Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review
Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatog...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 65; no. 32; pp. 6719 - 6726 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved. |
---|---|
AbstractList | Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved. Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved. |
Author | Han, Xiao Xia Gao, Yu Xu, Meng-Lei Zhao, Bing |
AuthorAffiliation | College of Agriculture Jilin University State Key Laboratory of Supramolecular Structure and Materials |
AuthorAffiliation_xml | – name: State Key Laboratory of Supramolecular Structure and Materials – name: Jilin University – name: College of Agriculture |
Author_xml | – sequence: 1 givenname: Meng-Lei orcidid: 0000-0002-1371-6900 surname: Xu fullname: Xu, Meng-Lei organization: Jilin University – sequence: 2 givenname: Yu surname: Gao fullname: Gao, Yu organization: College of Agriculture – sequence: 3 givenname: Xiao Xia surname: Han fullname: Han, Xiao Xia email: hanxiaoxia@jlu.edu.cn organization: Jilin University – sequence: 4 givenname: Bing surname: Zhao fullname: Zhao, Bing email: zhaob@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28726388$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPwzAURi0EghbYmZBHBlL8iBOHDfGWkEAFJobIsa_BqLVLnID497i0MCABkwefc-37fUO06oMHhHYoGVHC6IHScfSsrB6VDWGC5CtoQAUjmaBUrqIBSUwmRUE30DDGZ0KIFCVZRxtMlqzgUg7Qwwl0oDsXPA4W30DsnHYG8BiiMz1E7Dw-C8Hg--j8I77tW6s0ZKf-SXkNBo_VVHl8O0sz2hB1mL0f4qNkvzp420JrVk0ibC_PTXR_dnp3fJFdXZ9fHh9dZSrnosuKCqDkmlS2tLYQ0hhLjGyakkgjGNCK5YwLyCvbGNEIYzXlYCsuK8m5zS3fRHuLubM2vKQ_d_XURQ2TifIQ-liztLggvKT8XzQ9RikrckoTurtE-2YKpp61bqra9_oruwSQBaDT5rEF-41QUs_rqVM99byeellPUoofinadmqfftcpN_hL3F-LnTehbnwL9Hf8Ag8qkTg |
CitedBy_id | crossref_primary_10_1016_j_fochx_2024_101387 crossref_primary_10_1039_D0RA08060H crossref_primary_10_1016_j_snb_2019_04_020 crossref_primary_10_1016_j_cej_2021_130323 crossref_primary_10_1002_admt_202001242 crossref_primary_10_1021_acs_jafc_7b04220 crossref_primary_10_1039_D1AN02292J crossref_primary_10_3390_bios13090850 crossref_primary_10_1002_fsh3_12022 crossref_primary_10_1007_s00216_022_04400_0 crossref_primary_10_1038_s41538_021_00117_z crossref_primary_10_1155_2021_5532477 crossref_primary_10_3390_bios15030168 crossref_primary_10_1007_s12161_018_1290_2 crossref_primary_10_1016_j_snb_2024_137100 crossref_primary_10_1016_j_talanta_2018_11_114 crossref_primary_10_1088_2632_959X_ad858f crossref_primary_10_1016_j_jelechem_2018_09_047 crossref_primary_10_1021_acs_jpcc_3c02312 crossref_primary_10_1149_2_0641816jes crossref_primary_10_1016_j_talanta_2020_120998 crossref_primary_10_1039_D4AY00297K crossref_primary_10_1016_j_jallcom_2020_156438 crossref_primary_10_1016_j_saa_2019_04_074 crossref_primary_10_3390_s19030506 crossref_primary_10_1016_j_chemosphere_2022_137693 crossref_primary_10_1016_j_saa_2018_08_035 crossref_primary_10_1016_j_jfca_2024_107052 crossref_primary_10_1016_j_trac_2023_117365 crossref_primary_10_1016_j_saa_2018_01_014 crossref_primary_10_3390_s24123743 crossref_primary_10_1016_j_optmat_2022_112861 crossref_primary_10_1039_D1AN02335G crossref_primary_10_1080_10408347_2021_1950522 crossref_primary_10_1088_1361_6528_aca0f5 crossref_primary_10_3390_s24196324 crossref_primary_10_1016_j_apsusc_2024_162135 crossref_primary_10_1016_j_ccr_2024_216137 crossref_primary_10_3390_chemosensors12050082 crossref_primary_10_1021_acs_jpcc_0c06078 crossref_primary_10_1007_s00604_021_05025_3 crossref_primary_10_3390_nano8120967 crossref_primary_10_3390_nano8100757 crossref_primary_10_1016_j_jenvman_2024_121045 crossref_primary_10_2116_analsci_19P361 crossref_primary_10_3390_bios11110459 crossref_primary_10_1016_j_cej_2023_144023 crossref_primary_10_3389_fnut_2021_663569 crossref_primary_10_3390_mi13101570 crossref_primary_10_1177_18479804221082778 crossref_primary_10_3390_foods9111610 crossref_primary_10_1007_s00216_021_03169_y crossref_primary_10_1021_acsagscitech_4c00757 crossref_primary_10_3390_molecules25184081 crossref_primary_10_1039_D3EN00821E crossref_primary_10_1186_s11671_023_03851_3 crossref_primary_10_1021_acsami_8b10303 crossref_primary_10_1016_j_foodres_2023_113799 crossref_primary_10_1016_j_microc_2025_113346 crossref_primary_10_1080_03601234_2019_1631099 crossref_primary_10_1007_s10895_024_04120_x crossref_primary_10_1364_OME_411419 crossref_primary_10_1007_s00604_020_04596_x crossref_primary_10_1038_s41598_021_01742_0 crossref_primary_10_1016_j_aca_2019_03_058 crossref_primary_10_1016_j_microc_2024_110459 crossref_primary_10_1039_D3ME00008G crossref_primary_10_3390_foods11010089 crossref_primary_10_1016_j_jece_2024_112777 crossref_primary_10_1039_C8AN00540K crossref_primary_10_1016_j_jfca_2025_107264 crossref_primary_10_1088_2043_6254_ab6c5f crossref_primary_10_1007_s00217_021_03887_8 crossref_primary_10_1007_s10812_022_01456_9 crossref_primary_10_1021_acs_jafc_8b02056 crossref_primary_10_1016_j_saa_2020_119262 crossref_primary_10_3390_ma15217446 crossref_primary_10_1021_acs_nanolett_1c00416 crossref_primary_10_1021_acs_analchem_1c03235 crossref_primary_10_1016_j_snb_2022_132360 crossref_primary_10_1021_acsanm_8b02164 crossref_primary_10_3390_agronomy11091882 crossref_primary_10_1016_j_ecoenv_2020_110736 crossref_primary_10_1016_j_jcis_2021_12_167 crossref_primary_10_1021_acs_jafc_0c06231 crossref_primary_10_3389_fpls_2022_956778 crossref_primary_10_3390_foods11142097 crossref_primary_10_1007_s42452_019_0619_9 crossref_primary_10_1080_05704928_2024_2407112 crossref_primary_10_1016_j_tifs_2017_12_012 crossref_primary_10_1080_10408347_2019_1626697 crossref_primary_10_1039_D3CP05835B crossref_primary_10_1016_j_snb_2021_131056 crossref_primary_10_1002_vzj2_20076 crossref_primary_10_1007_s00604_019_4022_4 crossref_primary_10_1039_D0AY01953D crossref_primary_10_1016_j_jmrt_2021_01_069 crossref_primary_10_1016_j_photonics_2024_101238 crossref_primary_10_1021_acsomega_3c03572 crossref_primary_10_1007_s00128_021_03258_9 crossref_primary_10_1080_10408398_2021_1901257 crossref_primary_10_1016_j_matchemphys_2021_124388 crossref_primary_10_1016_j_ijbiomac_2024_132787 crossref_primary_10_1007_s11705_022_2177_8 crossref_primary_10_1002_fsh3_12040 crossref_primary_10_1016_j_ecoenv_2019_01_012 crossref_primary_10_1364_AO_463293 crossref_primary_10_1016_j_microc_2024_110127 crossref_primary_10_1039_D4EW00114A crossref_primary_10_1002_jrs_5595 crossref_primary_10_1039_C9AY02347J crossref_primary_10_1080_10408347_2022_2063683 crossref_primary_10_1016_j_snb_2019_02_084 crossref_primary_10_1002_jrs_5598 crossref_primary_10_3390_s19061355 crossref_primary_10_1021_acs_analchem_8b03791 crossref_primary_10_3390_bios13060575 crossref_primary_10_1016_j_colsurfa_2024_134647 crossref_primary_10_1039_D2RA07415J crossref_primary_10_3788_LOP213339 crossref_primary_10_3390_photochem4040026 crossref_primary_10_1021_acs_jafc_9b03463 crossref_primary_10_1016_j_apsusc_2024_159513 crossref_primary_10_1016_j_talanta_2018_11_040 crossref_primary_10_1080_00032719_2019_1691220 crossref_primary_10_1146_annurev_anchem_061417_125724 crossref_primary_10_1002_adom_202001171 crossref_primary_10_1016_j_ccr_2024_216320 crossref_primary_10_3920_QAS2019_1557 crossref_primary_10_1016_j_psep_2022_07_047 crossref_primary_10_3390_s22114178 crossref_primary_10_1016_j_foodres_2025_115738 crossref_primary_10_1111_1541_4337_12741 crossref_primary_10_1080_00032719_2021_1946555 crossref_primary_10_1021_acsanm_4c01122 crossref_primary_10_1039_C8AY01698D crossref_primary_10_1016_j_talanta_2021_122383 crossref_primary_10_1016_j_jenvman_2024_120326 crossref_primary_10_1016_j_jcis_2022_06_125 crossref_primary_10_1016_j_aca_2022_339974 crossref_primary_10_3390_foods11060780 crossref_primary_10_1016_j_tifs_2021_08_006 crossref_primary_10_1016_j_vibspec_2020_103183 crossref_primary_10_1021_acs_jafc_0c06562 crossref_primary_10_3390_chemosensors11090505 crossref_primary_10_1016_j_microc_2022_107241 crossref_primary_10_1021_acssuschemeng_0c00902 crossref_primary_10_1007_s00604_022_05238_0 crossref_primary_10_1016_j_molstruc_2024_140203 crossref_primary_10_1021_acssensors_2c00137 crossref_primary_10_1038_s41598_019_47179_4 crossref_primary_10_1016_j_matdes_2023_111865 crossref_primary_10_1016_j_foodchem_2021_131681 crossref_primary_10_1016_j_snb_2019_02_007 crossref_primary_10_1016_j_ccr_2021_214061 crossref_primary_10_1016_j_snb_2021_131250 crossref_primary_10_1039_C9TC04848K crossref_primary_10_1007_s44211_024_00515_9 crossref_primary_10_1016_j_teac_2024_e00238 crossref_primary_10_1016_j_microc_2024_110312 crossref_primary_10_1021_acs_analchem_2c03992 crossref_primary_10_1039_D4AY00602J crossref_primary_10_1021_acs_jafc_9b01544 crossref_primary_10_1002_bio_70106 crossref_primary_10_1016_j_neunet_2021_09_006 crossref_primary_10_1016_j_pmatsci_2021_100866 crossref_primary_10_1016_j_tifs_2024_104460 crossref_primary_10_1016_j_jhazmat_2025_137150 crossref_primary_10_1016_j_saa_2019_117484 crossref_primary_10_1016_j_tifs_2018_02_020 crossref_primary_10_3390_electrochem2040042 crossref_primary_10_3390_nano11020304 crossref_primary_10_1002_jsfa_12109 crossref_primary_10_1038_s41598_022_05751_5 crossref_primary_10_1016_j_ecoenv_2023_114635 crossref_primary_10_34294_aficat_22_08_006 crossref_primary_10_1021_acsagscitech_4c00005 crossref_primary_10_7567_1347_4065_ab0df2 crossref_primary_10_1021_acssensors_0c01740 crossref_primary_10_1039_C8TC01741G crossref_primary_10_1016_j_microc_2021_106090 crossref_primary_10_1016_j_aiia_2019_11_001 crossref_primary_10_1016_j_matchemphys_2022_127140 crossref_primary_10_1016_j_snb_2023_133888 crossref_primary_10_1080_03067319_2024_2339453 crossref_primary_10_1016_j_foodchem_2022_132494 crossref_primary_10_1364_OL_43_001403 crossref_primary_10_1007_s11468_023_02080_9 crossref_primary_10_1016_j_tifs_2020_06_009 crossref_primary_10_1016_j_foodchem_2023_135705 crossref_primary_10_15580_gjbhs_2024_1_102024144 crossref_primary_10_1016_j_microc_2021_106660 crossref_primary_10_1016_j_tifs_2021_10_024 crossref_primary_10_3920_QAS2019_1639 crossref_primary_10_1016_j_mattod_2022_11_021 crossref_primary_10_1016_j_jallcom_2020_155885 crossref_primary_10_1002_vjch_202000017 crossref_primary_10_1016_j_cej_2025_160813 crossref_primary_10_1016_j_saa_2021_119759 crossref_primary_10_1021_acs_jafc_2c07846 crossref_primary_10_1016_j_electacta_2021_138615 crossref_primary_10_1016_j_saa_2021_119871 crossref_primary_10_1080_00032719_2021_1946075 crossref_primary_10_1016_j_jfca_2023_105768 crossref_primary_10_1021_acs_langmuir_8b04110 crossref_primary_10_1002_mas_21842 crossref_primary_10_1016_j_saa_2024_124178 crossref_primary_10_1016_j_talanta_2023_124800 crossref_primary_10_1016_j_foodcont_2018_04_058 crossref_primary_10_1016_j_surfin_2024_105585 crossref_primary_10_1016_j_foodchem_2025_144030 crossref_primary_10_1149_2_0161808jes crossref_primary_10_1016_j_scitotenv_2024_173262 crossref_primary_10_1088_1361_6528_ad115e crossref_primary_10_1016_j_jcis_2022_06_164 crossref_primary_10_1007_s00216_025_05826_y crossref_primary_10_1016_j_foodchem_2024_139515 crossref_primary_10_1016_j_talanta_2020_120721 crossref_primary_10_1039_D0AN01274B crossref_primary_10_1109_TIM_2021_3075525 crossref_primary_10_3390_nano10122539 crossref_primary_10_1021_acsanm_2c02234 crossref_primary_10_1021_acs_jpcc_3c02651 crossref_primary_10_3390_ijms22073425 crossref_primary_10_1002_jrs_6026 crossref_primary_10_1155_2021_6642220 crossref_primary_10_1080_00032719_2019_1625914 crossref_primary_10_1021_acs_jafc_9b03401 crossref_primary_10_1007_s12161_018_1233_y crossref_primary_10_1016_j_measurement_2023_113505 crossref_primary_10_1007_s44211_022_00169_5 crossref_primary_10_1016_j_jcis_2021_10_133 crossref_primary_10_1021_acs_jafc_9b08090 crossref_primary_10_1016_j_saa_2020_118104 crossref_primary_10_1016_j_bios_2019_01_006 crossref_primary_10_1021_acs_jpcc_9b08736 crossref_primary_10_1039_D4CS00883A crossref_primary_10_1002_jrs_5620 crossref_primary_10_1016_j_talanta_2023_124386 crossref_primary_10_1016_j_jcis_2021_09_037 crossref_primary_10_1016_j_optmat_2024_115647 crossref_primary_10_1021_acs_analchem_8b03940 crossref_primary_10_1039_D0AN01838D crossref_primary_10_1016_j_foodchem_2021_131570 crossref_primary_10_1109_JSTQE_2018_2832661 crossref_primary_10_1016_j_foodcont_2018_10_028 crossref_primary_10_1016_j_jhazmat_2020_123619 crossref_primary_10_1021_acs_langmuir_3c01654 crossref_primary_10_1016_j_talanta_2023_125121 crossref_primary_10_1016_j_jhazmat_2019_121023 crossref_primary_10_1016_j_saa_2021_120703 crossref_primary_10_1039_D1TC05947E crossref_primary_10_1021_acsapm_2c01538 crossref_primary_10_1039_D4AY02129K crossref_primary_10_3390_bios9030111 crossref_primary_10_1016_j_aca_2024_343488 crossref_primary_10_1002_jsfa_13803 crossref_primary_10_1016_j_postharvbio_2019_110981 crossref_primary_10_1016_j_talanta_2019_03_004 crossref_primary_10_1016_j_foodchem_2023_136397 crossref_primary_10_1021_acs_jafc_2c06838 crossref_primary_10_1002_jsfa_8906 crossref_primary_10_3390_nano10061205 crossref_primary_10_1021_acs_analchem_3c01455 crossref_primary_10_3390_antiox6040081 crossref_primary_10_1016_j_foodchem_2023_138214 crossref_primary_10_1016_j_microc_2024_110412 crossref_primary_10_1021_acsami_2c15440 crossref_primary_10_1021_acs_jafc_2c05980 crossref_primary_10_1016_j_talanta_2024_126640 crossref_primary_10_1039_D4MA00479E crossref_primary_10_1007_s10876_021_02197_z crossref_primary_10_1002_elan_202200045 crossref_primary_10_1016_j_saa_2020_118561 crossref_primary_10_1016_j_tifs_2021_11_018 crossref_primary_10_3390_ijms25042445 crossref_primary_10_1021_acs_nanolett_2c01203 |
Cites_doi | 10.1021/jp302139e 10.1021/ac202452t 10.1021/acs.jafc.6b03906 10.1016/j.aca.2007.03.049 10.1016/j.materresbull.2014.12.004 10.1016/j.talanta.2014.04.066 10.1016/j.jallcom.2016.10.317 10.1088/0957-4484/26/1/015502 10.1080/10408390903432625 10.1021/jf502979d 10.1002/jrs.4387 10.1021/acs.analchem.6b04324 10.1016/j.agee.2007.07.011 10.1039/C6NR08527J 10.1016/j.matlet.2014.06.178 10.1039/C4NR02648A 10.1016/j.saa.2014.06.084 10.1021/acs.analchem.5b03735 10.1016/j.aca.2011.12.008 10.1007/s11947-011-0774-5 10.1080/10408398.2012.677872 10.1021/acs.jafc.7b00548 10.1039/c2an15947c 10.1021/acsami.5b04202 10.1021/acs.jafc.6b04774 10.1016/j.lwt.2014.08.011 10.1007/s11664-017-5284-4 10.1016/j.saa.2015.03.132 10.1039/C6AY00513F 10.1021/ac00144a030 10.1016/j.trac.2016.06.017 10.1021/acs.analchem.6b00320 10.1021/am502435x 10.1039/c3nr03671e 10.1016/j.cclet.2013.02.002 10.1002/ps.865 10.7503/cjcu20150041 10.1111/1750-3841.13520 10.1007/3-540-33567-6 10.1016/j.foodcont.2014.04.035 10.1021/jf403801h 10.1007/s00216-009-2702-3 10.1016/j.apsusc.2015.05.149 10.1039/C5AY00381D 10.1016/j.foodchem.2016.09.051 10.1002/jrs.4137 10.1002/adfm.201000792 10.1039/C5AY01058F 10.1039/C6AN00807K 10.1080/05704928.2013.803978 10.1016/j.snb.2016.10.085 10.1021/es400755h 10.1002/jrs.4854 10.1016/j.bmc.2015.02.006 10.1021/jf5036417 10.1002/jrs.4658 10.1039/C4NR03398A 10.1021/jp9104932 10.1016/j.foodcont.2016.04.003 10.1021/acs.analchem.5b01635 10.1002/smll.201501505 10.1088/0957-4484/27/38/384001 10.1016/j.saa.2015.08.039 10.1364/OE.21.018484 10.1016/j.snb.2015.02.121 10.1021/jf801969v 10.1039/c3an01450a 10.1021/ac403409q 10.1002/adfm.200400468 10.1111/1750-3841.12759 10.2116/analsci.33.89 10.1016/j.snb.2016.11.021 10.1016/j.chemosphere.2016.07.004 10.1111/1750-3841.12391 10.1007/s10853-015-9628-2 10.1016/j.carbpol.2016.10.031 10.1007/s00217-012-1724-9 10.1021/acs.jafc.6b00530 10.1007/s11468-012-9458-x 10.1016/j.snb.2016.10.106 10.1039/b904744a 10.1016/j.foodchem.2013.10.023 10.1039/C5RA13080H 10.1039/C6NR08693D 10.1021/nl500471g 10.1039/c3nr00631j 10.1111/j.1750-3841.2012.02665.x 10.1039/C4TA06590E 10.1002/smll.201303773 10.1021/ar800249y 10.1039/C4AY02328E 10.1021/ja070514z |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jafc.7b02504 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 6726 |
ExternalDocumentID | 28726388 10_1021_acs_jafc_7b02504 c586079008 |
Genre | Evaluation Studies Journal Article Review |
GroupedDBID | - 55A 5GY 7~N 85S AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL GX1 IH9 JG JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X --- -~X .K2 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a435t-69ee73c09f7ff658ddf0d8bb708d52e1924235e49fbd5b5dfc13ef9389833f4f3 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Fri Jul 11 02:28:05 EDT 2025 Fri Jul 11 11:13:46 EDT 2025 Thu Jan 02 22:21:44 EST 2025 Tue Jul 01 04:18:46 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | detection pesticide residue SERS semiconductor food |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a435t-69ee73c09f7ff658ddf0d8bb708d52e1924235e49fbd5b5dfc13ef9389833f4f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Review-4 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0002-1371-6900 |
PMID | 28726388 |
PQID | 1921126411 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000503713 proquest_miscellaneous_1921126411 pubmed_primary_28726388 crossref_primary_10_1021_acs_jafc_7b02504 crossref_citationtrail_10_1021_acs_jafc_7b02504 acs_journals_10_1021_acs_jafc_7b02504 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-16 |
PublicationDateYYYYMMDD | 2017-08-16 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref48/cit48 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 Zhao B. (ref8/cit8) 2008; 29 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 Tang C. (ref18/cit18) 1998 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 Su X. Y. (ref20/cit20) 2017; 37 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 Kneipp K. (ref41/cit41) 2006 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref31/cit31 ref59/cit59 ref85/cit85 Zhai C. (ref74/cit74) 2015; 8 ref34/cit34 Liu Y. (ref81/cit81) 2016; 9 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 Sun X. D. (ref93/cit93) 2015; 35 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref58/cit58 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1021/jp302139e – ident: ref65/cit65 doi: 10.1021/ac202452t – volume: 29 start-page: 2591 year: 2008 ident: ref8/cit8 publication-title: Chem. J. Chinese U. – ident: ref25/cit25 doi: 10.1021/acs.jafc.6b03906 – volume: 9 start-page: 179 year: 2016 ident: ref81/cit81 publication-title: Int. J. Agric. Biol. Eng. – ident: ref51/cit51 doi: 10.1016/j.aca.2007.03.049 – ident: ref35/cit35 doi: 10.1016/j.materresbull.2014.12.004 – ident: ref71/cit71 doi: 10.1016/j.talanta.2014.04.066 – ident: ref73/cit73 doi: 10.1016/j.jallcom.2016.10.317 – volume-title: Pesticide Chemistry year: 1998 ident: ref18/cit18 – ident: ref64/cit64 doi: 10.1088/0957-4484/26/1/015502 – ident: ref103/cit103 doi: 10.1080/10408390903432625 – ident: ref12/cit12 doi: 10.1021/jf502979d – ident: ref60/cit60 doi: 10.1002/jrs.4387 – ident: ref85/cit85 doi: 10.1021/acs.analchem.6b04324 – ident: ref1/cit1 doi: 10.1016/j.agee.2007.07.011 – ident: ref49/cit49 doi: 10.1039/C6NR08527J – ident: ref38/cit38 doi: 10.1016/j.matlet.2014.06.178 – ident: ref67/cit67 doi: 10.1039/C4NR02648A – ident: ref16/cit16 doi: 10.1016/j.saa.2014.06.084 – ident: ref40/cit40 doi: 10.1021/acs.analchem.5b03735 – ident: ref44/cit44 doi: 10.1016/j.aca.2011.12.008 – ident: ref83/cit83 doi: 10.1007/s11947-011-0774-5 – ident: ref101/cit101 doi: 10.1080/10408398.2012.677872 – ident: ref99/cit99 doi: 10.1021/acs.jafc.7b00548 – ident: ref2/cit2 – ident: ref45/cit45 doi: 10.1039/c2an15947c – ident: ref28/cit28 doi: 10.1021/acsami.5b04202 – ident: ref61/cit61 doi: 10.1021/acs.jafc.6b04774 – ident: ref82/cit82 doi: 10.1016/j.lwt.2014.08.011 – ident: ref50/cit50 doi: 10.1007/s11664-017-5284-4 – ident: ref10/cit10 doi: 10.1016/j.saa.2015.03.132 – ident: ref86/cit86 doi: 10.1039/C6AY00513F – ident: ref79/cit79 doi: 10.1016/j.matlet.2014.06.178 – ident: ref7/cit7 doi: 10.1021/ac00144a030 – ident: ref17/cit17 doi: 10.1016/j.trac.2016.06.017 – ident: ref97/cit97 doi: 10.1021/acs.analchem.6b00320 – ident: ref66/cit66 doi: 10.1021/am502435x – ident: ref54/cit54 doi: 10.1039/c3nr03671e – ident: ref46/cit46 doi: 10.1016/j.cclet.2013.02.002 – ident: ref100/cit100 doi: 10.1002/ps.865 – ident: ref13/cit13 doi: 10.7503/cjcu20150041 – ident: ref98/cit98 doi: 10.1111/1750-3841.13520 – volume-title: Surface-Enhanced Raman Scattering: Physics and Applications year: 2006 ident: ref41/cit41 doi: 10.1007/3-540-33567-6 – ident: ref76/cit76 doi: 10.1016/j.foodcont.2014.04.035 – ident: ref4/cit4 doi: 10.1021/jf403801h – ident: ref5/cit5 doi: 10.1007/s00216-009-2702-3 – ident: ref47/cit47 doi: 10.1016/j.apsusc.2015.05.149 – ident: ref90/cit90 doi: 10.1039/C5AY00381D – ident: ref87/cit87 doi: 10.1016/j.foodchem.2016.09.051 – volume: 37 start-page: 7 year: 2017 ident: ref20/cit20 publication-title: Spectrosc. Spect. Anal. – ident: ref77/cit77 doi: 10.1002/jrs.4137 – ident: ref48/cit48 doi: 10.1002/adfm.201000792 – ident: ref53/cit53 doi: 10.1039/C5AY01058F – ident: ref32/cit32 doi: 10.1039/C6AN00807K – ident: ref3/cit3 doi: 10.1080/05704928.2013.803978 – ident: ref59/cit59 doi: 10.1016/j.snb.2016.10.085 – ident: ref102/cit102 doi: 10.1021/es400755h – ident: ref26/cit26 doi: 10.1002/jrs.4854 – ident: ref15/cit15 doi: 10.1016/j.bmc.2015.02.006 – ident: ref21/cit21 doi: 10.1021/jf5036417 – ident: ref6/cit6 doi: 10.1021/acs.jafc.7b00548 – ident: ref68/cit68 doi: 10.1002/jrs.4658 – ident: ref39/cit39 doi: 10.1039/C4NR03398A – ident: ref14/cit14 doi: 10.1021/jp9104932 – ident: ref94/cit94 doi: 10.1016/j.foodcont.2016.04.003 – ident: ref92/cit92 doi: 10.1021/acs.analchem.5b01635 – ident: ref33/cit33 doi: 10.1002/smll.201501505 – ident: ref78/cit78 doi: 10.1039/C6AN00807K – ident: ref56/cit56 doi: 10.1088/0957-4484/27/38/384001 – ident: ref11/cit11 doi: 10.1016/j.saa.2015.08.039 – ident: ref36/cit36 doi: 10.1364/OE.21.018484 – ident: ref70/cit70 doi: 10.1016/j.snb.2015.02.121 – ident: ref22/cit22 doi: 10.1021/jf801969v – ident: ref24/cit24 doi: 10.1039/c3an01450a – ident: ref34/cit34 doi: 10.1021/ac403409q – ident: ref30/cit30 doi: 10.1002/adfm.200400468 – ident: ref63/cit63 doi: 10.1111/1750-3841.12759 – ident: ref91/cit91 doi: 10.2116/analsci.33.89 – ident: ref80/cit80 doi: 10.1016/j.snb.2016.11.021 – ident: ref72/cit72 doi: 10.1016/j.chemosphere.2016.07.004 – volume: 8 start-page: 113 year: 2015 ident: ref74/cit74 publication-title: Int. J. Agric. Biol. Eng. – ident: ref62/cit62 doi: 10.1111/1750-3841.12391 – volume: 35 start-page: 1572 year: 2015 ident: ref93/cit93 publication-title: Guang pu. – ident: ref55/cit55 doi: 10.1007/s10853-015-9628-2 – ident: ref84/cit84 doi: 10.1016/j.carbpol.2016.10.031 – ident: ref88/cit88 doi: 10.1007/s00217-012-1724-9 – ident: ref96/cit96 doi: 10.1021/acs.jafc.6b00530 – ident: ref37/cit37 doi: 10.1007/s11468-012-9458-x – ident: ref75/cit75 doi: 10.1016/j.snb.2016.10.106 – ident: ref29/cit29 doi: 10.1039/b904744a – ident: ref69/cit69 doi: 10.1016/j.foodchem.2013.10.023 – ident: ref58/cit58 doi: 10.1039/C5RA13080H – ident: ref19/cit19 doi: 10.1039/C6NR08693D – ident: ref23/cit23 doi: 10.1021/nl500471g – ident: ref57/cit57 doi: 10.1039/c3nr00631j – ident: ref89/cit89 doi: 10.1111/j.1750-3841.2012.02665.x – ident: ref9/cit9 doi: 10.1039/C4TA06590E – ident: ref27/cit27 doi: 10.1002/smll.201303773 – ident: ref43/cit43 doi: 10.1021/ar800249y – ident: ref52/cit52 doi: 10.1039/C4AY02328E – ident: ref31/cit31 doi: 10.1021/ja070514z |
SSID | ssj0008570 |
Score | 2.6386302 |
SecondaryResourceType | review_article |
Snippet | Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6719 |
SubjectTerms | chemical structure Food Analysis - methods Food Contamination - analysis food processing foods human health Humans liquid chromatography mass spectrometry pesticide residues Pesticide Residues - analysis pesticides Raman spectroscopy Spectrum Analysis, Raman - methods toxic substances |
Title | Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review |
URI | http://dx.doi.org/10.1021/acs.jafc.7b02504 https://www.ncbi.nlm.nih.gov/pubmed/28726388 https://www.proquest.com/docview/1921126411 https://www.proquest.com/docview/2000503713 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXOihlFe70CIjwYGDl42TODa3FWWFkECIh4TEIYrtcbttSdBu9kB_fcdOWMRTXCPbsWfG9jea8TeEbIHUUhmpGEAvY4kFy7RwlkmB3rOLYtDWP3A-PhGHl8nRVXr1QJPzNILPo93CjLu_C2e6mQ58Wx_IHBcy845Wf_98eup6ovYmnSNiEkFBG5J8aQR_EZnx44voFXQZbpnBQlOuaBzICX1yyZ_upNZd8-85deM7FvCZfGrBJu031rFIZqBcIh_7P0ct4QYsk-sfUIdsrJJWjp56zg0ztEDPAM0Up0qHJR1UlaUht4CeT0auMMAOyl8hdYCeFTdFSX0V-9rzYla3d3u0T5uIwwq5HBxc7B-ytuACKxA11UwogCw2PeUy5xCaWOt6Vmqd9aRNOXhfjccpJMppm-rUOoPKdAoxj0TFJi5eJbNlVcJXQmMcIcIOXBiVOKF0IqRJsyJOERBJozpkG-WStxtmnIdYOI_y8BGFlbfC6pDdey3lpmUt98Uz_r7RY2fa47Zh7Hij7ea94nPcVj5WUpRQTXA-ivvHVUkUvd6GN2w66OZ3yJfGaqZ_REeU49Em1965znUyzz1g8GS74huZrUcT-I5wp9Ybwc7_Az4y-aw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9gAcoDxaAhSMBAcOTrPel80tKo0CtBVKW6kSh9XaHpfy2K2SzYH--o69myAqWsHV8mPsGdvfaMafAV6j1FIZqTjiIOeJRct15iyXGXnPLopRW__Aef8gGx8nH0_SkxWIFm9hSIgZ9TQLQfzf7ALRti_7VjrTz3Wg3boFa4RFhPe3hjuHy8PX87W3WR0Rl4QNusjk33rw95GZ_XkfXQMyw2Uzug-TpZghx-R7f97ovrm4wuD4X_NYh3sd9GTD1lYewApWD-Hu8HTa0W_gI_jyHpuQm1Wx2rHPnoHDnFlkEySjJYnZWcVGdW1ZyDRgh_OpKw3y3eprSCRgk_JnWTH_p33jWTLr81_v2JC18YfHcDzaPdoZ8-77BV4Shmp4phDz2AyUy50joGKtG1ipdT6QNhXoPTcRp5gop22qU-sMqdYpQkCS1Jy4eANWq7rCJ8Bi6iGiBiIzKnGZ0kkmTZqXcUrwSBrVgze0LkW3fWZFiIyLqAiFtFhFt1g92F4oqzAdh7n_SuPHDS3eLluct_wdN9R9tdB_QZvMR07KCus5yaOEf2qVRNH1dUTLrUNOfw82W-NZjkhuqaCDTj79x3m-hNvjo_29Yu_DwadncEd4KOFpeLPnsNpM57hFQKjRL4LpXwKbTAIc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RkCo49Ak00IeR4NCDQ_Zt9xYBEeUlBKVC4rBa2-OWPnajZHOAX9-xdxMJVFB7tfwYj8f2N5rxZ4BNFEpILSRH7GU8Nmi4Sq3hIiXv2QYRKuMeOB-fpPsX8cFlcjkHyfQtDAkxpp7GPojvdvXQ2JZhINh25T8Kq7uZ8tRbT2DBRe2cz9XfOZ8dwI6zvcnsCLggfNBGJ__Wg7uT9PjunfQA0PQXzuA5fJ2J6vNMfnYnterq23ssjv89lxfwrIWgrN_YzEuYw_IVLPW_jVoaDnwNV7tY-xytklWWnTomDn1tkJ0hGS9Jza5LNqgqw3zGATufjGyhke-V331CATsrfhclc3_b144tsxrefGJ91sQhluFisPdlZ5-33zDwgrBUzVOJmEW6J21mLQEWY2zPCKWynjBJiM6DC6MEY2mVSVRirKYltpKQkKDljm20AvNlVeIbYBH1EFCDMNUytqlUcSp0khVRQjBJaNmBLdJL3m6jce4j5GGQ-0JSVt4qqwPb0wXLdctl7r7U-PVIi4-zFsOGx-ORuhtTG8hps7kISlFiNSF5ZOieXMVB8HCdsOHYIee_A6uNAc1GJPc0pANPrP3jPD_A09PdQX70-eRwHRZDhygcG2_6Fubr0QTfER6q1Xtv_X8ABFMEnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Pesticide+Residues+in+Food+Using+Surface-Enhanced+Raman+Spectroscopy%3A+A+Review&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Xu%2C+Meng-Lei&rft.au=Gao%2C+Yu&rft.au=Han%2C+Xiao+Xia&rft.au=Zhao%2C+Bing&rft.date=2017-08-16&rft.issn=1520-5118&rft.eissn=1520-5118&rft.volume=65&rft.issue=32&rft.spage=6719&rft_id=info:doi/10.1021%2Facs.jafc.7b02504&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |