Fabrication of a Flexible Gold Nanorod Polymer Metafilm via a Phase Transfer Method as a SERS Substrate for Detecting Food Contaminants
Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene–polyisoprene–polystyrene (SIS), a transparent and...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 66; no. 26; pp. 6889 - 6896 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene–polyisoprene–polystyrene (SIS), a transparent and flexible, along with having excellent elasticity, polymer, was chosen as the main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with the polymer, which can further be used in most water-insoluble polymers. The SERS film performed satisfactorily while being tested in a series of standard Raman probes, like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film a promising substrate in practical detection. Hence, the MG detection on the fish surface and trace thiram detection on orange pericarp were inspected with detection results of 1 × 10–10 and 1 × 10–6 M, which were below the demand of the National standard of China, exactly matching the realistic application requirements. |
---|---|
AbstractList | Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene–polyisoprene–polystyrene (SIS), a transparent and flexible, along with having excellent elasticity, polymer, was chosen as the main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with the polymer, which can further be used in most water-insoluble polymers. The SERS film performed satisfactorily while being tested in a series of standard Raman probes, like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film a promising substrate in practical detection. Hence, the MG detection on the fish surface and trace thiram detection on orange pericarp were inspected with detection results of 1 × 10–10 and 1 × 10–6 M, which were below the demand of the National standard of China, exactly matching the realistic application requirements. Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene–polyisoprene–polystyrene (SIS), a transparent and flexible, along with having excellent elasticity, polymer, was chosen as the main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with the polymer, which can further be used in most water-insoluble polymers. The SERS film performed satisfactorily while being tested in a series of standard Raman probes, like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film a promising substrate in practical detection. Hence, the MG detection on the fish surface and trace thiram detection on orange pericarp were inspected with detection results of 1 × 10–¹⁰ and 1 × 10–⁶ M, which were below the demand of the National standard of China, exactly matching the realistic application requirements. Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene-polyisoprene-polystyrene (SIS), a transparent and flexible, along with having excellent elasticity, polymer, was chosen as the main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with the polymer, which can further be used in most water-insoluble polymers. The SERS film performed satisfactorily while being tested in a series of standard Raman probes, like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film a promising substrate in practical detection. Hence, the MG detection on the fish surface and trace thiram detection on orange pericarp were inspected with detection results of 1 × 10 and 1 × 10 M, which were below the demand of the National standard of China, exactly matching the realistic application requirements. Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene-polyisoprene-polystyrene (SIS), a transparent and flexible, along with having excellent elasticity, polymer, was chosen as the main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with the polymer, which can further be used in most water-insoluble polymers. The SERS film performed satisfactorily while being tested in a series of standard Raman probes, like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film a promising substrate in practical detection. Hence, the MG detection on the fish surface and trace thiram detection on orange pericarp were inspected with detection results of 1 × 10-10 and 1 × 10-6 M, which were below the demand of the National standard of China, exactly matching the realistic application requirements.Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on a polymer-immobilized gold nanorod polymer metafilm. Polystyrene-polyisoprene-polystyrene (SIS), a transparent and flexible, along with having excellent elasticity, polymer, was chosen as the main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with the polymer, which can further be used in most water-insoluble polymers. The SERS film performed satisfactorily while being tested in a series of standard Raman probes, like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film a promising substrate in practical detection. Hence, the MG detection on the fish surface and trace thiram detection on orange pericarp were inspected with detection results of 1 × 10-10 and 1 × 10-6 M, which were below the demand of the National standard of China, exactly matching the realistic application requirements. |
Author | You, Ting-Ting Yin, Peng-Gang Gao, Yu-Kun Zhang, Chen-Meng Yang, Nan |
AuthorAffiliation | Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry |
Author_xml | – sequence: 1 givenname: Nan surname: Yang fullname: Yang, Nan – sequence: 2 givenname: Ting-Ting surname: You fullname: You, Ting-Ting email: youtt@buaa.edu.cn – sequence: 3 givenname: Yu-Kun surname: Gao fullname: Gao, Yu-Kun – sequence: 4 givenname: Chen-Meng surname: Zhang fullname: Zhang, Chen-Meng – sequence: 5 givenname: Peng-Gang orcidid: 0000-0001-6796-5921 surname: Yin fullname: Yin, Peng-Gang email: pgyin@buaa.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29882674$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1vFDEURS0URDaBngq5pGA2_tjxeEu0ySZICYnYUI_ejJ-Joxk72B5EfgF_O052oUCCVK-4577ingOy54NHQt5yNudM8CPo0_wWbD_XHeMNEy_IjNeCVTXneo_MWGEqXSu-Tw5SumWM6bphr8i-WGotVLOYkV9r6KLrIbvgabAU6HrAn64bkJ6GwdDP4EMMhl6F4X7ESC8wg3XDSH84KPDVDSSk1xF8stv0psCQSrQ5-bKhm6lLOUJGakOkx5ixz85_o-tQsFXwGUbnwef0mry0MCR8s7uH5Ov65Hp1Vp1fnn5afTyvYCHrXNWWGy4tLIXsNGpl1cLwBhSapgMruTTMKqMsW2hEoRnXDTPIuGy4EqYDeUjeb__exfB9wpTb0aUehwE8him1gnO1lLVs9PMoq4Uun1Vd0Hc7dOpGNO1ddCPE-_b3zgVgW6CPIaWI9g_CWfuosi0q20eV7U5lqai_Kr3LT57KoG74X_HDtviUhCn6Mui_8Qfq2bOb |
CitedBy_id | crossref_primary_10_1002_admi_201801966 crossref_primary_10_21323_2618_9771_2023_6_4_519_530 crossref_primary_10_1016_j_jallcom_2022_165978 crossref_primary_10_1016_j_jfca_2024_106855 crossref_primary_10_3762_bjnano_14_65 crossref_primary_10_1007_s11051_025_06216_2 crossref_primary_10_1016_j_snb_2019_126799 crossref_primary_10_1021_acssuschemeng_9b03680 crossref_primary_10_1021_acs_jafc_0c06562 crossref_primary_10_1080_10408398_2022_2106547 crossref_primary_10_1016_j_snb_2019_127327 crossref_primary_10_1021_acssensors_0c00398 crossref_primary_10_1021_acs_jafc_2c00089 crossref_primary_10_1021_acsami_4c03255 crossref_primary_10_1016_j_eurpolymj_2019_03_038 crossref_primary_10_1016_j_tifs_2021_10_010 crossref_primary_10_1016_j_snb_2018_10_008 crossref_primary_10_1016_j_aca_2020_02_034 crossref_primary_10_1016_j_aca_2021_338474 crossref_primary_10_1016_j_micromeso_2021_111204 crossref_primary_10_1016_j_saa_2024_125514 crossref_primary_10_1016_j_psj_2020_10_018 crossref_primary_10_1021_acsanm_3c04414 crossref_primary_10_1016_j_talanta_2020_120998 crossref_primary_10_1111_1541_4337_12968 crossref_primary_10_1039_C9AY01366K crossref_primary_10_1016_j_vibspec_2023_103617 crossref_primary_10_1016_j_snb_2022_131515 crossref_primary_10_1021_acsanm_0c01371 crossref_primary_10_3390_mi14030667 crossref_primary_10_1016_j_microc_2024_110396 crossref_primary_10_1038_s41427_020_00278_5 crossref_primary_10_1016_j_apsusc_2020_145331 crossref_primary_10_1016_j_jlumin_2021_118092 crossref_primary_10_1021_acs_jafc_9b01544 crossref_primary_10_1002_jrs_5620 crossref_primary_10_1016_j_vacuum_2020_109265 crossref_primary_10_1016_j_bios_2021_113076 crossref_primary_10_1016_j_saa_2022_121708 crossref_primary_10_1063_5_0015246 crossref_primary_10_1021_acsanm_8b02075 crossref_primary_10_1016_j_foodcont_2019_106835 crossref_primary_10_1007_s10570_019_02343_x crossref_primary_10_1016_j_saa_2019_117281 crossref_primary_10_1088_1402_4896_ad1c7f crossref_primary_10_1016_j_mtnano_2019_100067 crossref_primary_10_1016_j_saa_2022_121880 crossref_primary_10_1021_acssuschemeng_2c01089 crossref_primary_10_1021_acsami_9b09746 crossref_primary_10_1039_D1TC02134F crossref_primary_10_1002_jrs_5595 crossref_primary_10_1039_D0TC00002G crossref_primary_10_1021_acsapm_2c01156 crossref_primary_10_3390_nano10050826 crossref_primary_10_1016_j_jqsrt_2019_106682 crossref_primary_10_1080_05704928_2023_2181818 crossref_primary_10_1016_j_foodcont_2019_106720 crossref_primary_10_1016_j_saa_2023_122365 crossref_primary_10_3390_nano12193432 crossref_primary_10_1016_j_tifs_2022_10_004 crossref_primary_10_1002_ppsc_202400034 crossref_primary_10_1155_2023_2781667 crossref_primary_10_1039_D1AN00713K crossref_primary_10_1016_j_snb_2023_133651 crossref_primary_10_1016_j_snb_2021_130102 |
Cites_doi | 10.1126/science.275.5303.1102 10.1016/j.tsf.2005.08.359 10.1002/admi.201600214 10.1016/j.snb.2016.10.106 10.1155/2014/730915 10.1016/j.apsusc.2017.05.052 10.1146/annurev.anchem.1.031207.112814 10.1016/j.snb.2017.04.118 10.1039/b708461g 10.1021/ac404224f 10.1021/acsami.7b03042 10.1039/C6RA06329B 10.1039/C4TC01634C 10.1021/acsami.7b13321 10.1111/1750-3841.13766 10.1002/smll.200901820 10.1021/acs.analchem.5b03735 10.1021/es101228z 10.1039/c2nr30736g 10.1039/C5CC06745F 10.1039/C4CS00509K 10.1039/c2cs35118h 10.1021/cr068126n 10.1016/j.talanta.2013.08.050 10.1021/jp063879z 10.1021/jp070906s 10.1016/j.matlet.2017.07.064 10.1016/j.aca.2011.03.002 10.1021/jp011730b 10.1016/j.cplett.2016.08.027 10.1016/j.aca.2016.01.023 10.1021/nn900812f 10.1039/C4RA11928B 10.1039/C5AN01657F 10.1021/ja501951v 10.1002/anie.201002969 10.3390/s110302700 10.1021/acsami.7b06669 10.1039/C7AY00882A 10.1016/j.apsusc.2017.01.231 10.1039/c2jm32170j 10.1021/cm400298e 10.3390/nano6090175 10.1039/C4NR02648A 10.1098/rsta.2004.1451 10.1039/c3nr06483b 10.1039/C4NR05178E 10.1021/nl400653s 10.1016/j.talanta.2014.03.075 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jafc.8b01702 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 6896 |
ExternalDocumentID | 29882674 10_1021_acs_jafc_8b01702 c209345165 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | - 55A 5GY 7~N 85S AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL GX1 IH9 JG JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X --- -~X .K2 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a435t-5f1d13fa923b8e86f64d17a6ed7baf313d0f6d6f048ee2801870de0137162dba3 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Fri Jul 11 10:14:10 EDT 2025 Thu Jul 10 23:38:50 EDT 2025 Wed Mar 05 08:56:25 EST 2025 Tue Jul 01 04:18:54 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | food safety surface-enhanced Raman scattering gold nanorods flexible film phase transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a435t-5f1d13fa923b8e86f64d17a6ed7baf313d0f6d6f048ee2801870de0137162dba3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0001-6796-5921 |
PMID | 29882674 |
PQID | 2052813765 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2116935378 proquest_miscellaneous_2052813765 pubmed_primary_29882674 crossref_primary_10_1021_acs_jafc_8b01702 crossref_citationtrail_10_1021_acs_jafc_8b01702 acs_journals_10_1021_acs_jafc_8b01702 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-05 |
PublicationDateYYYYMMDD | 2018-07-05 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1126/science.275.5303.1102 – ident: ref44/cit44 doi: 10.1016/j.tsf.2005.08.359 – ident: ref25/cit25 doi: 10.1002/admi.201600214 – ident: ref24/cit24 doi: 10.1016/j.snb.2016.10.106 – ident: ref42/cit42 doi: 10.1155/2014/730915 – ident: ref28/cit28 doi: 10.1016/j.apsusc.2017.05.052 – ident: ref3/cit3 doi: 10.1146/annurev.anchem.1.031207.112814 – ident: ref26/cit26 doi: 10.1016/j.snb.2017.04.118 – ident: ref2/cit2 doi: 10.1039/b708461g – ident: ref22/cit22 doi: 10.1021/ac404224f – ident: ref19/cit19 doi: 10.1021/acsami.7b03042 – ident: ref34/cit34 doi: 10.1039/C6RA06329B – ident: ref17/cit17 doi: 10.1039/C4TC01634C – ident: ref40/cit40 doi: 10.1021/acsami.7b13321 – ident: ref43/cit43 doi: 10.1111/1750-3841.13766 – ident: ref4/cit4 doi: 10.1002/smll.200901820 – ident: ref49/cit49 doi: 10.1021/acs.analchem.5b03735 – ident: ref5/cit5 doi: 10.1021/es101228z – ident: ref31/cit31 doi: 10.1039/c2nr30736g – ident: ref35/cit35 doi: 10.1039/C5CC06745F – ident: ref11/cit11 doi: 10.1039/C4CS00509K – ident: ref13/cit13 doi: 10.1039/c2cs35118h – ident: ref12/cit12 doi: 10.1021/cr068126n – ident: ref9/cit9 doi: 10.1016/j.talanta.2013.08.050 – ident: ref41/cit41 doi: 10.1021/jp063879z – ident: ref29/cit29 doi: 10.1021/jp070906s – ident: ref27/cit27 doi: 10.1016/j.matlet.2017.07.064 – ident: ref14/cit14 doi: 10.1016/j.aca.2011.03.002 – ident: ref6/cit6 doi: 10.1021/jp011730b – ident: ref23/cit23 doi: 10.1016/j.cplett.2016.08.027 – ident: ref36/cit36 doi: 10.1016/j.aca.2016.01.023 – ident: ref30/cit30 doi: 10.1021/nn900812f – ident: ref39/cit39 doi: 10.1039/C4RA11928B – ident: ref46/cit46 doi: 10.1039/C5AN01657F – ident: ref10/cit10 doi: 10.1021/ja501951v – ident: ref38/cit38 doi: 10.1002/anie.201002969 – ident: ref15/cit15 doi: 10.3390/s110302700 – ident: ref20/cit20 doi: 10.1021/acsami.7b06669 – ident: ref45/cit45 doi: 10.1039/C7AY00882A – ident: ref48/cit48 doi: 10.1016/j.apsusc.2017.01.231 – ident: ref16/cit16 doi: 10.1039/c2jm32170j – ident: ref32/cit32 doi: 10.1021/cm400298e – ident: ref47/cit47 doi: 10.3390/nano6090175 – ident: ref21/cit21 doi: 10.1039/C4NR02648A – ident: ref7/cit7 doi: 10.1098/rsta.2004.1451 – ident: ref33/cit33 doi: 10.1039/c3nr06483b – ident: ref18/cit18 doi: 10.1039/C4NR05178E – ident: ref37/cit37 doi: 10.1021/nl400653s – ident: ref8/cit8 doi: 10.1016/j.talanta.2014.03.075 |
SSID | ssj0008570 |
Score | 2.510933 |
Snippet | Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6889 |
SubjectTerms | China fish food contamination gentian violet gold malachite green nanogold nanorods pericarp polymers Raman spectroscopy thiram |
Title | Fabrication of a Flexible Gold Nanorod Polymer Metafilm via a Phase Transfer Method as a SERS Substrate for Detecting Food Contaminants |
URI | http://dx.doi.org/10.1021/acs.jafc.8b01702 https://www.ncbi.nlm.nih.gov/pubmed/29882674 https://www.proquest.com/docview/2052813765 https://www.proquest.com/docview/2116935378 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeimHPqFsXzJSOXDIEjuJ7T2utqSoEhXqgsQtsuMxC4RNtclWav9A_3bHiVnU14prPI4VZzzf54zzDSHvYwR5K1Uacc0gSoVKIpVJFyHUxpojT3Lg_x0-_iyOztJP59n5nUzOnxl8zg502QyvtCuHynitFwy3D7lQ0m-0xpPpKup6ofb-OAfD0QQLKcl_3cEDUdn8DkT_YZcdyuRP-nJFTSdO6A-XXA-XrRmWP_6WbrzHAzwljwPZpOPeO56RBzB_TjbHF4sguAEvyM9cm0X4bkdrRzXNvUSmqYB-rCtLMfrWGGPpSV19v4EFPYZWu8vqhn671Gh8MkMUpB3gub51hsa6wabp4Zcp9XGp07-lSI7pB_ApCwRLmtdo5pWxdDiKs0XO8sPTyVEUijNEGhlWG2WOWZY4jQTRKFDCidQyqQVYabRLWGJjJ6xwGCEAuPK1_2ILXuCQCW6NTrbJxryeww6hxpVSJkolyK5SWZbKSjECLjgCp0lNOiB7OIdFWFxN0eXNOSu6izixRZjYATm4faNFGRTOfaGNak2P_VWPr726xxrb3VsnKXAJ-ryKnkO9bAoeZ-jVGKmzNTbMq95kiVQD8rL3sNWIfITbHCHTV_d8ztfkEdI21R0azt6QjXaxhLdIjVrzrlsTvwBG6we1 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKOQAHyn-XQjESPXDINnYS2z1wWLUNW9qtKraVekvt2KYt6QZtsqDyAjwHr8KTMU68W4FgxaUS12TixPbY3zfx-DNCr0IAec1FHFBJTBAzEQUi4TYAqA0lBZ5kjds7PNhn_aP43XFyvIC-T_fCwEdUUFLVLOJfqQuQdXftXNq8K5STfKE-j3LXXH6BKK16s7MFXbpGabp9uNkP_EECgQQ2UAeJJZpEVgKZUcIIZlmsCZfMaK6kjUikQ8s0s-DNxlDhzqkLtXFifIRRrWQE5d5AN4H7UBff9TaHs8ne6cO3WSQEKsmIXwn90xc7_MurX_HvL6S2Abd0Cf2YNUuT0_KxO6lVN__6m2Lkf91u99BdT61xrx0L99GCGT1Ad3ofxl5exDxE31Kpxv4vJS4tljh1gqCqMPhtWWgMWFMCouCDsri8MGM8MLW0Z8UF_nwmwfjgFDAfN_Bu27unYCwruDXcfj_EbhZu1H4xhAJ4y7gFGqAGOC3BzOmASZ949AgdXUtLPEaLo3JklhFWNuc8EiICLhnzPBeasw1DGQWaoGIVd9Aa9Fnmp5Iqa7IEKMmai9CRme_IDlqfOlKWez13d6xIMeeJ17MnPrVaJnNsX059M4MJx60iyZEpJ1VGwwTGMOBSMseGOI2fJOKig560jj17I92AoI7x-Ok_1vMFutU_HOxlezv7uyvoNhBW0aRLJ8_QYj2emOdACmu12gxLjE6u259_Auzqamk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKkRAseD-Gp5HogkWmsZPY7oLFqNPQUlqNGCp1l9qxTQvppJpkQOUH-BJ-he_i2vGMBIIRm0pskxsntq99jnOvjxF6EQPIay7SiEpiopSJJBIZtxFAbSwp8CRr3N7hvX22fZC-OcwOV9D3-V4Y-IgGSmp8EN-N6jNtg8IAWXfXP0pb9oVysi805FLumvMvsFJrXu0MoVvXKM233m9uR-EwgUgCI2ijzBJNEiuB0ChhBLMs1YRLZjRX0iYk0bFlmlnwaGOocGfVxdo4QT7CqFYygXIvocsuSujWeIPN8WLCdxrxXSYJgYoyEqKhf_pih4Fl8ysG_oXYeoDLb6Afi6bxeS2f-rNW9cuvv6lG_vdtdxNdDxQbD7oxcQutmMltdG3wYRpkRswd9C2Xahr-VuLaYolzJwyqKoNf15XGgDk1IAse1dX5qZniPdNKe1Kd4s8nEoxHx4D92MO87e4eg7Fs4NZ4690Yu9nYq_5iWBLgoXGBGqAIOK_BzOmByZCAdBcdXEhL3EOrk3piHiCsbMl5IkQCnDLlZSk0ZxuGMgp0QaUq7aE16LMiTClN4bMFKCn8RejIInRkD63Pnakog667O16kWvLEy8UTZ52myRLb53P_LGDicdEkOTH1rClonMFYBnzKltgQp_WTJVz00P3OuRdvpBuwuGM8ffiP9XyGroyGefF2Z3_3EboKvFX4rOnsMVptpzPzBLhhq576kYnR0UW780_YxWzs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+a+Flexible+Gold+Nanorod+Polymer+Metafilm+via+a+Phase+Transfer+Method+as+a+SERS+Substrate+for+Detecting+Food+Contaminants&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Yang%2C+Nan&rft.au=You%2C+Ting-Ting&rft.au=Gao%2C+Yu-Kun&rft.au=Zhang%2C+Chen-Meng&rft.date=2018-07-05&rft.pub=American+Chemical+Society&rft.issn=0021-8561&rft.eissn=1520-5118&rft.volume=66&rft.issue=26&rft.spage=6889&rft.epage=6896&rft_id=info:doi/10.1021%2Facs.jafc.8b01702&rft.externalDocID=c209345165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |