Approaching the Intrinsic Properties of Moiré Structures Using Atomic Force Microscopy Ironing

Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations i...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 23; no. 11; pp. 4749 - 4755
Main Authors Palai, Swaroop Kumar, Dyksik, Mateusz, Sokolowski, Nikodem, Ciorga, Mariusz, Sánchez Viso, Estrella, Xie, Yong, Schubert, Alina, Taniguchi, Takashi, Watanabe, Kenji, Maude, Duncan K., Surrente, Alessandro, Baranowski, Michał, Castellanos-Gomez, Andres, Munuera, Carmen, Plochocka, Paulina
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations in the interlayer distance affect interlayer coupling and moiré effects. Therefore, to access the intrinsic properties of the TMD stack, it is essential to obtain a clean and uniform interface between the layers. Here, we show that this is achieved by ironing with the tip of an atomic force microscope. This post-stacking procedure dramatically improves the homogeneity of the interfaces, which is reflected in the optical response of the interlayer exciton. We demonstrate that ironing improves the layer coupling, enhancing moiré effects and reducing disorder. This is crucial for the investigation of TMD heterostructure physics, which currently suffers from low reproducibility.
AbstractList Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moirépattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations in the interlayer distance affect interlayer coupling and moiréeffects. Therefore, to access the intrinsic properties of the TMD stack, it is essential to obtain a clean and uniform interface between the layers. Here, we show that this is achieved by ironing with the tip of an atomic force microscope. This post-stacking procedure dramatically improves the homogeneity of the interfaces, which is reflected in the optical response of the interlayer exciton. We demonstrate that ironing improves the layer coupling, enhancing moiréeffects and reducing disorder. This is crucial for the investigation of TMD heterostructure physics, which currently suffers from low reproducibility.
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations in the interlayer distance affect interlayer coupling and moiré effects. Therefore, to access the intrinsic properties of the TMD stack, it is essential to obtain a clean and uniform interface between the layers. Here, we show that this is achieved by ironing with the tip of an atomic force microscope. This post-stacking procedure dramatically improves the homogeneity of the interfaces, which is reflected in the optical response of the interlayer exciton. We demonstrate that ironing improves the layer coupling, enhancing moiré effects and reducing disorder. This is crucial for the investigation of TMD heterostructure physics, which currently suffers from low reproducibility.
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations in the interlayer distance affect interlayer coupling and moiré effects. Therefore, to access the intrinsic properties of the TMD stack, it is essential to obtain a clean and uniform interface between the layers. Here, we show that this is achieved by ironing with the tip of an atomic force microscope. This post-stacking procedure dramatically improves the homogeneity of the interfaces, which is reflected in the optical response of the interlayer exciton. We demonstrate that ironing improves the layer coupling, enhancing moiré effects and reducing disorder. This is crucial for the investigation of TMD heterostructure physics, which currently suffers from low reproducibility.
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations in the interlayer distance affect interlayer coupling and moiré effects. Therefore, to access the intrinsic properties of the TMD stack, it is essential to obtain a clean and uniform interface between the layers. Here, we show that this is achieved by ironing with the tip of an atomic force microscope. This post-stacking procedure dramatically improves the homogeneity of the interfaces, which is reflected in the optical response of the interlayer exciton. We demonstrate that ironing improves the layer coupling, enhancing moiré effects and reducing disorder. This is crucial for the investigation of TMD heterostructure physics, which currently suffers from low reproducibility.
Author Taniguchi, Takashi
Maude, Duncan K.
Castellanos-Gomez, Andres
Baranowski, Michał
Munuera, Carmen
Dyksik, Mateusz
Sokolowski, Nikodem
Palai, Swaroop Kumar
Surrente, Alessandro
Xie, Yong
Ciorga, Mariusz
Schubert, Alina
Watanabe, Kenji
Plochocka, Paulina
Sánchez Viso, Estrella
AuthorAffiliation International Center for Materials Nanoarchitectonics
Research Center for Functional Materials
Wrocław University of Science and Technology
Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228
Materials Science Factory
Department of Experimental Physics, Faculty of Fundamental Problems of Technology
National Institute for Materials Science
Université Toulouse
AuthorAffiliation_xml – name: Department of Experimental Physics, Faculty of Fundamental Problems of Technology
– name: Research Center for Functional Materials
– name: Université Toulouse
– name: Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228
– name: International Center for Materials Nanoarchitectonics
– name: National Institute for Materials Science
– name: Wrocław University of Science and Technology
– name: Materials Science Factory
Author_xml – sequence: 1
  givenname: Swaroop Kumar
  surname: Palai
  fullname: Palai, Swaroop Kumar
  organization: Université Toulouse
– sequence: 2
  givenname: Mateusz
  orcidid: 0000-0003-4945-8795
  surname: Dyksik
  fullname: Dyksik, Mateusz
  organization: Wrocław University of Science and Technology
– sequence: 3
  givenname: Nikodem
  surname: Sokolowski
  fullname: Sokolowski, Nikodem
  organization: Université Toulouse
– sequence: 4
  givenname: Mariusz
  surname: Ciorga
  fullname: Ciorga, Mariusz
  organization: Wrocław University of Science and Technology
– sequence: 5
  givenname: Estrella
  orcidid: 0000-0003-0202-4340
  surname: Sánchez Viso
  fullname: Sánchez Viso, Estrella
  organization: Materials Science Factory
– sequence: 6
  givenname: Yong
  orcidid: 0000-0001-7904-664X
  surname: Xie
  fullname: Xie, Yong
  organization: Materials Science Factory
– sequence: 7
  givenname: Alina
  surname: Schubert
  fullname: Schubert, Alina
  organization: Materials Science Factory
– sequence: 8
  givenname: Takashi
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: International Center for Materials Nanoarchitectonics
– sequence: 9
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science
– sequence: 10
  givenname: Duncan K.
  surname: Maude
  fullname: Maude, Duncan K.
  organization: Université Toulouse
– sequence: 11
  givenname: Alessandro
  orcidid: 0000-0003-4078-4965
  surname: Surrente
  fullname: Surrente, Alessandro
  organization: Wrocław University of Science and Technology
– sequence: 12
  givenname: Michał
  orcidid: 0000-0002-5974-0850
  surname: Baranowski
  fullname: Baranowski, Michał
  organization: Wrocław University of Science and Technology
– sequence: 13
  givenname: Andres
  orcidid: 0000-0002-3384-3405
  surname: Castellanos-Gomez
  fullname: Castellanos-Gomez, Andres
  organization: Materials Science Factory
– sequence: 14
  givenname: Carmen
  surname: Munuera
  fullname: Munuera, Carmen
  email: cmunuera@icmm.csic.es
  organization: Materials Science Factory
– sequence: 15
  givenname: Paulina
  orcidid: 0000-0002-4019-6138
  surname: Plochocka
  fullname: Plochocka, Paulina
  email: paulina.plochocka@lncmi.cnrs.fr
  organization: Université Toulouse
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37276177$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04144933$$DView record in HAL
BookMark eNp9kc9OGzEQxi1EVf60b4CqPZZDUnvHG2dPVYSgRApqJeDseu1ZYrSxF9uLxLHv14eqVwlRy6EnWzPf9xvNfCfk0HmHhJwxOmW0ZF-UjlOnnO8wpWmpKRez6oAcswroZFbX5eH-P-dH5CTGR0ppDRV9T45AlGLGhDgmPxd9H7zSa-seirTGYulSsC5aXfwIvseQLMbCt8WNtwF__ypuUxh0GkKu3sfRtEh-k9VXPmgsbqwOPmrfvxTL4F3ufyDvWtVF_Lh7T8n91eXdxfVk9f3b8mKxmigOFZugMg3FSuiam1YrUEI3TTurRKuwgjloA8a0BsFgg4A4R8GQqobXhmkOBk7J1y23H5oNGo15D9XJPtiNCi_SKyv_7Ti7lg_-WeZjCgBWZsL5lrB-47terORYo5xxXgM8s6z9vJsW_NOAMcmNjRq7Tjn0Q5TlvATKaVmNWL6VjpeJAds9m9FxOJM5SfmapNwlmW2f_t5nb3qNLgvoVjDaH_0QXD7v_5l_AEoatBI
CitedBy_id crossref_primary_10_1021_acsami_4c03639
crossref_primary_10_1021_acs_nanolett_3c04815
crossref_primary_10_1016_j_nanoen_2024_109551
Cites_doi 10.1021/nl5008085
10.1088/2053-1583/1/2/025001
10.1002/adfm.201604093
10.1103/PhysRevB.97.035306
10.1038/nature26160
10.1088/2053-1583/aa7352
10.1038/s41586-019-0957-1
10.1038/nnano.2010.172
10.1038/s41586-019-0975-z
10.1038/s41586-019-1393-y
10.1021/acs.nanolett.7b03184
10.1021/acsnano.9b06992
10.1021/acs.nanolett.8b01484
10.1021/acsnano.7b00640
10.1021/acsnano.1c01787
10.1002/adfm.202005053
10.1038/ncomms7242
10.1038/natrevmats.2016.55
10.1021/acsnano.0c00088
10.1038/s41566-018-0325-y
10.1126/sciadv.1701696
10.1063/1.1428404
10.1126/science.aac7820
10.1021/acs.nanolett.7b01304
10.1038/ncomms2498
10.1021/nl4011172
10.1002/smtd.201800094
10.1063/1.124429
10.1021/acsami.9b18821
10.1126/science.1191700
10.1038/nnano.2010.279
10.1103/PhysRevX.7.021026
10.1021/acsnano.8b01369
10.1021/acs.nanolett.8b03266
10.1038/nphys2272
10.1002/adfm.201700860
10.1063/1.3685504
10.1039/C7NR01598D
10.1038/nature12385
10.1038/s41928-019-0245-y
10.1088/0268-1242/1/1/003
10.1038/s41467-021-21822-z
10.1021/acsami.8b01224
10.1038/s41566-019-0581-5
10.1039/C5CS00507H
10.1103/PhysRevX.4.041019
10.1038/ncomms15251
10.1038/s41565-019-0520-0
10.1021/acs.nanolett.2c04524
10.1039/D0NR02160A
10.1039/C5RA27871F
10.1021/nl5006542
10.1038/s41699-020-0152-0
10.1021/acsomega.0c05934
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID NPM
AAYXX
CITATION
7X8
1XC
VOOES
5PM
DOI 10.1021/acs.nanolett.2c04765
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 4755
ExternalDocumentID oai_HAL_hal_04144933v1
10_1021_acs_nanolett_2c04765
37276177
a625030981
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 755655
– fundername: ;
  grantid: 956813
– fundername: ;
  grantid: PID2020-115566RB-I00
– fundername: ;
  grantid: 2020/38/E/ST3/00194
– fundername: ;
  grantid: 19H05790
– fundername: ;
  grantid: ANR-17-EURE-0009
– fundername: ;
  grantid: 21H05233
– fundername: ;
  grantid: PCI2019-111893-2
– fundername: ;
  grantid: BPN/BKK/2021/1/00002/U/00001
– fundername: ;
  grantid: 20H00354
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
AAHBH
ABJNI
ACBEA
CUPRZ
NPM
AAYXX
CITATION
7X8
1XC
53G
AAYOK
AFFNX
EJD
LG6
VOOES
5PM
ID FETCH-LOGICAL-a4351-eadb0e57c94dfca3a7cbbf657fae5383cd3ddfde3debe3ee8e71e0ab49d1c43d3
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Tue Sep 17 21:29:58 EDT 2024
Wed Aug 28 06:53:48 EDT 2024
Fri Jun 28 09:39:27 EDT 2024
Fri Aug 23 00:37:13 EDT 2024
Tue Aug 27 13:46:50 EDT 2024
Thu Jul 06 08:30:30 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords interlayer exciton
heterostructures
photoluminescence
transition metal dichalcogenides
atomic force microscopy
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4351-eadb0e57c94dfca3a7cbbf657fae5383cd3ddfde3debe3ee8e71e0ab49d1c43d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3384-3405
0000-0003-4945-8795
0000-0003-4078-4965
0000-0003-0202-4340
0000-0002-5974-0850
0000-0003-3701-8119
0000-0001-7904-664X
0000-0002-1467-3105
0000-0002-4019-6138
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10273312
PMID 37276177
PQID 2823040252
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273312
hal_primary_oai_HAL_hal_04144933v1
proquest_miscellaneous_2823040252
crossref_primary_10_1021_acs_nanolett_2c04765
pubmed_primary_37276177
acs_journals_10_1021_acs_nanolett_2c04765
PublicationCentury 2000
PublicationDate 2023-06-14
PublicationDateYYYYMMDD 2023-06-14
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/nl5008085
– ident: ref18/cit18
  doi: 10.1088/2053-1583/1/2/025001
– ident: ref19/cit19
  doi: 10.1002/adfm.201604093
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.97.035306
– ident: ref14/cit14
  doi: 10.1038/nature26160
– ident: ref41/cit41
  doi: 10.1088/2053-1583/aa7352
– ident: ref16/cit16
  doi: 10.1038/s41586-019-0957-1
– ident: ref8/cit8
  doi: 10.1038/nnano.2010.172
– ident: ref15/cit15
  doi: 10.1038/s41586-019-0975-z
– ident: ref10/cit10
  doi: 10.1038/s41586-019-1393-y
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.7b03184
– ident: ref34/cit34
  doi: 10.1021/acsnano.9b06992
– ident: ref46/cit46
  doi: 10.1021/acs.nanolett.8b01484
– ident: ref43/cit43
  doi: 10.1021/acsnano.7b00640
– ident: ref22/cit22
  doi: 10.1021/acsnano.1c01787
– ident: ref25/cit25
  doi: 10.1002/adfm.202005053
– ident: ref29/cit29
  doi: 10.1038/ncomms7242
– ident: ref5/cit5
  doi: 10.1038/natrevmats.2016.55
– ident: ref36/cit36
  doi: 10.1021/acsnano.0c00088
– ident: ref30/cit30
  doi: 10.1038/s41566-018-0325-y
– ident: ref50/cit50
  doi: 10.1126/sciadv.1701696
– ident: ref51/cit51
  doi: 10.1063/1.1428404
– ident: ref40/cit40
  doi: 10.1126/science.aac7820
– ident: ref42/cit42
  doi: 10.1021/acs.nanolett.7b01304
– ident: ref44/cit44
  doi: 10.1038/ncomms2498
– ident: ref12/cit12
  doi: 10.1021/nl4011172
– ident: ref3/cit3
  doi: 10.1002/smtd.201800094
– ident: ref54/cit54
  doi: 10.1063/1.124429
– ident: ref20/cit20
  doi: 10.1021/acsami.9b18821
– ident: ref26/cit26
  doi: 10.1126/science.1191700
– ident: ref1/cit1
  doi: 10.1038/nnano.2010.279
– ident: ref11/cit11
  doi: 10.1103/PhysRevX.7.021026
– ident: ref28/cit28
  doi: 10.1021/acsnano.8b01369
– ident: ref38/cit38
  doi: 10.1021/acs.nanolett.8b03266
– ident: ref9/cit9
  doi: 10.1038/nphys2272
– ident: ref53/cit53
  doi: 10.1002/adfm.201700860
– ident: ref35/cit35
  doi: 10.1063/1.3685504
– ident: ref45/cit45
  doi: 10.1039/C7NR01598D
– ident: ref7/cit7
  doi: 10.1038/nature12385
– ident: ref32/cit32
  doi: 10.1038/s41928-019-0245-y
– ident: ref52/cit52
  doi: 10.1088/0268-1242/1/1/003
– ident: ref31/cit31
  doi: 10.1038/s41467-021-21822-z
– ident: ref21/cit21
  doi: 10.1021/acsami.8b01224
– ident: ref24/cit24
  doi: 10.1038/s41566-019-0581-5
– ident: ref2/cit2
  doi: 10.1039/C5CS00507H
– ident: ref27/cit27
  doi: 10.1103/PhysRevX.4.041019
– ident: ref17/cit17
  doi: 10.1038/ncomms15251
– ident: ref13/cit13
  doi: 10.1038/s41565-019-0520-0
– ident: ref39/cit39
  doi: 10.1021/acs.nanolett.2c04524
– ident: ref47/cit47
  doi: 10.1039/D0NR02160A
– ident: ref48/cit48
  doi: 10.1039/C5RA27871F
– ident: ref33/cit33
  doi: 10.1021/nl5006542
– ident: ref4/cit4
  doi: 10.1038/s41699-020-0152-0
– ident: ref23/cit23
  doi: 10.1021/acsomega.0c05934
SSID ssj0009350
Score 2.4852517
Snippet Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern...
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern...
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moirépattern...
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4749
SubjectTerms Condensed Matter
Letter
Materials Science
Physics
Title Approaching the Intrinsic Properties of Moiré Structures Using Atomic Force Microscopy Ironing
URI http://dx.doi.org/10.1021/acs.nanolett.2c04765
https://www.ncbi.nlm.nih.gov/pubmed/37276177
https://search.proquest.com/docview/2823040252
https://hal.science/hal-04144933
https://pubmed.ncbi.nlm.nih.gov/PMC10273312
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RcoFDgfJoykNuxYVDlviRxDmuKlZbxALStlJvwa-oFVJS7aNSe-v_40cx9ia73a0QcIxjObE9M_7GnvkM8D7RMpFGqjhHCxwLnlexh-Wo8SwRRldaBsr80ddseCo-n6VnK0dx8wSf0Y_KTHu1qhvsxqzHTCLyLN2Ch8wHEXoodDRekezycCMrKjG6RIUUXarcH1rxC5KZri1IW-c-HPI-1twMmbyzBg2ewLcuk2cRevKzN5_pnrm5T-z4j917CjstHCX9hfw8gweu3oXHd0gKn8OPfks7jk8E4SI5xn-7qHF2yXe_kz_xlKykqcioQfP565aMAyXtHP14EgISSH_mU5_JoJkYR0Y-AtDnwlyT40nYC34Bp4NPJ0fDuL2XIVYIrmiMwqcTl-amELYyiqvcaF1laV4ph_aTG8utrazjFiWEOyddTl2itCgsNYJb_hK266Z2e0AyZrVUaFUQtgirVMFVZhFBOomOjyzSCD7gAJWtXk3LcGTOaOkLu1Er21GLIO4msrxcUHX8pf4hzvayqufZHva_lL4sEehnFpxf0QgOOmEoUfH8aYqqXTOfliwcUSJkZBG8WgjHsi2OqBChYR6BXBObtY-tv6kvzgO5N_UEQ5yy_f_o-Wt4xBB7-Qg2Kt7ANk6ze4tYaabfBQX5DXkvFKk
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615QAceFNCeRjEhUOWJHZi57iqWO3CboXUFvVm_IpaVUrQZhcJbvw_flTH3mTbLUKoxziWE3tm7G88488A7xItEmGEijnOwDGjvIo9LEeLzxJmdKVFoMyfHRTjY_bpJD_Zgrw_C4M_0WJLbQjiX7ILpB98Wa3qBnuzGGQmYbzIt-FWztEl94ho__CSa5eGi1nRltEzKgXrT8z9oxW_Lpl2Y13aPvVZkX9DzuuZk1eWotF9-LruRMhAOR8sF3pgfl3jd7xxLx_AvQ6ckuFKmx7Clqsfwd0rlIWP4duwIyHHJ4LgkUzwF89qlDX54vf1556glTQVmTU4mf75TQ4DQe0SvXoS0hPIcOEPQpNRMzeOzHw-oD8Z85NM5mFn-Akcjz4e7Y_j7paGWCHUSmNURZ24nJuS2cooqrjRuipyXimHsyk1llpbWUct6gt1TjieukRpVtrUMGrpU9ipm9o9A1JkVguFcwyCGGaVKqkqLOJJJ9ANEmUewXscINlZWStDAD1LpS_sR012oxZB3MtTfl8Rd_yn_lsU-rqqZ90eD6fSlyUMvc6S0h9pBG96nZBohj62omrXLFuZhYAlAsgsgt2VjqzboogRESjyCMSG9mx8bPNNfXYaqL5TTzdE0-z5DXr-Gm6Pj2ZTOZ0cfN6DOxmiMp_blrIXsIMidy8RRS30q2AzF3BHHRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xi4TgwPsRngZx4ZCSxE7iHKuFqoXtaqVlpRUX41e0K6Rk1bRIcOP_8aOYcdPSLkIIjnEsJ7Znxp89428AXiZGJtJKHZdogWPByzomWI4anyXCmtrIQJk_PSjGx-LdSX6ykeoLf6LDlrrgxCetPnd1zzCQvqbyRjct9mg-yGwiyiLfgcs55fAmVLR39Itvl4fkrKjPuDuqpFjdmvtDK7Q22W5rbdo5pcjI32HnxejJjeVodAM-rjsSolA-DxZzM7DfLnA8_ldPb8L1HqSy4VKqbsEl39yGaxvUhXfg07AnI8cnhiCSTfA3zxqcc3ZI5_szImplbc2mLRrVH9_ZUSCqXeDunoUwBTac04VoNmpn1rMpxQXSDZmvbDILJ8R34Xj09sPeOO6zNcQaIVcao0iaxOelrYSrrea6tMbURV7W2qNV5dZx52rnuUO54d5LX6Y-0UZULrWCO34Pdpu28Q-AFZkzUqOtQTAjnNYV14VDXOklbodklUfwCgdI9drWqeBIz1JFhatRU_2oRRCv5lSdLwk8_lL_BU78uiqxb4-H-4rKEoG7z4rzL2kEz1dyoVAdyceiG98uOpUFxyUCySyC-0s5WbfFESsiYCwjkFsStPWx7TfN2Wmg_E6Jdoin2cN_6PkzuHL4ZqT2JwfvH8HVDMEZhbil4jHs4oz7Jwim5uZpUJufRyIfjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+Intrinsic+Properties+of+Moir%C3%A9+Structures+Using+Atomic+Force+Microscopy+Ironing&rft.jtitle=Nano+letters&rft.au=Palai%2C+Swaroop+Kumar&rft.au=Dyksik%2C+Mateusz&rft.au=Sokolowski%2C+Nikodem&rft.au=Ciorga%2C+Mariusz&rft.date=2023-06-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=23&rft.issue=11&rft.spage=4749&rft.epage=4755&rft_id=info:doi/10.1021%2Facs.nanolett.2c04765&rft_id=info%3Apmid%2F37276177&rft.externalDBID=PMC10273312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon