572
crossref_primary_10_1007_s00128_021_03258_9
crossref_primary_10_1080_10408398_2021_1901257
crossref_primary_10_1016_j_matchemphys_2021_124388
crossref_primary_10_1016_j_ijbiomac_2024_132787
crossref_primary_10_1007_s11705_022_2177_8
crossref_primary_10_1002_fsh3_12040
crossref_primary_10_1016_j_ecoenv_2019_01_012
crossref_primary_10_1364_AO_463293
crossref_primary_10_1016_j_microc_2024_110127
crossref_primary_10_1039_D4EW00114A
crossref_primary_10_1002_jrs_5595
crossref_primary_10_1039_C9AY02347J
crossref_primary_10_1080_10408347_2022_2063683
crossref_primary_10_1016_j_snb_2019_02_084
crossref_primary_10_1002_jrs_5598
crossref_primary_10_3390_s19061355
crossref_primary_10_1021_acs_analchem_8b03791
crossref_primary_10_3390_bios13060575
crossref_primary_10_1016_j_colsurfa_2024_134647
crossref_primary_10_1039_D2RA07415J
crossref_primary_10_3788_LOP213339
crossref_primary_10_3390_photochem4040026
crossref_primary_10_1021_acs_jafc_9b03463
crossref_primary_10_1016_j_apsusc_2024_159513
crossref_primary_10_1016_j_talanta_2018_11_040
crossref_primary_10_1080_00032719_2019_1691220
crossref_primary_10_1146_annurev_anchem_061417_125724
crossref_primary_10_1002_adom_202001171
crossref_primary_10_1016_j_ccr_2024_216320
crossref_primary_10_3920_QAS2019_1557
crossref_primary_10_1016_j_psep_2022_07_047
crossref_primary_10_3390_s22114178
crossref_primary_10_1016_j_foodres_2025_115738
crossref_primary_10_1111_1541_4337_12741
crossref_primary_10_1080_00032719_2021_1946555
crossref_primary_10_1021_acsanm_4c01122
crossref_primary_10_1039_C8AY01698D
crossref_primary_10_1016_j_talanta_2021_122383
crossref_primary_10_1016_j_jenvman_2024_120326
crossref_primary_10_1016_j_jcis_2022_06_125
crossref_primary_10_1016_j_aca_2022_339974
crossref_primary_10_3390_foods11060780
crossref_primary_10_1016_j_tifs_2021_08_006
crossref_primary_10_1016_j_vibspec_2020_103183
crossref_primary_10_1021_acs_jafc_0c06562
crossref_primary_10_3390_chemosensors11090505
crossref_primary_10_1016_j_microc_2022_107241
crossref_primary_10_1021_acssuschemeng_0c00902
crossref_primary_10_1007_s00604_022_05238_0
crossref_primary_10_1016_j_molstruc_2024_140203
crossref_primary_10_1021_acssensors_2c00137
crossref_primary_10_1038_s41598_019_47179_4
crossref_primary_10_1016_j_matdes_2023_111865
crossref_primary_10_1016_j_foodchem_2021_131681
crossref_primary_10_1016_j_snb_2019_02_007
crossref_primary_10_1016_j_ccr_2021_214061
crossref_primary_10_1016_j_snb_2021_131250
crossref_primary_10_1039_C9TC04848K
crossref_primary_10_1007_s44211_024_00515_9
crossref_primary_10_1016_j_teac_2024_e00238
crossref_primary_10_1016_j_microc_2024_110312
crossref_primary_10_1021_acs_analchem_2c03992
crossref_primary_10_1039_D4AY00602J
crossref_primary_10_1021_acs_jafc_9b01544
crossref_primary_10_1002_bio_70106
crossref_primary_10_1016_j_neunet_2021_09_006
crossref_primary_10_1016_j_pmatsci_2021_100866
crossref_primary_10_1016_j_tifs_2024_104460
crossref_primary_10_1016_j_jhazmat_2025_137150
crossref_primary_10_1016_j_saa_2019_117484
crossref_primary_10_1016_j_tifs_2018_02_020
crossref_primary_10_3390_electrochem2040042
crossref_primary_10_3390_nano11020304
crossref_primary_10_1002_jsfa_12109
crossref_primary_10_1038_s41598_022_05751_5
crossref_primary_10_1016_j_ecoenv_2023_114635
crossref_primary_10_34294_aficat_22_08_006
crossref_primary_10_1021_acsagscitech_4c00005
crossref_primary_10_7567_1347_4065_ab0df2
crossref_primary_10_1021_acssensors_0c01740
crossref_primary_10_1039_C8TC01741G
crossref_primary_10_1016_j_microc_2021_106090
crossref_primary_10_1016_j_aiia_2019_11_001
crossref_primary_10_1016_j_matchemphys_2022_127140
crossref_primary_10_1016_j_snb_2023_133888
crossref_primary_10_1080_03067319_2024_2339453
crossref_primary_10_1016_j_foodchem_2022_132494
crossref_primary_10_1364_OL_43_001403
crossref_primary_10_1007_s11468_023_02080_9
crossref_primary_10_1016_j_tifs_2020_06_009
crossref_primary_10_1016_j_foodchem_2023_135705
crossref_primary_10_15580_gjbhs_2024_1_102024144
crossref_primary_10_1016_j_microc_2021_106660
crossref_primary_10_1016_j_tifs_2021_10_024
crossref_primary_10_3920_QAS2019_1639
crossref_primary_10_1016_j_mattod_2022_11_021
crossref_primary_10_1016_j_jallcom_2020_155885
crossref_primary_10_1002_vjch_202000017
crossref_primary_10_1016_j_cej_2025_160813
crossref_primary_10_1016_j_saa_2021_119759
crossref_primary_10_1021_acs_jafc_2c07846
crossref_primary_10_1016_j_electacta_2021_138615
crossref_primary_10_1016_j_saa_2021_119871
crossref_primary_10_1080_00032719_2021_1946075
crossref_primary_10_1016_j_jfca_2023_105768
crossref_primary_10_1021_acs_langmuir_8b04110
crossref_primary_10_1002_mas_21842
crossref_primary_10_1016_j_saa_2024_124178
crossref_primary_10_1016_j_talanta_2023_124800
crossref_primary_10_1016_j_foodcont_2018_04_058
crossref_primary_10_1016_j_surfin_2024_105585
crossref_primary_10_1016_j_foodchem_2025_144030
crossref_primary_10_1149_2_0161808jes
crossref_primary_10_1016_j_scitotenv_2024_173262
crossref_primary_10_1088_1361_6528_ad115e
crossref_primary_10_1016_j_jcis_2022_06_164
crossref_primary_10_1007_s00216_025_05826_y
crossref_primary_10_1016_j_foodchem_2024_139515
crossref_primary_10_1016_j_talanta_2020_120721
crossref_primary_10_1039_D0AN01274B
crossref_primary_10_1109_TIM_2021_3075525
crossref_primary_10_3390_nano10122539
crossref_primary_10_1021_acsanm_2c02234
crossref_primary_10_1021_acs_jpcc_3c02651
crossref_primary_10_3390_ijms22073425
crossref_primary_10_1002_jrs_6026
crossref_primary_10_1155_2021_6642220
crossref_primary_10_1080_00032719_2019_1625914
crossref_primary_10_1021_acs_jafc_9b03401
crossref_primary_10_1007_s12161_018_1233_y
crossref_primary_10_1016_j_measurement_2023_113505
crossref_primary_10_1007_s44211_022_00169_5
crossref_primary_10_1016_j_jcis_2021_10_133
crossref_primary_10_1021_acs_jafc_9b08090
crossref_primary_10_1016_j_saa_2020_118104
crossref_primary_10_1016_j_bios_2019_01_006
crossref_primary_10_1021_acs_jpcc_9b08736
crossref_primary_10_1039_D4CS00883A
crossref_primary_10_1002_jrs_5620
crossref_primary_10_1016_j_talanta_2023_124386
crossref_primary_10_1016_j_jcis_2021_09_037
crossref_primary_10_1016_j_optmat_2024_115647
crossref_primary_10_1021_acs_analchem_8b03940
crossref_primary_10_1039_D0AN01838D
crossref_primary_10_1016_j_foodchem_2021_131570
crossref_primary_10_1109_JSTQE_2018_2832661
crossref_primary_10_1016_j_foodcont_2018_10_028
crossref_primary_10_1016_j_jhazmat_2020_123619
crossref_primary_10_1021_acs_langmuir_3c01654
crossref_primary_10_1016_j_talanta_2023_125121
crossref_primary_10_1016_j_jhazmat_2019_121023
crossref_primary_10_1016_j_saa_2021_120703
crossref_primary_10_1039_D1TC05947E
crossref_primary_10_1021_acsapm_2c01538
crossref_primary_10_1039_D4AY02129K
crossref_primary_10_3390_bios9030111
crossref_primary_10_1016_j_aca_2024_343488
crossref_primary_10_1002_jsfa_13803
crossref_primary_10_1016_j_postharvbio_2019_110981
crossref_primary_10_1016_j_talanta_2019_03_004
crossref_primary_10_1016_j_foodchem_2023_136397
crossref_primary_10_1021_acs_jafc_2c06838
crossref_primary_10_1002_jsfa_8906
crossref_primary_10_3390_nano10061205
crossref_primary_10_1021_acs_analchem_3c01455
crossref_primary_10_3390_antiox6040081
crossref_primary_10_1016_j_foodchem_2023_138214
crossref_primary_10_1016_j_microc_2024_110412
crossref_primary_10_1021_acsami_2c15440
crossref_primary_10_1021_acs_jafc_2c05980
crossref_primary_10_1016_j_talanta_2024_126640
crossref_primary_10_1039_D4MA00479E
crossref_primary_10_1007_s10876_021_02197_z
crossref_primary_10_1002_elan_202200045
crossref_primary_10_1016_j_saa_2020_118561
crossref_primary_10_1016_j_tifs_2021_11_018
crossref_primary_10_3390_ijms25042445
crossref_primary_10_1021_acs_nanolett_2c01203
Cites_doi 10.1021/jp302139e
10.1021/ac202452t
10.1021/acs.jafc.6b03906
10.1016/j.aca.2007.03.049
10.1016/j.materresbull.2014.12.004
10.1016/j.talanta.2014.04.066
10.1016/j.jallcom.2016.10.317
10.1088/0957-4484/26/1/015502
10.1080/10408390903432625
10.1021/jf502979d
10.1002/jrs.4387
10.1021/acs.analchem.6b04324
10.1016/j.agee.2007.07.011
10.1039/C6NR08527J
10.1016/j.matlet.2014.06.178
10.1039/C4NR02648A
10.1016/j.saa.2014.06.084
10.1021/acs.analchem.5b03735
10.1016/j.aca.2011.12.008
10.1007/s11947-011-0774-5
10.1080/10408398.2012.677872
10.1021/acs.jafc.7b00548
10.1039/c2an15947c
10.1021/acsami.5b04202
10.1021/acs.jafc.6b04774
10.1016/j.lwt.2014.08.011
10.1007/s11664-017-5284-4
10.1016/j.saa.2015.03.132
10.1039/C6AY00513F
10.1021/ac00144a030
10.1016/j.trac.2016.06.017
10.1021/acs.analchem.6b00320
10.1021/am502435x
10.1039/c3nr03671e
10.1016/j.cclet.2013.02.002
10.1002/ps.865
10.7503/cjcu20150041
10.1111/1750-3841.13520
10.1007/3-540-33567-6
10.1016/j.foodcont.2014.04.035
10.1021/jf403801h
10.1007/s00216-009-2702-3
10.1016/j.apsusc.2015.05.149
10.1039/C5AY00381D
10.1016/j.foodchem.2016.09.051
10.1002/jrs.4137
10.1002/adfm.201000792
10.1039/C5AY01058F
10.1039/C6AN00807K
10.1080/05704928.2013.803978
10.1016/j.snb.2016.10.085
10.1021/es400755h
10.1002/jrs.4854
10.1016/j.bmc.2015.02.006
10.1021/jf5036417
10.1002/jrs.4658
10.1039/C4NR03398A
10.1021/jp9104932
10.1016/j.foodcont.2016.04.003
10.1021/acs.analchem.5b01635
10.1002/smll.201501505
10.1088/0957-4484/27/38/384001
10.1016/j.saa.2015.08.039
10.1364/OE.21.018484
10.1016/j.snb.2015.02.121
10.1021/jf801969v
10.1039/c3an01450a
10.1021/ac403409q
10.1002/adfm.200400468
10.1111/1750-3841.12759
10.2116/analsci.33.89
10.1016/j.snb.2016.11.021
10.1016/j.chemosphere.2016.07.004
10.1111/1750-3841.12391
10.1007/s10853-015-9628-2
10.1016/j.carbpol.2016.10.031
10.1007/s00217-012-1724-9
10.1021/acs.jafc.6b00530
10.1007/s11468-012-9458-x
10.1016/j.snb.2016.10.106
10.1039/b904744a
10.1016/j.foodchem.2013.10.023
10.1039/C5RA13080H
10.1039/C6NR08693D
10.1021/nl500471g
10.1039/c3nr00631j
10.1111/j.1750-3841.2012.02665.x
10.1039/C4TA06590E
10.1002/smll.201303773
10.1021/ar800249y
10.1039/C4AY02328E
10.1021/ja070514z
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jafc.7b02504
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 6726
ExternalDocumentID 28726388
10_1021_acs_jafc_7b02504
c586079008
Genre Evaluation Studies
Journal Article
Review
GroupedDBID -
55A
5GY
7~N
85S
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
GX1
IH9
JG
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
X
---
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a435t-69ee73c09f7ff658ddf0d8bb708d52e1924235e49fbd5b5dfc13ef9389833f4f3
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Fri Jul 11 02:28:05 EDT 2025
Fri Jul 11 11:13:46 EDT 2025
Thu Jan 02 22:21:44 EST 2025
Tue Jul 01 04:18:46 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords detection
pesticide residue
SERS
semiconductor
food
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-69ee73c09f7ff658ddf0d8bb708d52e1924235e49fbd5b5dfc13ef9389833f4f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-1371-6900
PMID 28726388
PQID 1921126411
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000503713
proquest_miscellaneous_1921126411
pubmed_primary_28726388
crossref_primary_10_1021_acs_jafc_7b02504
crossref_citationtrail_10_1021_acs_jafc_7b02504
acs_journals_10_1021_acs_jafc_7b02504
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-16
PublicationDateYYYYMMDD 2017-08-16
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref48/cit48
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
Zhao B. (ref8/cit8) 2008; 29
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
Tang C. (ref18/cit18) 1998
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
Su X. Y. (ref20/cit20) 2017; 37
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
Kneipp K. (ref41/cit41) 2006
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref31/cit31
ref59/cit59
ref85/cit85
Zhai C. (ref74/cit74) 2015; 8
ref34/cit34
Liu Y. (ref81/cit81) 2016; 9
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
Sun X. D. (ref93/cit93) 2015; 35
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref58/cit58
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref42/cit42
  doi: 10.1021/jp302139e
– ident: ref65/cit65
  doi: 10.1021/ac202452t
– volume: 29
  start-page: 2591
  year: 2008
  ident: ref8/cit8
  publication-title: Chem. J. Chinese U.
– ident: ref25/cit25
  doi: 10.1021/acs.jafc.6b03906
– volume: 9
  start-page: 179
  year: 2016
  ident: ref81/cit81
  publication-title: Int. J. Agric. Biol. Eng.
– ident: ref51/cit51
  doi: 10.1016/j.aca.2007.03.049
– ident: ref35/cit35
  doi: 10.1016/j.materresbull.2014.12.004
– ident: ref71/cit71
  doi: 10.1016/j.talanta.2014.04.066
– ident: ref73/cit73
  doi: 10.1016/j.jallcom.2016.10.317
– volume-title: Pesticide Chemistry
  year: 1998
  ident: ref18/cit18
– ident: ref64/cit64
  doi: 10.1088/0957-4484/26/1/015502
– ident: ref103/cit103
  doi: 10.1080/10408390903432625
– ident: ref12/cit12
  doi: 10.1021/jf502979d
– ident: ref60/cit60
  doi: 10.1002/jrs.4387
– ident: ref85/cit85
  doi: 10.1021/acs.analchem.6b04324
– ident: ref1/cit1
  doi: 10.1016/j.agee.2007.07.011
– ident: ref49/cit49
  doi: 10.1039/C6NR08527J
– ident: ref38/cit38
  doi: 10.1016/j.matlet.2014.06.178
– ident: ref67/cit67
  doi: 10.1039/C4NR02648A
– ident: ref16/cit16
  doi: 10.1016/j.saa.2014.06.084
– ident: ref40/cit40
  doi: 10.1021/acs.analchem.5b03735
– ident: ref44/cit44
  doi: 10.1016/j.aca.2011.12.008
– ident: ref83/cit83
  doi: 10.1007/s11947-011-0774-5
– ident: ref101/cit101
  doi: 10.1080/10408398.2012.677872
– ident: ref99/cit99
  doi: 10.1021/acs.jafc.7b00548
– ident: ref2/cit2
– ident: ref45/cit45
  doi: 10.1039/c2an15947c
– ident: ref28/cit28
  doi: 10.1021/acsami.5b04202
– ident: ref61/cit61
  doi: 10.1021/acs.jafc.6b04774
– ident: ref82/cit82
  doi: 10.1016/j.lwt.2014.08.011
– ident: ref50/cit50
  doi: 10.1007/s11664-017-5284-4
– ident: ref10/cit10
  doi: 10.1016/j.saa.2015.03.132
– ident: ref86/cit86
  doi: 10.1039/C6AY00513F
– ident: ref79/cit79
  doi: 10.1016/j.matlet.2014.06.178
– ident: ref7/cit7
  doi: 10.1021/ac00144a030
– ident: ref17/cit17
  doi: 10.1016/j.trac.2016.06.017
– ident: ref97/cit97
  doi: 10.1021/acs.analchem.6b00320
– ident: ref66/cit66
  doi: 10.1021/am502435x
– ident: ref54/cit54
  doi: 10.1039/c3nr03671e
– ident: ref46/cit46
  doi: 10.1016/j.cclet.2013.02.002
– ident: ref100/cit100
  doi: 10.1002/ps.865
– ident: ref13/cit13
  doi: 10.7503/cjcu20150041
– ident: ref98/cit98
  doi: 10.1111/1750-3841.13520
– volume-title: Surface-Enhanced Raman Scattering: Physics and Applications
  year: 2006
  ident: ref41/cit41
  doi: 10.1007/3-540-33567-6
– ident: ref76/cit76
  doi: 10.1016/j.foodcont.2014.04.035
– ident: ref4/cit4
  doi: 10.1021/jf403801h
– ident: ref5/cit5
  doi: 10.1007/s00216-009-2702-3
– ident: ref47/cit47
  doi: 10.1016/j.apsusc.2015.05.149
– ident: ref90/cit90
  doi: 10.1039/C5AY00381D
– ident: ref87/cit87
  doi: 10.1016/j.foodchem.2016.09.051
– volume: 37
  start-page: 7
  year: 2017
  ident: ref20/cit20
  publication-title: Spectrosc. Spect. Anal.
– ident: ref77/cit77
  doi: 10.1002/jrs.4137
– ident: ref48/cit48
  doi: 10.1002/adfm.201000792
– ident: ref53/cit53
  doi: 10.1039/C5AY01058F
– ident: ref32/cit32
  doi: 10.1039/C6AN00807K
– ident: ref3/cit3
  doi: 10.1080/05704928.2013.803978
– ident: ref59/cit59
  doi: 10.1016/j.snb.2016.10.085
– ident: ref102/cit102
  doi: 10.1021/es400755h
– ident: ref26/cit26
  doi: 10.1002/jrs.4854
– ident: ref15/cit15
  doi: 10.1016/j.bmc.2015.02.006
– ident: ref21/cit21
  doi: 10.1021/jf5036417
– ident: ref6/cit6
  doi: 10.1021/acs.jafc.7b00548
– ident: ref68/cit68
  doi: 10.1002/jrs.4658
– ident: ref39/cit39
  doi: 10.1039/C4NR03398A
– ident: ref14/cit14
  doi: 10.1021/jp9104932
– ident: ref94/cit94
  doi: 10.1016/j.foodcont.2016.04.003
– ident: ref92/cit92
  doi: 10.1021/acs.analchem.5b01635
– ident: ref33/cit33
  doi: 10.1002/smll.201501505
– ident: ref78/cit78
  doi: 10.1039/C6AN00807K
– ident: ref56/cit56
  doi: 10.1088/0957-4484/27/38/384001
– ident: ref11/cit11
  doi: 10.1016/j.saa.2015.08.039
– ident: ref36/cit36
  doi: 10.1364/OE.21.018484
– ident: ref70/cit70
  doi: 10.1016/j.snb.2015.02.121
– ident: ref22/cit22
  doi: 10.1021/jf801969v
– ident: ref24/cit24
  doi: 10.1039/c3an01450a
– ident: ref34/cit34
  doi: 10.1021/ac403409q
– ident: ref30/cit30
  doi: 10.1002/adfm.200400468
– ident: ref63/cit63
  doi: 10.1111/1750-3841.12759
– ident: ref91/cit91
  doi: 10.2116/analsci.33.89
– ident: ref80/cit80
  doi: 10.1016/j.snb.2016.11.021
– ident: ref72/cit72
  doi: 10.1016/j.chemosphere.2016.07.004
– volume: 8
  start-page: 113
  year: 2015
  ident: ref74/cit74
  publication-title: Int. J. Agric. Biol. Eng.
– ident: ref62/cit62
  doi: 10.1111/1750-3841.12391
– volume: 35
  start-page: 1572
  year: 2015
  ident: ref93/cit93
  publication-title: Guang pu.
– ident: ref55/cit55
  doi: 10.1007/s10853-015-9628-2
– ident: ref84/cit84
  doi: 10.1016/j.carbpol.2016.10.031
– ident: ref88/cit88
  doi: 10.1007/s00217-012-1724-9
– ident: ref96/cit96
  doi: 10.1021/acs.jafc.6b00530
– ident: ref37/cit37
  doi: 10.1007/s11468-012-9458-x
– ident: ref75/cit75
  doi: 10.1016/j.snb.2016.10.106
– ident: ref29/cit29
  doi: 10.1039/b904744a
– ident: ref69/cit69
  doi: 10.1016/j.foodchem.2013.10.023
– ident: ref58/cit58
  doi: 10.1039/C5RA13080H
– ident: ref19/cit19
  doi: 10.1039/C6NR08693D
– ident: ref23/cit23
  doi: 10.1021/nl500471g
– ident: ref57/cit57
  doi: 10.1039/c3nr00631j
– ident: ref89/cit89
  doi: 10.1111/j.1750-3841.2012.02665.x
– ident: ref9/cit9
  doi: 10.1039/C4TA06590E
– ident: ref27/cit27
  doi: 10.1002/smll.201303773
– ident: ref43/cit43
  doi: 10.1021/ar800249y
– ident: ref52/cit52
  doi: 10.1039/C4AY02328E
– ident: ref31/cit31
  doi: 10.1021/ja070514z
SSID ssj0008570
Score 2.6386302
SecondaryResourceType review_article
Snippet Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6719
SubjectTerms chemical structure
Food Analysis - methods
Food Contamination - analysis
food processing
foods
human health
Humans
liquid chromatography
mass spectrometry
pesticide residues
Pesticide Residues - analysis
pesticides
Raman spectroscopy
Spectrum Analysis, Raman - methods
toxic substances
Title Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review
URI http://dx.doi.org/10.1021/acs.jafc.7b02504
https://www.ncbi.nlm.nih.gov/pubmed/28726388
https://www.proquest.com/docview/1921126411
https://www.proquest.com/docview/2000503713
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXOihlFe70CIjwYGDl42TODa3FWWFkECIh4TEIYrtcbttSdBu9kB_fcdOWMRTXCPbsWfG9jea8TeEbIHUUhmpGEAvY4kFy7RwlkmB3rOLYtDWP3A-PhGHl8nRVXr1QJPzNILPo93CjLu_C2e6mQ58Wx_IHBcy845Wf_98eup6ovYmnSNiEkFBG5J8aQR_EZnx44voFXQZbpnBQlOuaBzICX1yyZ_upNZd8-85deM7FvCZfGrBJu031rFIZqBcIh_7P0ct4QYsk-sfUIdsrJJWjp56zg0ztEDPAM0Up0qHJR1UlaUht4CeT0auMMAOyl8hdYCeFTdFSX0V-9rzYla3d3u0T5uIwwq5HBxc7B-ytuACKxA11UwogCw2PeUy5xCaWOt6Vmqd9aRNOXhfjccpJMppm-rUOoPKdAoxj0TFJi5eJbNlVcJXQmMcIcIOXBiVOKF0IqRJsyJOERBJozpkG-WStxtmnIdYOI_y8BGFlbfC6pDdey3lpmUt98Uz_r7RY2fa47Zh7Hij7ea94nPcVj5WUpRQTXA-ivvHVUkUvd6GN2w66OZ3yJfGaqZ_REeU49Em1965znUyzz1g8GS74huZrUcT-I5wp9Ybwc7_Az4y-aw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9gAcoDxaAhSMBAcOTrPel80tKo0CtBVKW6kSh9XaHpfy2K2SzYH--o69myAqWsHV8mPsGdvfaMafAV6j1FIZqTjiIOeJRct15iyXGXnPLopRW__Aef8gGx8nH0_SkxWIFm9hSIgZ9TQLQfzf7ALRti_7VjrTz3Wg3boFa4RFhPe3hjuHy8PX87W3WR0Rl4QNusjk33rw95GZ_XkfXQMyw2Uzug-TpZghx-R7f97ovrm4wuD4X_NYh3sd9GTD1lYewApWD-Hu8HTa0W_gI_jyHpuQm1Wx2rHPnoHDnFlkEySjJYnZWcVGdW1ZyDRgh_OpKw3y3eprSCRgk_JnWTH_p33jWTLr81_v2JC18YfHcDzaPdoZ8-77BV4Shmp4phDz2AyUy50joGKtG1ipdT6QNhXoPTcRp5gop22qU-sMqdYpQkCS1Jy4eANWq7rCJ8Bi6iGiBiIzKnGZ0kkmTZqXcUrwSBrVgze0LkW3fWZFiIyLqAiFtFhFt1g92F4oqzAdh7n_SuPHDS3eLluct_wdN9R9tdB_QZvMR07KCus5yaOEf2qVRNH1dUTLrUNOfw82W-NZjkhuqaCDTj79x3m-hNvjo_29Yu_DwadncEd4KOFpeLPnsNpM57hFQKjRL4LpXwKbTAIc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RkCo49Ak00IeR4NCDQ_Zt9xYBEeUlBKVC4rBa2-OWPnajZHOAX9-xdxMJVFB7tfwYj8f2N5rxZ4BNFEpILSRH7GU8Nmi4Sq3hIiXv2QYRKuMeOB-fpPsX8cFlcjkHyfQtDAkxpp7GPojvdvXQ2JZhINh25T8Kq7uZ8tRbT2DBRe2cz9XfOZ8dwI6zvcnsCLggfNBGJ__Wg7uT9PjunfQA0PQXzuA5fJ2J6vNMfnYnterq23ssjv89lxfwrIWgrN_YzEuYw_IVLPW_jVoaDnwNV7tY-xytklWWnTomDn1tkJ0hGS9Jza5LNqgqw3zGATufjGyhke-V331CATsrfhclc3_b144tsxrefGJ91sQhluFisPdlZ5-33zDwgrBUzVOJmEW6J21mLQEWY2zPCKWynjBJiM6DC6MEY2mVSVRirKYltpKQkKDljm20AvNlVeIbYBH1EFCDMNUytqlUcSp0khVRQjBJaNmBLdJL3m6jce4j5GGQ-0JSVt4qqwPb0wXLdctl7r7U-PVIi4-zFsOGx-ORuhtTG8hps7kISlFiNSF5ZOieXMVB8HCdsOHYIee_A6uNAc1GJPc0pANPrP3jPD_A09PdQX70-eRwHRZDhygcG2_6Fubr0QTfER6q1Xtv_X8ABFMEnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Pesticide+Residues+in+Food+Using+Surface-Enhanced+Raman+Spectroscopy%3A+A+Review&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Xu%2C+Meng-Lei&rft.au=Gao%2C+Yu&rft.au=Han%2C+Xiao+Xia&rft.au=Zhao%2C+Bing&rft.date=2017-08-16&rft.issn=1520-5118&rft.eissn=1520-5118&rft.volume=65&rft.issue=32&rft.spage=6719&rft_id=info:doi/10.1021%2Facs.jafc.7b02504&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon